ДЕАРИЛИРОВАНИЕ ТРИ(*ОРТО*-ТОЛИЛ)ВИСМУТА МЕЗИТИЛЕНСУЛЬФОНОВОЙ КИСЛОТОЙ

Л.В. Калимуллина, В.В. Шарутин

Южно-Уральский государственный университет, г. Челябинск, Россия

Взаимодействием три(орто-толил)висмута с дигидратом мезитиленсульфоновой кислоты в эфире получен гидрат мезитиленсульфоната ди(орто-толил) висмута. Методом рентгеноструктурного анализа определено его строение. По данным рентгеноструктурного анализа, проведенного при 293 К на автоматическом четырехкружном дифрактометре D8 Quest Bruker (двухкоординатный CCD – детектор, Мо K_{a} -излучение, $\lambda = 0,71073$ Å, графитовый монохроматор), в кристаллах гидрата мезитиленсульфоната ди(*орто*-толил)висмута: [C₂₃H₂₇O₄SBi, M 608,48; сингония триклинная, группа симметрии P-1; параметры ячейки: a = 8,872(7), b = 11,476(10), c = 13,119(10) Å; $\alpha = 109,48(5)^{\circ}, \beta = 92,55(2)^{\circ}, \gamma = 110,89(2)^{\circ}; V = 1155,9(16)$ Å³; Z = 1; размер кристалла $0.32 \times 0.1 \times 0.06$ мм; интервалы индексов отражений $-11 \le h \le 11$, $-15 \le k \le 15, -17 \le l \le 17$; всего отражений 30469; независимых отражений 5781; R_{int} 0,0327; GOOF 1,044; $R_1 = 0.0330$, $wR_2 = 0.0811$; остаточная электронная плотность 2,85/-2,12 e/Å³]. Полные таблицы координат атомов, длин связей и валентных углов для структуры депонированы в Кембриджском банке структурных данных (№ 2165866; deposit@ccdc.cam.ac.uk; https://www.ccdc.cam.ac.uk). В кристалле гидрата его молекулы содержат координационносвязанную воду, причем расстояние Ві····OH₂ составляет 2,487(4) Å, что сопоставимо с длиной связи Bi-O (2,388(4) Å) в группировке Bi-OSO₂Mez и суммой ковалентных радиусов висмута и кислорода (2,31 Å). Длины связей Bi-C (2,235(5) и 2,237(5) Å) несколько меньше суммы ковалентных радиусов атомов висмута и углерода (2,36 Å), а угол CBiC составляет 97,77(19)°. Поэтому можно считать, что координационный полиэдр атома висмута представляет собой тригональную бипирамиду с атомами кислорода в аксиальных положениях и двумя арильными лигандами с неподеленной электронной парой – в экваториальных позициях. Проанализированы особенности синтеза и строения аренсульфонатов диарилвисмута и их сольватов с амино- и кислородсодержащими лигандами. Если первые являются координационными полимерами, то вторые представляют собой молекулы с координационно-связанными *п*-донорными лигандами.

Ключевые слова: синтез, гидрат мезитиленсульфоната ди(орто-толил)висмута, строение, рентгеноструктурный анализ

Введение

Арильные производные трехвалентного висмута (Ar₃Bi, Ar₂BiX и ArBiX₂, X – электроотрицательный лиганд) привлекают внимание многих исследователей. Для получения производных висмута несимметричного строения используют преимущественно реакции деарилирования триарилвисмута кислотами HX [1–3]. Полнота деарилирования триарилвисмута определяется соотношением исходных реагентов, природой кислоты и условиями проведения реакций. Так, при взаимодействии триарилвисмута с уксусной или трифторуксусной кислотой в эфире в зависимости от количества исходных реагентов замещаются одна или две арильные группы [4]:

> $Ar_3Bi + nRCO_2H \rightarrow Ar_{3-n}Bi(O_2CR)_n + nArH$ Ar = Ph, C₆H₄Me-p, C₆H₄OMe-p, C₆H₄Et-p, C₆F₅; R = Me, CF₃; n = 1 или 2

Эти же авторы получили бензолсульфонат дифенилвисмута и 4-метилбензолсульфонат дитолилвисмута внедрением оксида серы (VI) по связи Bi-C в триарилвисмуте или деарилированием триарилвисмута аренсульфоновой кислотой [5]:

