# СИНТЕЗ И СТРОЕНИЕ ХЛОРИДА ЦИКЛОПЕНТАДИЕНИЛДИФЕРРОЦЕНОИЛАЦЕТОНАТОЦИРКОНИЯ $C_5H_5[C_{10}H_9FeC(O)CHC(O)CF_3]_2ZrCI$

# А.В. Рыбакова

Южно-Уральский государственный университет, г. Челябинск, Россия

Взаимодействием дихлорида цирконоцена с ферроценоилтрифторацетилацетоном в растворе бензола синтезирован *транс*-изомер хлорида циклопентадиенилдиферроценоилацетонатоциркония, строение которого доказано рентгеноструктурным анализом. По данным РСА, проведенного при 293 К на автоматическом четырехкружном дифрактометре D8 OuestBruker (MoKα- излучение,  $\lambda = 0.71073$  Å, графитовый монохроматор), атомы циркония в *транс*-изомере комплекса 1 имеют искаженную октаэдрическую конфигурацию  $[C_{33}H_{25}F_6ClFe_2ZrO_4$  (1), *M* 837,90; сингония кристаллической структуры триклинная, группа симметрии Р 1; параметры элементарной ячейки кристаллов: a = 10.16(3), b = 12.39(3),c = 13.44(3) Å;  $\alpha = 95.70(10)^{\circ}$ ,  $\beta = 102.62(14)^{\circ}$ ,  $\gamma = 93.77(2)^{\circ}$ ; V = 1635(6) Å<sup>3</sup>; размер кристалла  $0,16 \times 0,09 \times 0,08$  мм<sup>3</sup>; интервалы индексов отражений  $-12 \le h \le 12, -15 \le k \le 15, -17 \le l \le 17;$ всего отражений 23770; независимых отражений 7090; R<sub>int</sub> = 0,3164; GOOF = 1,054;  $R_1 = 0,1601, wR_2 = 0,3121;$  остаточная электронная плотность 1,41/–1,80 е/Å<sup>3</sup>. В ИК-спектре соединения 1 наблюдаются полосы при 808, 1007, 1055, 1409, 2855, 2926, 3099 см<sup>-1</sup>, которые могут быть отнесены к колебаниям связей ферроценильного заместителя. Интенсивной полосе колебаний при 1298 см<sup>-1</sup> соответствуют колебания CF<sub>3</sub> – групп. Валентные колебания Zr – О связей проявляются в ИК-спектре в виде ряда полос в области 400–1000 см<sup>-1</sup>. По данным рентгеноструктурного анализа упаковка молекул комплекса 1 в слои возможна за счёт коротких контактов С···С (3,323 Å). Каждый из слоёв формируется за счёт опорных контактов Н···С (2,850 Å). Полные таблицы координат атомов, длин связей и валентных углов депонированы в Кембриджском банке структурных данных (№ 1988379 для 1; deposit@ccdc.cam.ac.uk; http://www.ccdc.cam.ac.uk).

Ключевые слова: дихлорид цирконоцена, ферроценоитрифторацетилацетон, комплекс, рентгеноструктурный анализ.

## Введение

Комплексные органические соединения циркония привлекают в настоящее время все большее внимание исследователей, так как наличие в таких соединениях атома со свободными *d*орбиталями обуславливает возможности дополнительных электронных переходов при взаимодействии с различными органическими и элементоорганическими лигандами. Ранее сообщалось, что комплексы циркония являются эффективными катализаторами превращений непредельных углеводородов и металлоорганических соединений [1–4]. Известна высокая каталитическая активность комплексов циркония в реакциях полимеризации этилена [5–10], гидрирования олефинов [11, 12] и энантиоселективного алкилирования ароматических соединений [13, 14]. Следует также отметить, что сам четыреххлористый цирконий широко используется в катализе [15]. О получении многокомпонентных каталитических систем, содержащих комплексы циркония, ранее не сообщалось, между тем устойчивые к действию влаги гексахлороцирконатные комплексы могут быть использованы для получения многокомпонентных катализаторов, например гексахлороцирконаты тетраорганилфосфония [16–23]. Ковалентное производное циркония – бисциклопентадиенилдиферроценилцирконий [24] может быть использовано для получения пленок металлического циркония.

В настоящей работе впервые синтезировано и структурно охарактеризовано новое ковалентное производное циркония – хлорид циклопентадиенилдиферроценоилацетонатоциркония  $(C_5H_5)(C_{10}H_9O_2F_3Fe)_2$ ZrCl (1).

## Экспериментальная часть

Синтез (C<sub>5</sub>H<sub>5</sub>)(C<sub>10</sub>H<sub>9</sub>O<sub>2</sub>F<sub>3</sub>Fe)<sub>2</sub>ZrCl (1). Раствор 0,29 г (1,0 ммоль) дихлорида цирконоцена и 0,59 г (2,0 ммоль) ферроценоилтрифтрорацетона в 20 мл бензола кипятили с обратным холодильником 10 минут. Удаляли растворитель, остаток перекристаллизовывали из гептана. После медленного испарения растворителя выделили 0,82 г темно-сиреневых кристаллов 1, выход которых составил 98 %,  $t_{nn} = 170,5-171,5$  °C.

ИК-спектр (*v*, см<sup>-1</sup>): 3099, 2926, 2855, 1610, 1577, 1539, 1523, 1481, 1465, 1431, 1409, 1377, 1354, 1336, 1298, 1261, 1213, 1193, 1139, 1107, 1095, 1055, 1033, 1024, 1006, 945, 896, 842, 825, 808, 773, 750, 729, 671, 665, 594, 563, 518, 501, 484. Найдено, %: С 47,20; Н 3,01. С<sub>33</sub>H<sub>25</sub>F<sub>6</sub>ClFe<sub>2</sub>ZrO<sub>4</sub>. Вычислено, %: С 47,25; Н 2,98.

