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Аннотация. Приведены физический закон, математические модели колебаний и алгоритм расчѐта дис-

кретной диссипативной системы (ДДС) при выключении конструктивного элемента, вызванном запроектной 

(ударной) нагрузкой. В рамках теории временного анализа записаны разрешающие уравнения реакции конст-

руктивно-нелинейной системы для двух состояний: до выключения несущего элемента (при t  t1) и после вы-

ключения (при t > t1). Учет внутреннего трения материала осуществлен на основе теории упруговязкого сопро-

тивления по модели непропорционального демпфирования. Результаты иллюстрируются на примере колебаний 

модели 2-этажного железобетонного каркасного здания при разрушении угловой колонны нижнего этажа при 

случайном (внезапном) наезде на нее транспортного средства. Приведены осциллограммы колебаний парамет-

ров динамической реакции расчетных моделей каркаса: базовой (исходной) модели (БМ) и поврежденной мо-

дели (ПМ). Осциллограммы ускорений и силовых параметров реакции ПМ в момент удаления колонны при t1 

содержат скачки. Кроме того, для вектора внешних динамических сил в компоненте крутящего момента 1-го 

этажа ПМ обнаружен эффект скачка, явившийся следствием изменения положения координат центра жестко-

сти (ц. ж.) этажа в момент внезапного удаления колонны. 
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Abstract. The article presents a physical law, mathematical models of oscillations and an algorithm for calculating 

a discrete dissipative system (DDS). The algorithm is based on the following condition: the structural element is dis-

abled due to an out-of-design (shock) load. Within the theory of time analysis, the resolving equations of the reaction of 

a structurally nonlinear system are written for two states: before switching off the carrier element (at t  t1) and after 

switching off (at t > t1). The internal friction of the material is taken into account on the basis of the theory of elastic-

viscous resistance in accordance with the model of disproportionate damping. The article considers the oscillation of the 

model of a 2-storey reinforced concrete frame building during the destruction of the corner column of the lower floor.  
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Обзорная часть 

Прогрессирующее обрушение представляет 

собой экстремальное событие в зданиях и соору-

жениях, начинающееся с локального повреждения 

какой-то конструкции, а затем переходящее в виде 

цепной реакции на другие части сооружения, при-

водя его либо к частичному, либо полному разру-

шению. К данному явлению, проявляющему не-

пропорциональный характер разрушения, обраще-

но внимание инженеров и научных специалистов 

как отечественных, так и зарубежных, о чем сви-

детельствуют многочисленные публикации и кон-

ференции [1–11].  

Непропорциональный характер разрушения 

состоит в том, что отказ одного конструктивного 

элемента, напр., колонны или ригеля, имеющее 

вид локального события в конструкции, неожи-

данно принимает лавинообразный характер и мо-

жет вызвать обрушение всего здания. Особенно-

стью этих разрушений также является то, что они 

происходят, как правило, при выполнении всех 

норм и правил строительного проектирования. 

Сложный и непредсказуемый характер таких раз-

рушений вынуждает выделить их в особую кате-

горию так называемых запроектных воздействий 

[1], не подчиняющихся условиям нормальной экс-

плуатации строительных объектов.  

Поэтому первостепенной задачей строитель-

ной науки является обеспечение живучести зданий 

и сооружений. Этой теме в последнее время по-

священо огромное количество различных подхо-

дов к проектированию зданий и сооружений по их 

защите от прогрессирующего обрушения.  

В России на основе этих подходов разработан 

ряд мероприятий по предотвращению прогресси-

рующего (или лавинообразного) обрушения для 

различных категорий зданий (высотных, монолит-

ных жилых, крупнопанельных, большепролетных 

сооружений), приведенных в рекомендациях [12, 

13], публикациях [2, 4, 6, 10, 14] и нормативных 

документах [15]. Аналогичные разработки по за-

щите конструкций зданий и сооружений от про-

грессирующего обрушения ведутся за рубежом 

(американские [16, 17] и европейские [18] стан-

дарты и требования). 