> $Ar_3Bi + SO_3 \rightarrow Ar_2BiOSO_2Ar$ $Ar_3Bi + HOSO_2Ar \rightarrow Ar_2BiOSO_2Ar$ Ar = Ph, p-Tol

Химия элементоорганических соединений

В [6] описан синтез из трифенилвисмута и 2,5-диметилбензолсульфоновой кислоты в толуоле бис(2,5-диметилбензолсульфоната) фенилвисмута, представляющего собой координационный полимер. О получении двух координационных полимеров винилсульфонатов висмута(III) сообщалось в [7]. Три органосульфоната дифенилвисмута были синтезированы взаимодействием эквимолярных количеств трифенилвисмута и органосульфоновой кислоты в спирте [8]. По аналогичной схеме был получен трифлат дифенилвисмута [9].

В работе [10] описан синтез аренсульфонатов диарилвисмута из триарилвисмута и аренсульфоновой кислоты в эфире с выходом до 99 %:

Ar₃Bi + HOSO₂Ar' \rightarrow Ar₂BiOSO₂Ar' + ArH Ar = Ph; Ar' = C₆H₄Me-4; C₆H₃Me₂-2,5; C₆H₃Me₂-2,4; C₆H₃Me₂-3,4 Ar = *p*-Tol; Ar' = C₆H₃Me₂-2,4; Ar = *o*-Tol; Ar' = C₆H₃Me₂-3,4

Оптимальное время протекания реакций при комнатной температуре составляет 48 ч. Полученные аренсульфонаты диарилвисмута представляют собой мелкокристаллические неокрашенные вещества, нерастворимые в ароматических и алифатических углеводородах. Однако эти соединения хорошо растворяются в таких органических растворителях, как ацетон и диметилсульфоксид. Диаграммы дифференциального термического анализа полученных комплексов содержали один широкий экзотермический пик малой интенсивности, свидетельствующий о том, что они разлагаются без плавления. Высокие температуры разложения и плохая растворимость полученных аренсульфонатов диарилвисмута в большинстве органических растворителей предполагают их полимерное строение. В ИК-спектрах данных соединений наблюдаются интенсивные полосы поглощения в области 1100 см⁻¹ и 1200 см⁻¹, относящиеся к валентным колебаниям связей S-O и S=O соответственно [11]. Однако по ИК-спектру сложно судить о характере связывания аренсульфонатного заместителя с центральным атомом. Отметим, что в литературе известны примеры, когда сульфонатные группы могут выступать в роли монодентатного лиганда [2], бидентатного лиганда, как в сульфонатах олова [12], а тройная координация сульфонатного заместителя с цителя [13].

Результаты и их обсуждение

Проведенное рентгеноструктурное исследование 2,5-диметилбензолсульфоната дифенилвисмута показало, что в кристалле имеются цепочки, образованные из фрагментов Ph₂BiOSO₂C₆H₃Me₂-2,5, связанных между собой атомами кислорода сульфогруппы мостикового аренсульфонатного лиганда, то есть в кристалле соединение существует в полимерной форме (рис. 1) [10].

Рис. 1. Структурная формула 2,5-диметилбензолсульфоната дифенилвисмута

Атом висмута с учетом стереохимически активной роли неподеленной электронной пары – так называемого «фантом»-лиганда – имеет тригонально-бипирамидальную координацию. Псевдовалентный угол O(1)Bi(1)O(3) равен 166,2(2)°, а углы между псевдоаксиальными атомами кислорода и *ипсо*-атомами углерода фенильных заместителей варьируют от 82,2(2) до 91,4(2)°. Длины связей Bi-C в пределах экспериментальной погрешности одинаковы [2,223(7) и 2,227(7) Å], а расстояния Bi-O заметно различаются [2,400(5) и 2,424(5) Å]. Длины связей S-O(3) [1,461(5) Å] и S-O(1) [1,476(5) Å] в цепочке атомов неравноценны: более короткой связи Bi-O соответствует более длинная связь S-O. Расстояние S-O(2) существенно короче (1,431 Å) из-за более высокой кратности данной связи. Различные значения длин связей Bi-O и S-O свидетельствуют о том, что бидентатный аренсульфонатный лиганд координируется на атоме висмута несимметрично. Более короткая связь Bi(1)-O(1) имеет ковалентный характер, а другая связь Bi(1)-O(3) образуется по донорно-акцепторному механизму и является координационной.