**ИК-спектроскопия**. ИК-спектр соединения **1** записывали на ИК-Фурье спектрометре Shimadzu IRAffinity-1S; образцы готовили таблетированием с KBr (область поглощения 4000–400 см<sup>-1</sup>).

Рентгеноструктурный анализ (РСА) кристалла 1 проводили на автоматическом четырехкружном дифрактометре D8 QUEST фирмы Bruker (МоК $\alpha$ -излучение,  $\lambda = 0,71073$  Å, графитовый монохроматор). Сбор, редактирование данных и уточнение параметров элементарной ячейки, а также учет поглощения проведены с помощью программ SMART и SAINT-Plus [25]. Все расчеты по определению и уточнению структуры выполнены с помощью программ SHELXL/PC [26] и OLEX2 [27]. Структура определена прямым методом и уточнена методом наименьших квадратов в анизотропном приближении для неводородных атомов. Кристаллографические данные и результаты уточнения структуры приведены в табл. 1, основные длины связей и валентные углы – в табл. 2. Полные таблицы координат атомов, длин связей и валентных углов депонированы в Кембриджском банке структурных данных (№ 1988379 для 1; deposit@ccdc.cam.ac.uk; http://www.ccdc. cam.ac.uk).

Таблица 1

| v. | MOTOROFOS      | aduation |           | anaworn |          | NI CTUOMAN | VTOULOUM  | CTDV//TVDL 1 |
|----|----------------|----------|-----------|---------|----------|------------|-----------|--------------|
| n  | JNCIAJIJIOI Pe | фические | даппые, п | apamerp | DI JACHE | риментаи   | уточнения | структуры т  |

| Парамотр                                                     | 1                                                      |
|--------------------------------------------------------------|--------------------------------------------------------|
| Параметр                                                     | 827.00                                                 |
| M                                                            | 837,90                                                 |
| Сингония                                                     | Гриклинная                                             |
| Пр. группа                                                   | PT                                                     |
| a, Å                                                         | 10,16(3)                                               |
| b, Å                                                         | 12,39(3)                                               |
| <i>c</i> , Å                                                 | 13,44(3)                                               |
| α, град.                                                     | 95,70(10)                                              |
| β, град.                                                     | 102,62(14)                                             |
| ү, град.                                                     | 93,77(12)                                              |
| $V, Å^3$                                                     | 1635(6)                                                |
| Z                                                            | 2                                                      |
| ρ(выч.), г/см <sup>3</sup>                                   | 1,702                                                  |
| μ, мм <sup>-1</sup>                                          | 1,341                                                  |
| F(000)                                                       | 836,0                                                  |
| Размер кристалла, мм                                         | $0.16 \times 0.09 \times 0.08$                         |
| Область сбора данных по $\theta$ , град.                     | 6,22–54,74                                             |
| Интервалы индексов отражений                                 | $-12 \le h \le 12, -15 \le k \le 15, -17 \le l \le 17$ |
| Измерено отражений                                           | 23770                                                  |
| Отражения с $I > 2\sigma(I)$                                 | 3107                                                   |
| R <sub>int</sub>                                             | 0,3164                                                 |
| Независимых отражений                                        | 7090                                                   |
| Переменных уточнения                                         | 424                                                    |
| GOOF                                                         | 1,054                                                  |
| $R$ -факторы по $F^2 > 2\sigma(F^2)$                         | $R_1 = 0,1601, wR_2 = 0,3121$                          |
| <i>R</i> -факторы по всем отражениям                         | $R_1 = 0,2902, wR_2 = 0,3694$                          |
| Остаточная электронная плотность (min/max), e/A <sup>3</sup> | 1,41/-1,80                                             |

Таблица 2

| Связ        | вь, <i>d</i> , Å | Угол, ω,       | град.     |
|-------------|------------------|----------------|-----------|
| Zr(1)–Cl(1) | 2,552(7)         | Cl(1)Zr(1)C(5) | 89,9(15)  |
| Zr(1)–O(3)  | 2,187(12)        | O(3)Zr(1)Cl(1) | 86,2(3)   |
| Zr(1)–O(1)  | 2,239(12)        | O(3)Zr(1)O(1)  | 78,6(4)   |
| Zr(1)-O(2)  | 2,140(12)        | O(3)Zr(1)O(4)  | 78,0(5)   |
| Zr(1)-O(4)  | 2,207(13)        | O(3)Zr(1)C(4)  | 123,1(15) |
| Zr(1)-C(4)  | 2,47(3)          | O(3)Zr(1)C(3)  | 90,0(17)  |
| Zr(1)-C(3)  | 2,55(3)          | O(3)Zr(1)C(5)  | 126,1(10) |
| Zr(1)-C(5)  | 2,62(3)          | O(1)Zr(1)C(4)  | 147,5(8)  |
| Zr(1)-C(1)  | 2,55(3)          | O(1)Zr(1)C(3)  | 148,1(8)  |
| Zr(1)-C(2)  | 2,49(3)          | O(1)Zr(1)C(5)  | 153,3(8)  |
| Fe(1)–C(6)  | 2,077(18)        | O(1)Zr(1)C(1)  | 159,9(7)  |
| Fe(1)–C(10) | 2,05(2)          | O(1)Zr(1)C(2)  | 154,1(11) |
| Fe(1)–C(9)  | 2,08(2)          | O(2)Zr(1)O(3)  | 155,9(5)  |
| Fe(1)–C(12) | 2,07(2)          | O(2)Zr(1)C(3)  | 111,5(19) |
| Fe(1)–C(8)  | 2,073(17)        | O(2)Zr(1)C(1)  | 105,9(15) |
| Fe(1)-C(7)  | 2,057(19)        | O(2)Zr(1)C(2)  | 128,5(10) |
| Fe(1)-C(13) | 2,09(2)          | O(4)Zr(1)Cl(1) | 152,5(4)  |

#### Длины связей (α) и валентные углы (ω) в структуре 1

#### Обсуждение результатов

Ранее было показано, что соединение шестикоординированного циркония, содержащее одновременно клешнеобразную группу и циклопентадиенильное кольцо, было получено из дихлорида цирконоцена и ацетилацетона с выходом 95 % [28].