Из обзора публикаций зарубежных источни-

ков следует, что основные направления исследо-

ваний по методам оценки живучести зданий мож-

но условно разделить на три направления. Первое 

направление относится к методам разработки на-

дѐжности конструктивных элементов с использо-

ванием 2- и 3-мерных моделей разрушения [8, 10, 

19–21], второе – к методам разработки мероприя-

тий, которые связаны с повышением сопротивляе-

мости конструктивной схемы к разрушению [7, 

22–24]. Третье направление исследований связано 

с созданием стойких к разрушению каркасных 

зданий, для этого используется опыт проектирова-

ния и расчѐта конструкций в условиях сейсмиче-

ских воздействий [22, 24]. 

В большинстве случаев все исследования по 

оценкам сопротивления нагрузки и режиму вне-

запных отказов конструкции получены либо по 

результатам численного моделирования на основе 

различных модификаций метода конечного эле-

мента [25], либо экспериментальным путем. От-

сутствие аналитических методов расчета конст-

рукций на прогрессирующее обрушение объясня-

ется сложностью задачи, хотя при этом отмечается 

важность теоретических исследований по созда-

нию аналитических моделей для анализа повреж-

денных конструкций [1, 2].  

При внезапном выключении критического 

элемента (колонны или ригеля) поврежденная сис-

тема из состояния покоя переходит в состояние 

движения. Это связано с тем, что положение стати-

ческого равновесия для системы уже становится 

невозможным и переход в режим колебаний – это 

вынужденный для неѐ шаг, чтобы сохранить свою 

целостность. Поэтому при создании математиче-

ской модели колебаний поврежденной системы 

следует учитывать наличие инерционных эффектов 

и сил сопротивления, свойственных задаче динами-

ческого анализа. Решение этой задачи требует по-

строения системы уравнений динамической реак-

ции расчетной модели с выключающимся конст-

руктивным элементом, что при численном модели-

ровании выполнить чрезвычайно сложно.  

Однако решение такой задачи по созданию ма-

тематической модели колебаний и построению 

комплекса уравнений динамической реакции кон-

структивной системы с выключающимся несущим 

элементом можно получить на основе временного 

анализа. В статье предложен подход к расчету по-

The destruction of the column occurs as a result of an accidental (sudden) impact of a vehicle. The oscillograms of fluc-

tuations in the dynamic reaction parameters of the models are given: the basic (initial) model (BM) and the damaged  

model (PM). The oscillograms of accelerations and force parameters of the PM reaction at the time of column extrac-

tion at t1 contain sharp changes in values (jumps). A jump effect was found for the vector of external dynamic forces as 

part of the torque of the 1st floor of the PM. It occurs as a result of a change in the position of the coordinates of the 

center of rigidity (c.w.) of the overlap at the time of the sudden removal of the column. 
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врежденного каркаса с использованием метода мо-

делирования альтернативного пути [10, 12] в рам-

ках теории временного анализа дискретных дисси-

пативных систем (ДДС) [26]. Анализ колебаний 

проведѐн для 2-этажного железобетонного каркаса 

при внезапном выключении угловой колонны.  

 

Метод исследования 

Условия динамического равновесия расчет-

ной модели, рассматриваемой в виде ДДС, пред-

ставляется системой обыкновенных дифференци-

альных уравнений (ОДУ) движения. В матричной 

форме эта система вместе с начальными условия-

ми имеет вид: 

0 0 0 0 00

( ) ( ) ( ),

( ) ( ),

( )

( ) ( ),

M C t KY t f t

Y t

Y t Y

Yt tYY t
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


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(1) 

 

(2) 

где M = diag (m1, ... , mn), C = C
T
, K = K

Т 
– матрицы 

масс, затухания и жесткости; Y(t),Y (t), ( )Y t – век-

торы перемещений и их производных; f(t) = Q + 

P(t)  вектор внешней нагрузки, содержащий век-

торы статических (Q = KYst) и динамических P(t) 

воздействий; Yst – вектор статических перемеще-

ний расчетной модели.  