Можно предположить, что близкое к линейному расположение атомов O(1)-Bi(1)-O(3) благоприятно для гиперконъюгационного стереоэлектронного взаимодействия неподеленной электронной пары атома O(3) с разрыхляющей орбиталью связи Bi(1)-O(1) (n- σ *-взаимодействие), которое и приводит к заметному удлинению связи Bi(1)-O(1) по сравнению с суммой ковалентных радиусов атомов Bi и O (2,31 Å [14]) и образованию трехцентровой связи =O(3) \rightarrow Bi(1)-O(1). Однако в кристалле полимерного 2,4-диметилбензолсульфоната дифенилвисмута, имеющего аналогичное строение, разница в длинах связей Bi-O более заметна (2,406 и 2,459 Å) [15], чем в предыдущем комплексе (2,400 и 2,424 Å), несмотря на то что аксиальный угол OBiO в 2,4-диметилбензолсульфонате дифенилвисмута (175,1°) приближается к теоретическому значению 180°.

Особенности строения тригонально-бипирамидальных комплексов Ві хорошо объясняются теорией отталкивания электронных пар валентных орбиталей (ОЭПВО) [16]. В соответствии с основными положениями этой теории наиболее электроотрицательные заместители занимают аксиальные позиции в тригонально-бипирамидальном окружении центрального атома, а неподеленная пара электронов предпочтительно занимает экваториальное положение, причем отталкивает соседнюю электронную пару сильнее по сравнению со связывающей электронной парой. В аренсульфонатах диарилвисмута аксиальные положения занимают, как предсказывает теория ОЭПВО, наиболее электроотрицательные заместители, а в экваториальных положениях располагаются фенильные группы [угол C(Ph)-Sb-C(Ph) равен 96,6(3)°] и неподеленная пара электронов, наличие которой и приводит к уменьшению валентного угла по сравнению с теоретическим значением 120°.

Таким образом, на основании анализа структурных исследований [17] можно заключить, что аренсульфонаты дифенилвисмута являются координационными полимерами и проявляют свойства соединений подобного строения: разлагаются при высоких температурах без плавления, не растворяются в ароматических и алифатических углеводородах, но растворяются в растворителях, проявляющих донорные свойства.

Синтез и особенности строения сульфонатов диарилвисмута, содержащих в координационной сфере центрального атома такие электронодонорные лиганды, как амины или оксиды триалкилолова, описаны в работах [18, 19]. В связи с этим представлялось интересным расширить ряд подобных аренсульфонатов диарилвисмута и сравнить структурные особенности представителей этого ряда соединений на бо́льшем числе примеров, поэтому мы продолжили исследования в этой области химии и попробовали получить из три(*орто*-толил)висмута и гидрата мезитиленсульфоновой кислоты в эфире мезитиленсульфонат ди(*орто*-толил)висмута.

Нами показано, что взаимодействие три(*opmo*-толил)висмута с гидратом мезитиленсульфоновой кислоты в эфире приводит к образованию гидрата мезитиленсульфоната ди(*opmo*толил)висмута:

$$(o-\text{Tol})_3\text{Bi} + \text{HOSO}_2\text{C}_6\text{H}_2\text{Me}_3-2,4,6 \cdot 2\text{H}_2\text{O} \rightarrow (o-\text{Tol})_2\text{BiOSO}_2\text{C}_6\text{H}_2\text{Me}_3-2,4,6 \cdot \text{H}_2\text{O}$$

1

Показано, что в кристалле гидрата **1** его молекулы содержат координационно-связанную воду (рис. 2). Расстояние Bi···OH₂ составляет 2,487(4) Å, что сопоставимо с длиной связи Bi–O (2,388(4) Å) в группировке Bi–OSO₂Mez и суммой ковалентных радиусов висмута и кислорода (2,31 Å [14]).

Химия элементоорганических соединений

Рис. 2. Общий вид молекулы гидрата мезитиленсульфоната ди(орто-толил)висмута

Длины связей Bi–C (2,235(5) и 2,237(5) Å) несколько меньше суммы ковалентных радиусов атомов висмута и углерода (2,36 Å [14]), а угол CBiC составляет 97,77(19)°. Можно поэтому считать, что координационный полиэдр атома металла представляет собой тригональную бипирамиду с атомами кислорода в аксиальных положениях и неподеленную электронную пару с двумя арильными лигандами в экваториальных позициях.