В настоящей работе исследована аналогичная реакция дихлорида цирконоцена с ферроценоилтрифторацетоном. Установлено, что взаимодействие указанных реагентов в растворе бензола происходило в течение нескольких минут, при этом окраска раствора изменялась на темносиреневую. После удаления растворителя и перекристаллизации остатка из гептана получили темно-сиреневые кристаллы хлорида циклопентадиенилдиферроценоилацетонатоциркония (1), хорошо растворимые в органических растворителях:



ИК-спектр соединения **1** (рис. 1) характеризуется частотами колебаний при 808, 1007, 1055, 1409, 2855, 2926, 3099, которые могут быть отнесены к колебаниям связей ферроценильного заместителя [29].

Интенсивная полоса при 1298 см<sup>-1</sup> относится к колебаниям CF<sub>3</sub>-групп, а ряд полос в области 400–1000 см<sup>-1</sup> соответствуют полосам валентных колебаний Zr–O связей [30].

# Неорганическая химия



Рис. 1. ИК-спектр (C<sub>5</sub>H<sub>5</sub>)(C<sub>10</sub>H<sub>9</sub>O<sub>2</sub>F<sub>3</sub>Fe)<sub>2</sub>ZrCl (1)

Можно предположить, что получаемое клешнеобразное циклопентадиенильное соединение шестикоординированного циркония имеет *цис*- либо *транс*-изомерную форму. С целью определения истинного строения образующегося комплекса проведен его рентгеноструктурный анализ, который показал, что соединение **1** имеет *транс*-конформацию (рис. 2):



Рис. 2. Строение хлорида циклопентадиенилдиферроценоилацетонатоциркония (1)

Длины связей Fe–C (2,02(3) – 2,10(2) Å) в комплексе 1 близки к аналогичным расстояниям в структуре ферроцена [31,32]. Длины связей Zr–O составляют 2,140(12), 2,187(12), 2,207(13), 2,239(12) Å, что близко к сумме ковалентных радиусов соответствующих атомов (2,41 Å [33]) и согласуется с известными в литературе подобными комплексами циркония [34, 35]. Углы O–Zr–O (78,6(4) и 78,0(5) °) сопоставимы с теми, которые зарегистрированы для ( $\eta^5$ -

циклопентадиенил)-*бис*(ацетилацетонато)хлорциркония и *цис*-хлор-( $\eta^5$ -циклопентадиенил)*бис*(1,3-дифенил-1,3-пропандионато)циркония (IV) [34, 35]. Следует отметить, что молекулярная структура последнего в отличии от полученного нами комплекса **1** представлена *цис*конфигурацией.

По данным рентгеноструктурного анализа упаковка молекул в слои происходит с участием атомов углерода и водорода ферроценильных фрагментов и осуществляется за счёт коротких контактов С<sup>…</sup>С (3,323 Å). Внутри каждого слоя молекулы удерживаются благодаря опорным контактам H<sup>…</sup>C (2,850 Å) (рис. 3).



Рис. 3. Упаковка молекул и короткие контакты в кристалле 1, представленные в проекции вдоль оси b

### Выводы

Таким образом, взаимодействием дихлорида цирконоцена с ферроценоилтрифторацетилацетоном в растворе бензола синтезирован *транс*-изомер хлорида циклопентадиенилдиферроценоилацетонатоциркония, строение которого доказано рентгеноструктурным анализом.

## Благодарности

Выражаю благодарность профессору В.В. Шарутину за проведенные рентгеноструктурные исследования.

## Литература

1. Джемилев, У.М. Комплексы циркония в синтезе и катализе / У.М. Джемилев, О.С. Вострикова, А.Г. Ибрагимов // Успехи химии. – 1986. – Т. 2. – С. 191 – 224.

2. Schwartz, I. Hydrozirconation: A New Transition Metal Reagent for Organic Synthesis / I. Schwartz, J. Labinger // Angew. Chem. Int. Ed. Engl. – 1976. – V. 15. – P. 333–340. DOI: 10.1002/anie.197603331

3. Schwartz, J. Organozirconium Compounds in Organic Synthesis: Cleavage Reactions of Carbonzirconium Bonds / J. Schwartz // Pure Appl. Chem. – 1980. – V. 52. – P. 733–740. DOI: 10.1351/pac198052030733

4. Rogers, J.S. Ethoxyboratabenzene Zirconium Complexes: Catalysts for  $\alpha$ -Olefin Production / J.S. Rogers, G.C. Bazan, C.K. Sperry // J. Am. Chem. Soc. – 1997. – V. 119. – P. 9305–9306. DOI: 10.1021/ja971976n