В процессе колебаний помимо внешней на-

грузки на узлы дискретной модели действуют 

внутренние силовые параметры модели – восста-

навливающие, диссипативные и инерционные си-

лы. Они представляют соответствующие векторы 

левой части ОДУ (1):  

R(t) = KY(t), F(t) = CY (t), I(t) = –MY (t).       (3) 

В случае внезапного разрушения колонны про-

исходит снижение параметров жесткости расчетной 

модели (каркаса), характерное для конструктивно-

нелинейного процесса. Математическая формули-

ровка этого процесса, определяемая связью между 

восстанавливающими силами и перемещениями уз-

лов модели, приведена в [26] и имеет вид: 

R(t) = KiY(t),  

Ki = K0 (t  t1), Ki = K1 (t > t1),                          (4) 

где t1 – время, при котором происходит выключе-

ние (удаление) колонны.  

Матрица жесткости Ki (i = 0, 1) в (4) при t  t1 

формируется по расчетной схеме, соответствую-

щей базовой модели (БМ), а при t > t1 – по схеме 

поврежденной модели (ПМ). Для БМ индекс i = 0 

в дальнейшем опущен. 

Помимо уравнения движения расчѐтной мо-

дели конструктивно-нелинейной системы огром-

ное значение имеет уравнение движения собст-

венных форм колебаний ДДС, которое является 

характеристическим по отношению к однородно-

му ОДУ в (1): 

MS
2
 + CS + K = 0,                                             (5) 

где S  Мn(С). Матрица S с помощью фундамен-

тальной матрицы Ф(t) = e
St

 осуществляет связь 

между однородным ОДУ в (1) и характеристиче-

ским уравнением (5). В матрице S заключены 

свойства внутренних динамических параметров 

расчетной модели, так как ее спектр содержит все 

параметры собственных колебаний ДДС (коэффи-

циенты демпфирования, частоты и формы собст-

венных колебаний). 

Соотношения (4) представляют физическую 

зависимость между компонентами вектора вос-

станавливающих сил R(t) и вектора перемещений 

Y(t) конструктивно-нелинейной системы. Уравне-

ния (1)–(5) являются математической моделью 

колебаний такой системы при запроектном воздей-

ствии, моделируемом внезапно удаленным конст-

руктивным элементов (колонной). 

Система разрешающих уравнений динамиче-

ской реакции расчетной модели до удаления ко-

лонны (БМ) при t  [t0, t1] принимает вид [26]: 
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В этих уравнениях матрица U является харак-

теристикой решения матричного квадратичного 

уравнения (5). Выражение реакции при свободных 

колебаниях в вектор-функции X
0
(t–t0) зависит от 

начальных условий задачи (2). Если в момент раз-

рушения колонны (при t0) БМ находилась в со-

стоянии покоя, то Y0(t0) = 0, 0Y (t0) = 0 и реакция 

X
0
(t–t0) содержит только статические перемещения 

(вектор Yst).  

Выражение реакции при вынужденных ко-

лебаниях выражается интегралом Дюамеля, оп-

ределяемым вектор-функцией Z
P
(t–t0). Характер 

динамической нагрузки импульсного типа зада-

ется вектором P(t). В момент времени t = t1 рас-

четная модель переходит в поврежденное со-

стояние.  

При переходе в режим колебаний поврежден-

ной модели происходит замена внешних динами-

ческих параметров (матриц M, C, K), сформиро-

ванных до повреждения системы, на «новые» па-

раметры (матрицы M1, C1, K1), соответствующие 

моменту времени t1, при котором происходит уда-

ление колонны. Одновременно с этим формируют-

ся векторы начальных условий (перемещений и 

скоростей), назначаемые из предыдущей системы 

уравнений (6), (7) в конце интервала t = t1: 

Y0(t1) = Y(t1), 0Y (t1) = Y (t1). 
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Система уравнений динамической реакции 

ПМ при (t  t1) имеет вид: 
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Компонентами вектора Yst(t1) являются стати-

ческие перемещения ПМ.  