В ИК-спектре соединения **1** присутствуют полосы, характеризующие валентные колебания связей Ві–С (406 см⁻¹) и Ві–О (546 см⁻¹). Две полосы поглощения при 1186 и 999 см⁻¹ относятся к валентным асимметричным и симметричным колебаниям сульфонатной группы. Арильные лиганды при атоме висмута характеризуются полосами валентных колебаний ароматического скелета при 1570, 1450 см⁻¹, а также ароматических и алифатических С–Н связей (3025 и 2924 соответственно). Широкая полоса при 3435 см⁻¹ относится к валентным колебаниям О–Н связи в молекуле воды [20–22].

Экспериментальная часть

Элементный анализ на С и Н выполнен на элементном анализаторе Carlo Erba CHNS-O EA 1108. ИК-спектры записан на ИК-Фурье спектрометре Shimadzu IRAffinity-1S в области 4000– 400 см^{-1} в матрице KBr. Температуры плавления измерены на синхронном термоанализаторе Netzsch 449C Jupiter.

Синтез гидрата мезитиленсульфоната бис(орто-толил)висмута (3). Смесь три(ортотолил)висмута (0,1 г, 0,206 ммоль), дигидрата мезитиленсульфоновой кислоты (0,49 г, 0,206 ммоль и 10 мл диэтилового эфира выдерживали в закрытой ампуле при 20 °C в течение 72 ч. Крупные белые кристаллы, образовавшиеся на стенке ампулы, собирали, высушивали и взвешивали. Выход 0,072 г, 56 %, т. разл. 118 °C.

ИК-спектр (*v*, см⁻¹): 3435, 3025, 2924, 2854, 1805, 1570, 1450, 1254, 1244, 1209, 1186, 1138, 1080, 1055, 989, 961, 845, 746, 679, 579, 546, 530, 505, 424, 406. Найдено, %: С 45,27, Н 4,51. С₂₃Н₂₇О₄SBi. Вычислено, %: С 45,36, Н 4,44.

Рентгеноструктурный анализ (**PCA**) кристаллов проведен на автоматическом четырехкружном дифрактометре D8 QUEST фирмы Bruker (Мо K_{α} -излучение, $\lambda = 0,71073$ Å, графитовый монохроматор). Сбор, редактирование данных и уточнение параметров элементарной ячейки, а также учет поглощения проведены с помощью программ *SMART* и *SAINT-Plus* [23]. Все расчеты по определению и уточнению структур выполнены с помощью программ *SHELXL/PC* [24], *OLEX2* [25]. Структуры определены прямым методом и уточнены методом наименьших квадратов в анизотропном приближении для неводородных атомов. Положение атомов водорода уточняли по модели наездника ($U_{\mu_{30}}(H) = 1, 2U_{_{3KB}}(C)$). Кристаллографические данные и результаты уточнения структуры приведены в табл. 1, геометрические характеристики координационного полиэдра атома висмута – в табл. 2.

Параметр	1			
Формула	$C_{23}H_{27}O_4SBi$			
М	608,48			
Т, К	293			
Сингония	Триклинная			
Пр. группа	<i>P</i> -1			
a, Å	8,872(7)			
b, Å	11,476(10)			
<i>c</i> , Å	13,119(10)			
α, град.	109,48(5)			
β, град.	92,55(2)			
ү, град.	110,89(2)			
$V, Å^3$	1155,9(16)			
Z	1			
р(выч.), г/см ³	1,748			
μ , MM ⁻¹	7.742			
F(000)	592.0			
Размер кристалла, мм	$0.32 \times 0.1 \times 0.06$			
Область сбора данных по 20, град.	6.4 - 56.9			
	$-11 \le h \le 11$,			
Интервалы индексов	$-15 \le k \le 15$,			
отражении	$-17 \le l \le 17$			
Измерено отражений	30469			
Независимых отражений	5781			
R _{int}	0,0327			
Переменных уточнения	268			
GOOF	1,044			
P_{1} to P_{2} P_{2} P_{2} P_{2} P_{2} P_{2} P_{2}	$R_1 = 0,0330,$			
R -факторы по $F > 2\sigma(F)$	$wR_2 = 0,0811$			
D how on the beau or power way	$R_1 = 0,0407,$			
л-факторы по всем отражениям	$wR_2 = 0,0854$			
Остаточная электронная плотность (min/max), e/A ³	-2,12/2,85			