5. Novel Zirconium Complexes with Constrained Cyclic  $\beta$ -Enaminoketonato Ligands: Improved Catalytic Capability Toward Ethylene Polymerization / K.-T. Wang, Y.-X. Wang, B. Wang et al. // Dalton Trans. – 2016. – V. 45. – P. 10308–10318. DOI: 10.1039/C6DT01391K

6. Zirconium Enolatoimine Complexes in Olefin Polymerization / S.M. Yu, U. Tritschler, I. Göttker-Schnetmann et al. // Dalton Trans. – 2010. – V. 39. – P. 4612–4618. DOI: 10.1039/B916289E

7. Titanium and Zirconium Permethylpentalene Complexes, Pn\*MCpRX, as Ethylene Polymerization Catalysts / D.A.X. Fraser, Z.R. Turner, J.-Ch. Buffet, D. O'Hare // Organometallics. – 2016. – V. 35. – P. 2664–2674. DOI: 10.1021/ acs.organomet.6b00417

# Неорганическая химия

8. Highly Active and Isospecific Styrene Polymerization Catalyzed by Zirconium Complexes Bearing Aryl-substituted [OSSO]-Type *Bis*(phenolate) Ligands / N. Nakata, T. Toda, Y. Saito et al. // Polymers. – 2016. – V. 8. – P. 31–41. DOI: 10.3390/polym8020031

9. Theaker, G.W. Zirconium-Catalyzed Polymerization of a Styrene: Catalyst Reactivation Mechanisms Using Alkenes and Dihydrogen / G.W. Theaker, C. Morton, P. Scott // Macromolecules. – 2011. – V. 44. – P. 1393–1404. DOI: 10.1021/ma102835p

10. Catalytically Active N-Acylamidine–Zirconium Complexes: Synthesis, Structures, and Application in Ethylene Polymerization / Th. Holtrichter-Rößmann, I. Häger, C.-G. Daniliuc et al. // Organo-metallics. – 2016. – V. 35. – P. 1906–1915. DOI: 10.1021/ acs.organomet.6b00240

11. Cuenca, T. Dicyclopentadienyl-titanium and -Zirconium Complexes as Catalysts for Hydrogenation of Olefins / T. Cuenca, J.C. Flores, P. Royo // J. Organomet. Chem. – 1993. – V. 462. – P. 191–201. DOI: 10.1016/0022- 328X(93)83357-2

12. Stoichiometric Reactions and Catalytic Hydrogenation with a Reactive Intramolecular  $Zr^+/Amine$  Frustrated Lewis Pair / X. Xu, G. Kehr, C.G. Daniliuc, G. Erker // J. Am. Chem. Soc. – 2015. – V. 137. – P. 4550–4557. DOI: 10.1021/jacs.5b01623

13. Highly Enantioselective Friedel–Crafts Alkylations of Indoles with Simple Enones Catalyzed by Zirconium(IV)–BINOL Complexes<sup>†</sup> / G. Blay, I. Fernandez, A. Monleon et al. // Org. Lett. – 2007. – V. 9. – P. 2601–2604. DOI: 10.1021/ol0710820

14. Enantioselective Zirconium-Catalyzed Friedel–Crafts Alkylation of Pyrrole with Trifluoromethyl Ketones / G. Blay, I. Fernandez, A. Monleon et al. // Org. Lett. – 2009. – V. 11. – P. 441–444. DOI: 10.1021/ol802509m

15. Mo, L.-P. Recent Applications of Zirconium Compounds as Catalysts or Reagents in Organic Synthesis / L.-P. Mo, Zh.-H. Zhang // Curr. Org. Chem. – 2011. – V. 15. – P. 3800–3823. DOI: 10.2174/138527211797884520

16.  $[Na-15-Krone-5]_2[ZrF_2Cl_4]$  und  $(PPh_4)_2[ZrCl_6] \cdot 2 CH_2Cl_2$ ; Synthesen, IR-Spektren und Kristallstrukturen /  $[Na-15-Crown-5]_2[ZrF_2Cl_4]$  and  $(PPh_4)_2[ZrCl_6] \cdot 2 CH_2Cl_2$ ; Syntheses, IR Spectra, and Crystal Structures / Hartmann E., Dehnicke K., Fenske D. et al. // Z. Naturforsch., B: Chem. Sci. – 1989. – V. 44. – P. 1155–1160. DOI: 10.1515/znb-1989-1001

17. Chen, L. Synthesis, Structure, and Reactivity of  $[Zr_6C_{118}H_5]^{2-}$ , the First Paramagnetic Species of Its Class / L. Chen, F.A. Cotton // Inorg. Chem. – 1996. – V. 35. – P. 7364–7369. DOI: 10.1021/ic960454q

18. Chen, L. Synthesis and Structural Characterization of Compounds Containing the  $[Zr_6C_{118}H_5]^{3-}$ Cluster Anion. Determination of the Number of Cluster Hydrogen Atoms / L. Chen, F.A. Cotton, W.F. Wojtczak // Inorg. Chem. – 1997. – V. 36. – P. 4047–4054. DOI: 10.1021/ic960173i

19. Synthesis and Structure of  $(Ph_4P)_2MCl_6~(M$  = Ti, Zr, Hf, Th, U, Np, Pu) / S.G. Minasian, K.S. Boland, R.K. Feller et al. // Inorg. Chem. – 2012. – V. 51. – P. 5728–5736. DOI: 10.1021/ic300179d

20. Шарутин, В.В. Синтез и строение комплексов циркония  $[Ph_3PR]^+_2$   $[ZrCl_6]^{2-}$ , R = Et, CH<sub>2</sub>Ph, CH<sub>2</sub>C(O)OMe / В.В. Шарутин, О.К. Шарутина, Е.В. Лобанова // Журн. неорган. химии. – 2018. – Т. 63. – № 12. – С. 1549–1554. DOI: 10.1134/S0044457X1812019X