При анализе ПМ помимо количественных 

оценок значительный интерес представляют каче-

ственные оценки параметров динамической реак-

ции в критической точке t1. Для параметров (4), 

(6)–(9) получены уравнения векторных невязок, 

записанные в виде разности динамической реакции 

после (уравнения (8), (9)) и до (уравнения (6), (7)) 

выключения колонны. Тогда величина скачков 

при t1 в аналитическом виде записывается так: 
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      (10) 

где невязки  

   
   
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                  (11) 

построены для матричных величин при t1 до и после 

удаления колонны; –
1t , 1t

  – критическое время t1, 

рассматриваемое соответственно до и после вы-

ключения колонны. 

Из формул (10) следует, что перемещения и 

скорости при t1 не имеют скачков, являясь непре-

рывными функциями времени, что обусловлено 

постановкой начальных условий. Остальные пара-

метры динамической реакции в общем случае 

имеют скачки. 

 

Результаты, анализ 

Проведен динамический анализ 2-этажного 

железобетонного каркаса при запроектном воздей-

ствии, произошедшем в результате случайного на-

езда транспортного средства на угловую колонну 

(рис. 1а). Параметры каркаса: план здания 3012 м, 

высота колонн этажей: h1 = 4,2 м, h2 = 3,3 м; шаг 

сетки колонн l = 6 м, поперечное сечение 0,4 0,4 м. 

Жесткости колонн на изгиб и кручение: EJx = 

EJy = 501330000 кНсм
2
; GJ = 336900000 кНсм

2
 

(G = 0,35E [27]). 

Массы и моменты инерции плит перекрытий 

этажей: 

m1 = 1,97 кНс
2
/см, m2 = 1,82 кНс

2
/см; 

J1 = 1713900 кНсмс
2
, J2 = 1583400 кНсмс

2
. 

Координаты центра жесткости (ц. ж.) O1 1-го 

этажа ПМ, отсчитываемые от центра тяжести (ц. т.) 

C1, равны a1 = 35,29 см, b1 = 38,24 см (рис. 1б). 

Для каркаса принята сдвиговая модель, со-

гласно которой плиты перекрытий – абсолютно 

жесткие диски, колонны – упругие, невесомые и 

несжимаемые стойки с жестким защемлением в 

верхней и нижней части. Каждый этаж имеет 3 сте-

пени свободы: поступательные перемещения в на-

правлении координатных осей x и y и вращательное 

движение, относительно вертикальной оси, прохо-

дящей через ц.ж. упругих связей (см. рис. 1а).  

Матрица масс: М = diag ([m1, m1, m2, m2, J1, 

J2]). 

Матрицы жесткости K, K1 обеих расчетных 

моделей (БМ и ПМ) сформированы с помощью 

соответствующих матриц податливости L, L1 с  

использованием фундаментального соотношения 

K = L
–1

, K1 = (L1)
–1

: 

 
 

Рис. 1. Расчетная модель 2-этажного железобетонного каркаса: 

а – расчетная динамическая модель; б – сетка колонн 
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Силы сопротивления при колебаниях каркаса учтены по модели непропорционального демпфирова-

ния [26]:  

C = (KT + TK)/2,   

где T = 
1

dMK 
= diag(t1, ... , tn); tj = 

jw


 (j = 1, ... , n); wj = 
jj

j

r

m
 – частота собственных колебаний соот-

ветствующей консервативной системы;  =  / ;  = 0,2 – логарифмический декремент колебаний; матрица 

Kd = diag (r11, ... , rnn) содержит диагональные элементы матрицы жесткости K. 

Ударная нагрузка на колонну каркаса составила F = 50 кН при угле наклона вектора F к горизонтали 

 = 30 (см. рис. 1б). Ее воздействие на узлы расчетной схемы моделируется в виде синусоидального закона  

P(t) = P0sin (
a

t

t


), 

где P0 – вектор амплитуд, ta – время действия ударной нагрузки. 