17.		A						
ĸ	мстаппогоа	плические	ланные, па	раметрь	гэксперим	мента и утс	учнения сто	
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		Hannele, na	pamorpo				,,

Длины связей и валентные углы в соединении 3

Таблица 2

Таблица 1

		-	
Связь	d, Å	Угол	ω, град.
Bi(1)–O(1)	2,388(4)	O(1)Bi(1)O(3)	170,20(14)
Bi(1)–C(1)	2,235(5)	C(1)Bi(1)O(1)	87,20(17)
Bi(1)–O(4)	2,487(4)	C(1)Bi(1)O(4)	83,69(16)
Bi(1)–C(11)	2,237(5)	C(1)Bi(1)C(11)	97,77(19)
S(1)–O(1)	1,495(5)	C(11)Bi(1)O(1)	88,31(17)
S(1)–O(3)	1,477(6)	C(11)Bi(1)O(4)	89,34(17)
S(1)–O(2)	1,408(6)	O(1)S(1)C(21)	104,0(3)
S(1)-C(21)	1,779(5)	O(3)S(1)O(1)	110,3(3)

Полные таблицы координат атомов, длин связей и валентных углов депонированы в Кембриджском банке структурных данных (№ 2165866 для 1; deposit@ccdc.cam.ac.uk; http://www.ccdc.cam.ac.uk).

Выводы

Взаимодействием три(*орто*-толил)висмута с гидратом мезитиленсульфоновой кислоты в эфире получен и структурно охарактеризован гидрат мезитиленсульфоната ди(*орто*-толил)висмута. Координационный полиэдр атома металла представляет собой тригональную бипирамиду с атомами кислорода сульфогруппы и молекулой воды в аксиальных положениях и неподеленную электронную пару с двумя арильными лигандами в экваториальных позициях.

Литература

1. Шарутин В.В., Поддельский А.И., Шарутина О.К. Синтез, строение и применение органических соединений висмута // Коорд. химия. 2021. Т. 47, № 12. С. 719–788. DOI: 10.31857/S0132344X21120021.

2. Шарутин В.В., Мосунова Т.В. Синтез, строение и применение арильных соединений висмута // Вестник ЮУрГУ. Серия «Химия». 2020. Т. 12, № 3. С. 7–66.

3. Кочешков К.А., Сколдинов А.П., Землянский Н.Н. Методы элементоорганической химии // Сурьма, висмут. М.: Наука, 1976. 483 с.

4. Deacon G.B., Jackson W.R., J.M. Pfeiffer. The preparation and reactivity of arylbismuth(iii) dicarboxylates an diarylbismuth(III) carboxylates // Aust. J. Chem. 1984. Vol. 37. P. 527–535. DOI: 10.1071/CH9840527.

5. Synthesis of arylbismuth (III) sulfonates from triarilbismuth compounds and arensulfonic acids or sulfur trioxide / G.B. Deacon, P.W. Felder, M. Domagala et al. // Inorg. Chim. Acta. 1986. Vol. 113, no. 1. P. 43–48. DOI: 10.1016/S0020-1693(00)86855-3.

6. Шарутин В.В., Шарутина О.К. Бис(2,5-диметилбензолсульфонат) фенилвисмута. Строение и реакции // Журнал неорганической химии. 2014. Т. 59, № 10. С. 1356–1359. DOI: 10.7868/S0044457X14100183.

7. Homo-and heteroleptic coordination polymers and oxido clusters of bismuth(III) vinylsulfonates // L. Wrobel, T. Rüffer, M. Korb et al. // Chemistry. A European Journal. 2018. Vol. 24, no. 62. P. 16630–16644. DOI: 10.1002/chem.201803664.

8. Structural and solution studies of phenylbismuth(III) sulfonate complexes and their activity against Helicobacter pylori / P.C. Andrews, M. Busse, G.B. Deacon et al. // Dalton Trans. 2010. Vol. 39, no. 40. P. 9633–9641. DOI: 10.1039/c0dt00629g.