21. Андреев, П.В. Синтез и строение комплексов циркония [Ph<sub>3</sub>PCH=CHMe]<sub>2</sub>[ZrCl<sub>6</sub>] и гафния [Ph<sub>3</sub>PCH<sub>2</sub>C(O)Me]<sub>2</sub>[HfCl<sub>6</sub>] / П.В. Андреев, Е.В. Лобанова, П.Д. Дрожилкин // Вестник ЮУрГУ. Серия «Химия». – 2019. – Т. 11, № 4. – С. 26–33. DOI: 10.14529/chem190403

22. Sharutin, V.V. Synthesis and Structure of Triphenylbut-2-enyl- and Triphenylmetoxymethylphosphonium Hexachlorozirconates / V.V. Sharutin, O.K. Sharutina, N.M. Tarasova, E.V. Lobanova, P.V. Andreev // Bulletin of the Institutions of Higher Education, Chemistry and Chemical Technology. –  $2019. - V. 62. - N_{\odot} 6. - P. 36-40$ . DOI: 10.6060/ivkkt.20196206.5885

23. Sharutin, V.V. Synthesis and Structures of Zirconium Complexes  $[Et_2H_2N]^+_2[ZrCl_6]^{2-}$ ,  $[Me_3NCH_2Ph]^+_2[ZrCl_6]^{2-}$ ·MeCN,  $[Ph_3PC_6H_4(CHPh_2-4)]^+_2[ZrCl_6]^{2-}$ ·2MeCN, and  $[Ph_4Sb]^+_2[ZrCl_6]^{2-}$  / V.V. Sharutin, O.K. Sharutina, N.M. Tarasova, O.S. El'tsov // Russ. Chem. Bull. – 2019. – V. 68. – No 1. – P. 24–31. DOI: 10.1007/s11172-019-2411-9

24. Ferrocenyl Derivatives of Dicyclopentadienyl-titanium, -Zirconium and -Hafnium / G.A. Razuvaev, G.A. Domrachev, V.V. Sharutin, O.N. Suvorova // J. Organomet. Chem. – 1975. – V. 141. – P. 313–317.

25. Bruker. SMART and SAINT-Plus. Versions 5.0. Data Collection and Processing Software for the SMART System. Bruker AXS Inc., Madison, Wisconsin, USA, 1998.

26. Bruker. SHELXTL/PC. Versions 5.10. An Integrated System for Solving, Refining and Displaying Crystal Structures From Diffraction Data. Bruker AXS Inc., Madison, Wisconsin, USA, 1998.

27. OLEX2: a Complete Structure Solution, Refinement and Analysis Program / O.V. Dolomanov, L.J. Bourhis, R.J. Gildea et al. // J. Appl. Cryst. – 2009. – V. 42. – P. 339–341. DOI: 10.1107/S0021889808042726.

28. Фрейдлина, Р.Х. Синтез смешанных клешнеобразных циклопентадиенильных соединений циркония / Р.Х. Фрейдлина, Э.М. Брайнина, А.Н. Несмеянов // Докл. АН СССР. – 1961. – Т. 138. – С. 1369–1373.

29. Товбис, М.С. Методы анализа и идентификации органических соединений: описание практических работ для студентов направления 04.06.01 «Химические науки» направленности «Органическая химия», очной и заочной форм обучения / М.С. Товбис // Мин-во науки и высш. образования Рос. Федерации, Сиб. гос. ун-т науки и технологий им. акад. М. Ф. Решетнева. – Красноярск: СибГУ им. М.Ф. Решетнева, 2019. – 35 с.

30. Синтез и сравнительный анализ пористых бинарных оксидов ZrO<sub>2</sub> – SiO<sub>2</sub>, синтезированных на основе хлорокиси циркония (IV) и тетрабутоксициркония с использованием в качестве матрицы целлюлозы / А.Б. Шишмаков, О.В. Корякова, Ю.В. Микушина, Л.А. Петров // Химия растительного сырья. – 2015. – № 3. – С. 151–159. DOI:10.14258/jcprm.201503599

31. Dunitz, J.D. The Crystal Structure of Ferrocene / J.D. Dunitz, L.E. Orgel, A. Rich // Acta Crystallogr. – 1956. – V. 9. – P. 373–375. DOI: 10.1107/S0365110X56001091

32. Seiler, P. A New Interpretation of the Disordered Crystal Structure of Ferrocene / P. Seiler, J.D. Dunitz // Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem. – 1979. – B35. – P. 1068–1074. DOI: 10.1107/S0567740879005598

33. Covalent Radii Revisited / B. Cordero, V. Gómez, A.E. Platero-Prats et al. // Dalton Trans. – 2008. – P. 2832–2838. DOI: 10.1039/b801115j

34. The New Method of Synthesis and Structural Identification of Cis-[CpZr(acac)<sub>2</sub>Cl] / S.S. Yun, II-H. Suh, Eu. Hee Kim et al. // J. Korean Chem. Soc. – 1999. – V. 43. – P. 593–595.