Векторы амплитуд внешних воздействий и векторы нагрузки в критической точке t1 соответственно 

до ( 1t
 ) и после ( 1t

 ) удаления колонны принимают вид (вектор Q в (1) принят равным нулю): 
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(12) 

 

По результатам расчета собственных колебаний базовой и поврежденной моделей, проводимых на ос-

нове процедуры решения матричного квадратичного уравнения (5), получены при n = 6 частотные спектры 

и коэффициенты демпфирования, приведенные в таблице. 
 

Частоты и коэффициенты демпфирования расчетных 
моделей 2-этажного каркаса 

№ 

Частоты собственных 

колебаний, рад/c 

Коэффициенты 

демпфирования, рад/c 

БМ ПМ БМ ПМ 

1 18,170 17,702 0,274 0,260 

2 18,170 17,738 0,274 0,262 

3 22,207 22,264 0,335 0,337 

4 53,478 53,235 2,257 2,254 

5 53,478 53,238 2,257 2,255 

6 65,314 65,337 2,757 2,757 
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Из таблицы видно, что в целом спектр частот 
БМ превышает спектр ПМ, а формы собственных 
колебаний БМ демпфируются несколько сильнее 
форм ПМ, что характерно для более повышенной 
жесткости БМ. 

Анализ колебаний расчетной модели прово-
дится в соответствии с методом альтернативного 
подхода [8, 10], согласно которому одна из угло-
вых колонн каркаса считается удаленной (при t1), 
после чего оценивается устойчивость к разруше-
нию оставшейся структуры. Для этой цели исполь-
зуются системы разрешающих уравнений реакции 

БМ (6), (7) на интервале времени t  [t0, t1] и урав-

нений реакции ПМ (8), (9) при t  t1, полагая, что 
t0 – это время начала наезда транспортного средст-
ва на угловую колонну. 

Время, при котором происходит удаление ко-
лонны, принято равным t1 = 0,8ta = 1,2 c (ta = 1,5 c). 

Шаг временного анализа равен t = ta / 500 = 0,003 
с. При ta = 1,5 c внешнее воздействие является 
кратковременной ударной нагрузкой ввиду 
ta > 2,5T1 = 0,864 c (см. таблицу) [27].  

На рис. 2, 3 приведены кинематические и си-
ловые параметры динамической реакции БМ и ПМ 
первого этажа каркаса вдоль оси x: кинематические 
характеристики (перемещения, скорости и ускоре-
ния) на рис. 2, силовые (восстанавливающие, дис-
сипативные и инерционные силы) на рис. 3. На всех 
графиках параметры реакции БМ изображены чер-
ным цветом, для ПМ – красным цветом.  

Вследствие более высокой жесткости и более 

повышенного демпфирования БМ для всех пара-

 
 

Рис. 2. Кинематические параметры реакции 
в ц. т. плиты перекрытия 1-го этажа  

(по направлению оси x) 

Рис. 3. Силовые параметры реакции, действующие 
в ц. т. плиты перекрытия 1-го этажа 

 (по направлению оси x) 
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метров реакции характерно некоторое отставание 

кривых БМ от соответствующих кривых ПМ и 

снижение амплитуд БМ по сравнению с амплиту-

дами ПМ. 

На осциллограммах ускорений (см. рис. 2) и 

всех силовых параметрах реакции (см. рис. 3) 

при t1 ПМ каркаса содержит скачки, согласующие-

ся со значениями, полученными по аналитическим 

выражениям невязок (10), (11). Перемещения и 

скорости при t1 в ПМ скачков не имеют. На неко-

торых осциллограммах параметров реакции (уско-

рения, диссипативные и инерционные силы) сразу 

после разрушения колонны на небольшом интер-

вале времени (в пределах t  [1,2; 1,5] с) наблю-

даются обертональные всплески, характеризуемые 

повышенными амплитудами и подключением к 

основному тону колебания ПМ более высокочас-

тотных гармоник.   