9. Gupta A., Kumar S., Singh H.B. Structural and reactivity aspects of organoselenium and tellurium cations // Proc. Natl. Acad. Sci., India, Sect. A Phys. Sci. 2016. Vol. 86. P. 465–498. DOI: 10.1007/s40010-016-0301-1.

10. Шарутин В.В., Шарутина О.К., Житкевич М.В. Аренсульфонаты дифенилвисмута. Синтез и строение // Журн. общ. химии. 2000. Т. 70, № 5. С. 737–739.

11. Беллами Л.Дж. Инфракрасные спектры сложных молекул. М.: Изд. ИЛ, 1963. 590 с.

12. Yeats P.A., Sams J.R., Aubke F. The synthesis and Mössbauer and vibrational spectra of some trimethyltin (IV) sulfonates // Inorg. Chem. 1971. Vol. 10, no. 9. P. 1877–1881. DOI: 10.1021/ic50103a007.

13. Olapinski H., Weidlein J., Hausen H.D. SO_3 -Einschicbyngsreaktionen bei aluminium, gallium-, undium- and thallium trialkyle // J. Organomet. Chem. 1974. Vol. 64, no. 2. P. 193–204. DOI: 10.1016/S0022-328X(00)87910-3.

14. Бацанов С.С. Атомные радиусы элементов // Журн. неорган. химии. 1991. Т. 36, № 12. С. 3015–3037.

15. Взаимодействие *бис*(аренсульфонатов) трифенилвисмута с трифенилстибином / В.В. Шарутин, О.К. Шарутина, И.И. Павлушкина и др. // Журн. общ. химии. 2001. Т. 71, № 1. С. 87–90.

16. Гиллеспи Р., Харгиттаи И. Модель отталкивания электронных пар валентной оболочки и строение молекул. М.: Мир, 1992. 296 с.

17. Cambridge Crystallographic Data Center. 2022. deposit@ccdc.cam.ac.uk; http://www.ccdc.cam.ac.uk

18. Consequence of ligand bite angle on bismuth lewis acidity / R. Kannan, S. Kumar, A.P. Andrews et al. // Inorg. Chem. 2017. Vol. 56, no. 16. P. 9391–9395. DOI: 10.1021/acs.inorgchem.7b01243

19. Reversing Lewis acidity from bismuth to antimony / D. Sharma, S. Balasubramaniam, S. Kumar et al. // Chem. Commun. 2021. Vol. 57. P. 8889–8892. DOI: 10.1039/d1cc03038h.

20. Тарасевич Б.Н. ИК-спектры основных классов органических соединений. М.: МГУ, 2012. 54 с.

21. Инфракрасная спектроскопия органических и природных соединений: учебное пособие / А.В. Васильев, Е.В. Гриненко, А.О. Щукин, Т.Г. Федулина. СПб.: СПбГЛТА, 2007. 54 с.

22. Spectral Database for Organic Compounds, SDBS. Release 2021. National Institute of Advanced Industrial Science and Technology.

23. Bruker. SMART and SAINT-Plus. Versions 5.0. Data Collection and Processing Software for the SMART System. Bruker AXS Inc., Madison, Wisconsin, USA, 1998.

24. Bruker. SHELXTL/PC. Versions 5.10. An Integrated System for Solving, Refining and Displaying Crystal Structures From Diffraction Data. Bruker AXS Inc., Madison, Wisconsin, USA, 1998.

25. OLEX2: Complete structure solution, refinement and analysis program / O.V. Dolomanov, L.J. Bourhis, R.J. Gildea et al. // J. Appl. Cryst. 2009. Vol. 42. P. 339–341. DOI: 10.1107/S0021889808042726.

Калимуллина Людмила Вячеславовна – бакалавр, кафедра теоретической и прикладной химии, Южно-Уральский государственный университет. 454080, г. Челябинск, проспект Ленина, 76. E-mail: ll.kalimullina@mail.ru

Шарутин Владимир Викторович – доктор химических наук, главный научный сотрудник, Южно-Уральский государственный университет. 454080, г. Челябинск, проспект Ленина, 76. E-mail: sharutin50@mail.ru

Поступила в редакцию 27 июня 2022 г.