35. Crystal Structure of Chlorocyclopentadienyl-*bis*(1,3-diphenyl-1,3-propanedionato)zirconium (IV) Complex / S. Lee, S.K. Kang, S.S. Yun et al. // Bull. Korean Chem. Soc. – 2005. – V. 26. – P. 852–854. DOI: 10.5012/bkcs.2005.26.5.852

Рыбакова Анастасия Владимировна – кандидат химических наук, доцент кафедры теоретической и прикладной химии, Южно-Уральский государственный университет. 454080, г. Челябинск, проспект Ленина, 76. E-mail: rybakovaav@susu.ru

## Поступила в редакцию 30 сентября 2020 г.

## DOI: 10.14529/chem210204

# SYNTHESIS AND STRUCTURE OF CYCLOPENTADIENYL DIFERROCENOYLACETONATOZIRCONIUM CHLORIDE $C_5H_5[C_{10}H_9FeC(O)CHC(O)CF_3]_2ZrCI$

## A.V. Rybakova, rybakovaav@susu.ru

South Ural State University, Chelyabinsk, Russian Federation

Interaction of zirconocene dichloride with ferrocenoyltrifluoroacetylacetone in benzene solution led to synthesis of a *trans*-isomer of cyclopentadienyl diferrocenoylacetonatozirconium chloride, the structure of which was proved by X-ray diffraction analysis. According to the X-ray analysis performed at 293 K on an automatic four-circle diffractometer D8 QuestBruker (MoCA radiation,  $\lambda = 0.71073$  Å, graphite monochromator), the zirconium atoms in the *trans*-isomer of complex **1** have a distorted octahedral configuration [C<sub>33</sub>H<sub>25</sub>F<sub>6</sub>ClFe<sub>2</sub>ZrO<sub>4</sub> (**1**), *M* 837.90; the crys-

tal structure is triclinic, the symmetry group P1; crystal unit cell parameters: a = 10.16(3),  $b = 12.39(3), c = 13.44 (3) \text{ Å}; \alpha = 95.70(10)^\circ, \beta = 102.62(14)^\circ, \gamma = 93.77(2)^\circ; V = 1635 (6) \text{ Å}^3; crys$ tal size  $0.16 \times 0.09 \times 0.08 \text{ mm}^3$ ; reflection index intervals  $-12 \le h \le 12$ ,  $-15 \le k \le 15$ ,  $-17 \le l \le 17$ ; total reflections 23770; independent reflections 7090;  $R_{int} = 0.3164$ ; GOOF = 1.054;  $R_1 = 0.1601$ ,  $wR_2 = 0.3121$ ; residual electron density 1.41/-1.80 e/Å<sup>3</sup>. In the IR spectrum of compound **1** the bands are observed at 808, 1007, 1055, 1409, 2855, 2926, 3099 cm<sup>-1</sup>, which can be attributed to fluctuations in the bonds of the ferrocene substituent. The intense vibration band at 1298 cm<sup>-1</sup> corresponds to the vibrations of the CF<sub>3</sub> groups. Valence vibrations of the Zr-O bonds appear in the IR spectrum as a series of bands in the region of 400-1000 cm<sup>-1</sup>. According to the X-ray diffraction analysis, the packing of complex 1 molecules into layers is possible due to short contacts C<sup>...</sup>C (3.323 Å). Each of the layers is formed by reference contacts H<sup>...</sup>C (2.850 Å). Complete tables of atomic coordinates, bond lengths, and valence angles are deposited in the structural data Bank (No. 1988379 for 1; deposit@ccdc.cam.ac.uk; Cambridge http://www.ccdc.cam.ac.uk).

Keywords: zirconocene dichloride, ferrocenoyltrifluoroacetylacetone, complex, X-ray diffraction analysis.

#### References

1. Dzhemilev U.M., Vostrikova O.S., Ibragimov A.G. Zirconium Complexes in Synthesis and Catalysis. *Russ. Chem. Rev.*, vol. 55., pp. 66–82. DOI: 10.1070/RC1986v055n02ABEH003172.

2. Schwartz I., Labinger J. A New Transition Metal Reagent for Organic Synthesis. *Angew. Chem. Int. Ed. Engl.*, 1976, vol. 15, pp. 333–340. DOI: 10.1002/anie.197603331

3. Schwartz J. Organozirconium Compounds in Organic Synthesis: Cleavage Reactions of Carbonzirconium Bonds. *Pure Appl. Chem.*, 1980, vol. 52, pp. 733–740. DOI: 10.1351/pac198052030733

4. Rogers J.S., Bazan G.C., Sperry C.K. Ethoxyboratabenzene Zirconium Complexes: Catalysts for  $\alpha$ -Olefin Production. J. Am. Chem. Soc., 1997, vol. 119, pp. 9305–9306. DOI: 10.1021/ja971976n

5. Wang K.-T., Wang Y.-X., Wang B., Y.-G. Li, Y.-S.Li, Novel Zirconium Complexes with Constrained Cyclic  $\beta$ -Enaminoketonato Ligands: Improved Catalytic Capability Toward Ethylene Polymerization. *Dalton Trans.*, 2016, vol. 45, pp. 10308–10318. DOI: 10.1039/C6DT01391K

6. Yu S.M., Tritschler U., Göttker-Schnetmann I., Mecking S. Zirconium Enolatoimine Complexes in Olefin Polymerization. *Dalton Trans.*, 2010, vol. 39, pp. 4612–4618. DOI: 10.1039/B916289E

7. Fraser D.A.X., Turner Z.R., Buffet J.-Ch., O'Hare D. Titanium and Zirconium Permethylpentalene Complexes, Pn\*MCpRX, as Ethylene Polymerization Catalysts. *Organometallics.*, 2016, vol. 35, pp. 2664–2674. DOI: 10.1021/ acs.organomet.6b00417

8. Nakata, N., Toda, T., Saito, Y., Watanabe, T., & Ishii. Highly Active and Isospecific Styrene Polymerization Catalyzed by Zirconium Complexes Bearing Aryl-substituted [OSSO]-Type *Bis*(phenolate) Ligands. *Polymers*, 2016, vol. 8, pp. 31. DOI: 10.3390/polym8020031