Угловые параметры горизонтальных колеба-

ний (перемещений и скоростей), связанные с вра-

щением плиты перекрытия 1-го этажа, даны на 

осциллограммах рис. 4. Поворот перекрытия про-

исходит вокруг ц. ж. O1. 

В плите перекрытия 1-го этажа возникает 

крутящий момент от действия внешних горизон-

тальных сил относительно ц. ж. О1, вызывающий 

ответную реакцию – внутренние моменты от вос-

станавливающих, диссипативных и инерционных 

сил. На 2-м этаже крутящие моменты отсутствуют 

из-за нулевых горизонтальных сил. На рис. 5 пред-

ставлены моменты восстанавливающих (упругих) 

и инерционных сил, действующие в базовой и по-

врежденной моделях 1-го этажа. 

Скачки на осциллограммах крутящих момен-
тов от действия восстанавливающих и инерцион-
ных сил (см. рис. 5) появились в плите перекрытия 
1-го этажа вследствие образования эксцентрисите-
тов a1, b1 между ц. т. C1 и ц. ж. O1 упругих связей 
этажа ПМ (см. рис. 1б). Из формул (10), (11) сле-
дует, что наличие эксцентриситетов привело к по-
явлению ненулевых невязок матриц жесткости и 

демпфирования (K, C), а также невязки вектора 

нагрузки в критической точке t1: P(t1) = P( 1t
 ) – 

P( 1t
 ) с ненулевой 5-й компонентой (см. (12)). Не-

вязки приведенных величин появились только по-
сле разрушения колонны, поэтому на всех осцил-
лограммах до экстремального события (при t1 = 1,2 
с) динамические реакции БМ и ПМ совпадают 
между собой. 

На рис. 6 даны осциллограммы горизонталь-
ных перемещений (по оси x) и ускорений 
(по оси y) плиты перекрытия расчетных моделей 
2-го этажа. Хотя ц. т. C2 и ц. ж. O2 во 2-м этаже 
совпадают друг с другом, на осциллограмме уско-
рений при t1 = 1,2 с имеется скачок. Это позволяет 
сделать вывод о том, что удаление связи в каком-
либо одном этаже каркаса приводит к изменению 
жесткости всей системы, а значит, и к изменению 
параметров динамической реакции на других эта-
жах каркаса. 

На рис. 7 показан крутящий момент P5(t) в 1-м 
этаже плиты перекрытия. В ПМ крутящий момент 
имеет скачок, причина которого, как уже отмече-
но – внезапное изменение положения координат 
ц. ж., изменившее плечо горизонтальной силы. 
Значение скачка крутящего момента в ПМ опреде-

  

Рис. 4. Угловые параметры реакции плиты перекрытия 
1-го этажа 

Рис. 5. Моментные характеристики реакции, 
действующие в плите перекрытия 1-го этажа 
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ляется разностью (12): P5(t) = P5( 1t
 ) – P5( 1t

 ) = 

121,058 кНсм. 

Для оценки решения введены вектор-функции:  

(t) = R(t) + F(t) – I(t),  (t) = (t) – P(t). 

Первая величина (t) – суть алгебраическая 

сумма всех сил левой части ОДУ (1); она дает ка-

чественную оценку приближения построенного 

решения к заданной вектор-функции P(t) внешних 

воздействий. Вторая (t) является векторной не-

вязкой между построенной левой и заданной пра-

вой частями ОДУ (1) и служит критерием точно-

сти решения.  

На рис. 8 приведен суммарный крутящий мо-

мент 5(t), вызванный действием внутренних сил 

левой части ОДУ в 1-м этаже. Величина 5(t) вы-

ражает степень приближения решения к функции 

заданной нагрузки P5(t). 