DOI: 10.14529/chem220405

DEARYLATION OF TRI(ORTHO-TOLYL)BISMUTH WITH MESITYLENESULFONIC ACID

L.V. Kalimullina, *II.kalimullina*@mail.ru *V.V. Sharutin*, sharutin50@mail.ru South Ural State University, Chelyabinsk, Russian Federation

> The interaction of tri(ortho-tolyl)bismuth with mesitylenesulfonic acid dihydrate in ether has led to di(ortho-tolyl)bismuth mesitylenesulfonate hydrate. Its structure has been determined by X-ray diffraction analysis. The X-ray diffraction pattern for crystal 1 has been obtained at 293 K on an automatic diffractometer D8 Quest Bruker (MoK α -radiation, $\lambda = 0.71073$ Å, graphite monochromator), the results are the following: $[C_{23}H_{27}O_4SBi, M 608.48;$ triclinic syngony, the P-1 symmetry group; cell parameters: a = 8.872(7), $\alpha = 109.48(5)^{\circ}$, $\beta = 92.55(2)^{\circ}$, $\gamma = 110.89(2)^{\circ}$; V = 1155.9(16) Å³; Z 1; the crystal size $0.32 \times 0.1 \times 0.06$ mm; intervals of reflection indexes are $-11 \le h \le 11$, $-15 \le k \le 15$, $-17 \le l \le 17$; total reflections 30469; independent reflections 5781; R_{int} 0.0327; GOOF 1.044; $R_1 = 0.0330$, $wR_2 = 0.0811$; residual electron density 2.85/-2.12 e/Å³]. Complete tables of coordinates of atoms, bond lengths and valence angles for the structure are deposited at the Cambridge Structural Data Bank (No. 2165866; deposit@ccdc.cam.ac.uk; https://www.ccdc.cam.ac.uk). The molecules in the hydrate crystal contain coordination-bound water, moreover, the Bi \cdots OH₂ distance equals 2.487(4) Å, which is comparable to the Bi–O bond length (2.388(4) Å), in the Bi–OSO₂Mez group, and the sum of the covalent radii of bismuth and oxygen (2.31 Å). The Bi-C bond lengths (2.235(5) and 2.237(5) Å) are somewhat lower than the sum of the covalent radii of bismuth and carbon atoms (2.36 Å), and the CBiC angle equals 97.77(19)°. Therefore, the bismuth atom with the oxygen atoms in axial positions should be considered a trigonal bipyramid, with two aryl ligands including lone electron pairs in equatorial positions. The features of synthesis and structure of diarylbismuth arenesulfonates and their solvates with amino- and oxygen-containing ligands have been analyzed. The former are coordination polymers, while the latter are molecules with coordination-bound n-donor ligands.

> Keywords: synthesis, di(ortho-tolyl)bismuth mesitylene sulfonate hydrate, structure, X-ray diffraction analysis

Химия элементоорганических соединений

References

1. Sharutin V.V., Poddel'sky A.I., Sharutina O.K. Organic compounds of bismuth: synthesis, structure, and applications. *Russian Journal of Coordination Chemistry*. 2021;47(12):719–788. (In Russ.) DOI: 10.31857/S0132344X21120021.

2. Sharutin V.V., Mosunova T.V. Synthesis, structure and application of aryl bismuth compounds. *Bulletin of the South Ural State University. Ser. of Chemistry.* 2020;12(3):7–66. (In Russ.) DOI: 10.14529/chem200301.

3. Kocheshkov K.A., Skoldinov A.P., Zemlyanskiy N.N. *Metody elementoorganicheskoy khimii. Sur'ma, vismut* [Organoelemental Chemistry Methods. Antimony, Bismuth]. Moscow: Nauka Publ., 1976. 483 p.

4. Deacon G.B., Jackson W.R., Pfeifer S.M. The preparation and reactivity of arylbismuth (III) dicarboxylates and diarylbismuth (III) carboxylates. *Australian Journal of Chemistry*. 1984;37(3):527– 535. DOI: 10.1071/CH9840527.

5. Deacon G.B., Felder P.W., Domagala M., Huber F., Ruther R. Synthesis of arylbismuth (III) sulfonates from triarilbismuth compounds and arensulfonic acids or sulfur trioxide. *Inorganica Chimica Acta*. 1986;113(1):43–46. DOI: 10.1016/S0020-1693(00)86855-3.