9. Theaker G.W., Morton C., Scott P. Zirconium-Catalyzed Polymerization of a Styrene: Catalyst Reactivation Mechanisms Using Alkenes and Dihydrogen. *Macromolecules.*, 2011, vol. 44, pp. 1393–1404. DOI: 10.1021/ma102835p

10. Holtrichter-Rößmann T., Häger I., Daniliuc C.-G., Fröhlich R., Bergander K., Troll C., Würthwein E.-U. Catalytically Active N-Acylamidine–Zirconium Complexes: Synthesis, Structures, and Application in Ethylene Polymerization. *Organometallics.*, 2016, vol. 35, pp. 1906–1915. DOI: 10.1021/acs.organomet.6b00240

11. Cuenca T., Flores J.C., Royo P. Dicyclopentadienyl-titanium and -Zirconium Complexes as Catalysts for Hydrogenation of Olefins. *J. Organomet. Chem.*, 1993, vol. 462, pp. 191–201. DOI: 10.1016/0022-328X(93)83357-2

12. Xu X., Kehr G., Daniliuc C.G., Erker G. Stoichiometric Reactions and Catalytic Hydrogenation with a Reactive Intramolecular Zr<sup>+</sup>/Amine Frustrated Lewis Pair. *J. Am. Chem. Soc.*, 2015, vol. 137, pp. 4550–4557. DOI: 10.1021/jacs.5b01623

13. Blay G., Fernández I., Pedro J. R., & Vila C. Highly Enantioselective Friedel–Crafts Alkylations of Indoles with Simple Enones Catalyzed by Zirconium(IV)–BINOL Complexes<sup>†</sup>. *Org. Lett.*, 2007, vol. 9, pp. 2601–2604. DOI: 10.1021/ol0710820 14. Blay G., Fernández I., Monleón A., Pedro J. R., & Vila C. Enantioselective Zirconium-Catalyzed Friedel–Crafts Alkylation of Pyrrole with Trifluoromethyl Ketones. *Org. Lett.*, 2009, vol. 11, pp. 441–444. DOI: 10.1021/ol802509m

15. Mo L.-P. Zhang Zh.-H. Recent Applications of Zirconium Compounds as Catalysts or Reagents in Organic Synthesis. *Curr. Org. Chem.*, 2011, vol. 15, pp. 3800–3823. DOI: 10.2174/138527211797884520

16. Hartmann E., Dehnicke K., Fenske D., Goesmann H., & Baum G. Na-15-Krone-5]<sub>2</sub>[ZrF<sub>2</sub>Cl<sub>4</sub>] und  $(PPh_4)_2[ZrCl_6] \cdot 2 CH_2Cl_2$ ; Synthesen, IR-Spektren und Kristallstrukturen / [Na-15-Crown-5]<sub>2</sub>[ZrF2Cl4] and  $(PPh_4)_2[ZrCl6] \cdot 2 CH_2Cl_2$ ; Syntheses, IR Spectra, and Crystal Structures. Z. Naturforsch., B: Chem. Sci., 1989, vol. 44, pp. 1155–1160. DOI: 10.1515/znb-1989-1001

17. Chen L., & Cotton F. A. Synthesis, Structure, and Reactivity of  $[Zr_6Cl_{18}H_5]^{2-}$ , the First Paramagnetic Species of Its Class. *Inorg. Chem.*, 1996, vol. 35, pp. 7364–7369. DOI: 10.1021/ic960454q

18. Chen L., Cotton F.A., Wojtczak W.F. Synthesis and Structural Characterization of Compounds Containing the  $[Zr_6C_{118}H_5]^3$ -Cluster Anion. Determination of the Number of Cluster Hydrogen Atoms. *Inorg. Chem.*, 1997, vol. 36, pp. 4047–4054. DOI: 10.1021/ic960173i

19. Minasian S.G., Boland K.S., Feller R.K., Gaunt A.J., Kozimor S.A., May I., Shuh D.K. Synthesis and Structure of  $(Ph_4P)_2MCl_6$  (M = Ti, Zr, Hf, Th, U, Np, Pu). *Inorg. Chem.*, 2012, vol. 51, pp. 5728–5736. DOI: 10.1021/ic300179d

20. Sharutin V.V., Sharutina O.K., Lobanova E.V. Zirconium Complexes  $[Ph_3PR]^+_2$   $[ZrCl_6]^{2-}$ , R = Et, CH<sub>2</sub>Ph, CH<sub>2</sub>C(O)OMe: Synthesis and Structure. *Russ. J. Inorg. Chem.*, 2018, vol. 63, no. 12, pp. 1558–1563. DOI: 10.1134/S0036023618120197

21. Andreev P.V., Lobanova E.V., Drozhilkin P.D. [Synthesis and Structure of Zirconium [Ph<sub>3</sub>PCH=CHMe]<sub>2</sub>[ZrCl<sub>6</sub>] and Hafnium [Ph<sub>3</sub>PCH<sub>2</sub>C(O)Me]<sub>2</sub>[HfCl<sub>6</sub>] Complexes]. *Bulletin of the South Ural State University. Ser. Chemistry*, 2019, vol. 11, no. 4, pp. 26–33. DOI: 10.14529/chem190403 (in Russ.)