 
 

Рис. 6. Параметры реакции во 2-м этаже каркаса: 
горизонтальное перемещение ц. т. C2 по оси x;  

ускорение плиты перекрытия по оси y 

 
 

Рис. 7. Крутящий момент от действия внешней горизонтальной силы 
в 1-м этаже расчетных моделей каркаса (БМ и ПМ) 
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Левый фрагмент: скачок у крутящего момента 

ПМ при t1 = 1,2 с. На правых фрагментах показаны 

свободные колебания моделей при t1  1,5 с, когда 

внешняя нагрузка отсутствует. Здесь значения 

крутящего момента близки к нулю: для ПМ по-

грешность не превышает:   3e
–09

 (красный цвет 

на верхнем фрагменте), для БМ –   2e
–13

 (черный 

цвет на нижнем фрагменте). 
На рис. 9, 10 приведены осциллограммы 

функциональных невязок 1(t) и 5(t) соответст-

 
 

Рис. 8. Функции 5(t) левой части ОДУ движения (1) расчетных моделей каркаса (БМ и ПМ) –  
суммарный крутящий момент в 1-м этаже 

 

 
Рис. 9. Осциллограммы невязки 1(t) ОДУ (1) горизонтальной силы, 

действующей в ц. т. плиты перекрытия 1-го этажа вдоль оси x 

 
Рис. 10. Осциллограммы невязки 5(t) ОДУ (1) для крутящего момента 

в плите перекрытия 1-го этажа расчетных моделей каркаса 
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венно суммарной горизонтальной силы, дейст-
вующей в ц. т. C1 вдоль оси x, и крутящего момен-
та в плите перекрытия 1-го этажа. В обоих случаях 
осциллограммы невязок показывают высокую 

точность решения. Для кривых 1(t) на рис. 9 точ-
ность интегрирования ОДУ движения (1) по обеим 

расчетным моделям не превышает   3,5
.
10

–14
 кН, 

для кривых 5(t) (рис. 10) величина погрешности: 

  15
.
10

–9
 кНсм.  

Результаты, приведенные на рис. 7–10, свиде-
тельствуют о высокой точности построения дина-
мической реакции каркаса с внезапно выключен-
ной колонной на основе временного анализа. 

 

Выводы. Заключение 
1. Анализ отечественных и зарубежных источ-

ников показывает, что подавляющее большинство 
исследований по моделям разрушения основано на 
численных и экспериментальных методах. Специа-
листами отмечен дефицит теоретической базы 
в разработке основ механизма живучести конструк-
тивных систем, без создания которой невозможно 
получить строго обоснованные предложения для их 
включения в нормативные документы.  

2. Построена математическая модель конст-
руктивно-нелинейных колебаний системы с вне-
запно выключающимся элементом при нагрузке, 
моделирующей запроектное воздействие. Разре-
шающие уравнения динамической реакции, сфор-
мированные с помощью временного анализа, учи-
тывают поведение расчетной модели как до, так 
и после ее повреждения. 

3. В анализе 2-этажного железобетонного каркаса 
при внезапном удалении угловой колонны 
1-го этажа у вектора внешних динамических сил 
ПМ обнаружен эффект скачка (для компоненты 
крутящего момента 1-го этажа), появившийся 
вследствие изменения положения координат ц. ж. 
этажа. 

4. Показана эффективность метода решения 
задачи конструктивно-нелинейных колебаний кар-
каса при использовании теории временного анали-
за ДДС. В рамках предложенной математической 
модели оценка точности интегрирования диффе-
ренциального уравнения движения ПМ каркаса не 
превышает значений: 3,5

.
10

–14
 кН (для линейной 

составляющей невязки 1(t)) и 15
.
10

–9
 кН·см 

(для невязки крутящего момента 5(t)). 
Предложенный аналитический аппарат от-

крывает возможности для более глубокого и де-
тального анализа конструктивно-нелинейных 
систем при критических ситуациях отказа несу-
щих элементов и позволяет выявлять скрытые 
резервы в оценке механизма живучести этих 
систем.  

Разработка более совершенных расчетных 
моделей, апробированных в аналитических подхо-
дах, может найти применение в создании расчет-
ных схем анализа численных методов, включая 
МКЭ. Учет новых знаний в основе механизма 
процессов, связанных с внезапными отказами кри-
тических элементов, способен качественно изме-
нить ситуацию в области расчета конструкций при 
запроектных воздействиях. 
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