22. Sharutin V.V., Sharutina O.K., Tarasova N.M., Lobanova E.V., Andreev P.V. Synthesis and Structure of Triphenylbut-2-enyl- and Triphenylmetoxymethylphosphonium Hexachlorozirconates. *Bulletin of the Institutions of Higher Education, Chemistry and Chemical Technology*, 2019, vol. 62, no. 6, pp. 36–40. DOI: 10.6060/ivkkt.20196206.5885

23. Sharutin V.V., Sharutina O.K., Tarasova N.M., El'tsov O.S. Synthesis and Structures of Zirconium Complexes  $[Et_2H_2N]^+_2[ZrCl_6]^{2-}$ ,  $[Me_3NCH_2Ph]^+_2[ZrCl_6]^{2-}$ ·MeCN,  $[Ph_3PC_6H_4(CHPh_2-4)]^+_2[ZrCl_6]^{2-}$ ·2MeCN, and  $[Ph_4Sb]^+_2[ZrCl_6]^{2-}$ . *Russ. Chem. Bull.*, 2019, vol. 68, no. 1, pp. 24–31. DOI: 10.1007/s11172-019-2411-9

24. Razuvaev G.A., Domrachev G.A., Sharutin V.V., Suvorova O.N. / Ferrocenyl Derivatives of Dicyclopentadienyl-titanium, -Zirconium and -Hafnium. *J. Organomet. Chem.*, 1975, vol. 141, pp. 313–317.

25. Bruker. SMART and SAINT-Plus. Versions 5.0. Data Collection and Processing Software for the SMART System. Bruker AXS Inc., Madison, Wisconsin, USA, 1998.

26. Bruker. SHELXTL/PC. Versions 5.10. An Integrated System for Solving, Refining and Displaying Crystal Structures from Diffraction Data. Bruker AXS Inc., Madison, Wisconsin, USA, 1998.

27. Dolomanov O.V., Bourhis L.J., Gildea R.J. OLEX2: Complete Structure Solution, Refinement and Analysis Program. J. Appl. Cryst., 2009, vol. 42, pp. 339–341. DOI: 10.1107/S0021889808042726.

28. Freydlina R.H., Braynina E.M., Nesmeyanov A.N. [Synthesis of Mixed Claw-like Cyclopentadienyl Compounds of Zirconium]. *Reports of USSR Academy of Sciences*, 1961, vol. 138, no. 6, pp. 1369–1373. (in Russ.).

29. Tovbis M.S. *Metody analiza i identifikatsii organicheskikh soedineniy: opisanie prakticheskikh rabot dlya studentov napravleniya 04.06.01 "Khimicheskie nauki" napravlennosti "Organicheskaya khimiya", ochnoy i zaochnoy form obucheniya* [Methods of Analysis and Identification of Organic Compounds: Description of Practical Works for Students of the Direction 04.06.01 "Chemical Sciences" of the Direction "Organic Chemistry", Full-time and Part-time Forms of Training] Ministry of Science and Technology Education Russian Federation, Sib. State. M.F. Reshetnev University of Science and Technology. Krasnoyarsk, 2019, p. 35.

## Неорганическая химия

30. Shishmarev A.B., Koryakova O.V., Mikushina Yu.V., Petrov L.A. [Synthesis and Comparative Analysis of Porous Binary ZrO<sub>2</sub>–SiO<sub>2</sub> Oxides Synthesized on the Basis of Zirconium (IV) Chloroxide and Tetrabutoxicirconium Using Cellulose as a Matrix]. *Chemistry of plant raw materials*, 2015, no. 3, pp. 151–159. DOI: 10.14258/jcprm.201503599

31. Dunitz J.D. Orgel L.E., Rich A. The Crystal Structure of Ferrocene. *Acta Crystallogr.*, 1956, vol. 9, pp. 373–375. DOI: 10.1107/S0365110X56001091

32. Seiler P., Dunitz J.D. A New Interpretation of the Disordered Crystal Structure of Ferrocene. *Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem.*, 1979, B35, pp. 1068–1074. DOI: 10.1107/S0567740879005598

33. Cordero B., Gómez V., Platero-Prats A.E., Revés M., Echeverría J., Cremades E., Barragán F. and Alvarez S. Covalent Radii Revisited. *Dalton Trans.*, 2008, pp. 2832–2838. DOI: 10.1039/b801115j

34. Yun S.S., Suh II-H., Kim Eu. Hee, Lee S. The New Method of Synthesis and Structural Identification of *Cis*-[CpZr(acac)<sub>2</sub>Cl]. *J. Korean Chem. Soc.*, 1999, vol. 43, pp. 593–595.

35. Lee S., Kang S.K., Yun S.S., Ahn S.-H., Lee D.-Koo. Crystal Structure of Chlorocyclopentadienyl-*bis*(1,3-diphenyl-1,3-propanedionato)zirconium (IV) Complex. *Bull. Korean Chem. Soc.*, 2005, vol. 26, pp. 852–854. DOI: 10.5012/bkcs.2005.26.5.852

Received 30 September 2020

#### ОБРАЗЕЦ ЦИТИРОВАНИЯ

Рыбакова, А.В. Синтез и строение хлорида циклопентадиенилдиферроценоилацетонатоциркония  $C_5H_5[C_{10}H_9FeC(O)CHC(O)CF_3]_2ZrCl$  / А.В. Рыбакова // Вестник ЮУрГУ. Серия «Химия». – 2021. – Т. 13, № 2. – С. 39–48. DOI: 10.14529/chem210204

#### FOR CITATION

Rybakova A.V. Synthesis and Structure of Cyclopentadienyl Diferrocenoylacetonatozirconium Chloride  $C_5H_5[C_{10}H_9FeC(O)CHC(O)CF_3]_2ZrCl.$  Bulletin of the South Ural State University. Ser. Chemistry. 2021, vol. 13, no. 2, pp. 39–48. (in Russ.). DOI: 10.14529/chem210204