6. Sharutin V.V., Sharutina O.K. Phenylbismuth *bis*(2,5-dimethylbenzenesulfonate): structure and properties. *Russian Journal of Inorganic Chemistry*. 2014;59(10):1119–1122. DOI: 10.1134/S0036023614100179.

7. Wrobel L., Ruffer T., Korb M., Lang H., Mehring M., Rrautscheid H., Meyer J., Andrews P.C. Homo- and heteroleptic coordination polymers and oxido clusters of bismuth(III) vinylsulfonates. *Chemistry – A European Journal*. 2018;24(62):16630–16644. DOI 10.1002/chem.201803664.

8. Andrews P.C., Bussse M., Deacon G.B., Ferrero R.L., Junk P.C., Huynh K.K., Kumar I., MacLellan J.G. Structural and solution studies of phenylbismuth(III) sulfonate complexes and their activity against helicobacter pylori. *Dalton Transactions*. 2010;39(40):9633–9641. DOI: 10.1039/C0DT00629G.

9. Gupta, A., Kumar, S. & Singh, H.B. Structural and reactivity aspects of organoselenium and tellurium cations. *Proceedings of the National Academy of Sciences. India. Section A. Physical Sciences.* 2016;86:465–498. DOI: 10.1007/s40010-016-0301-1.

10. Sharutin V.V., Sharutina O.K., Zhitkevich M.V., Nasonova N.V., Bliznyuk T.N., Bel'skii V.K. Diphenylbismuth arenesulfonates. Synthesis and structure. *Russian Journal of General Chemistry*. 2000;70(5):687–689.

11. Bellami L. *Infrakrasnye spektry slozhnyh molekul* [Infrared spectra of complex molecules]. Moscow, IL Publ. 1963. 590 p.

12. Yeats P.A., Sams J.R., Aubke F. The Synthesis and mössbauer and vibrational spectra of some trimethyltin (IV) sulfonates. *Inorganic Chemistry*. 1971;10(9):1877–1881. DOI: 10.1021/ic50103a007.

13. Olapinski H., Weidlein J., Hausen H.D. SO₃-einschiebungsreaktionen bei aluminium-, gallium-, indium- and thalliumtrialkylen. *Journal of Organometallic Chemistry*. 1974;64(2):193–204. DOI: 10.1016/S0022-328X(00)87910-3.

14. Batsanov S.S. *Atomnye radiusy elementov* [The atomic radii of the elements]. *Russian Journal of Inorganic Chemistry*. 1991;36(12):3015–3037.

15. Sharutin V.V., Sharutina O.K., Pavlushkina I.I., Egorova I.V., Pakusina A.P., Krivolapov D.B., Gubaidullin A.T., Litvinov I.A. Reaction of triphenylbismuth *bis*(arenesulfonates) with triphenylstibine. *Russian Journal of General Chemistry*. 2001;71(1):79–82. DOI: 10.1023/A:1012385524010.

16. Gillespie R.G., Hargittai I. The VSEPR Model of molecular geometry. London: *Allyn & Bacon*, 1991.

17. Cambridge Crystallographic Data Center. 2022. deposit@ccdc.cam.ac.uk; http://www.ccdc.cam.ac.uk

18. Kannan R., Kumar S., Andrews A.P., Jemmis E.D., Venugopal A. Consequence of ligand bite angle on bismuth Lewis acidity. *Inorganic Chemistry*. 2017;56:9391–9395. DOI: 10.1021/acs.inorgchem.7b01243.

19. Sharma D., Balasubramaniam S., Kumar S., Jemmis E.D., Venugopal A. Reversing Lewis acidity from bismuth to antimony. *Chemical Communications*. 2021;57:8889–8892. DOI: 10.1039/d1cc03038h.

20. Tarasevich B.N. *IK-spektry osnovnykh klassov organicheskikh soedineniy* [IR-spectra of the main classes of organic compounds]. Moscow: MGU, 2012. 54 p.

21. Vasil'ev A.V., Gritsenko E.V., Shchukin. *Infrakrasnaya spektroskopiya organicheskikh i prirodnykh soedineniy: uchebnoe posobie* [Infrared spectroscopy of organic and natural compounds: textbook]. St. Petersburg: SPbGLTA, 2007. 54 p.

22. Spectral database for organic compounds, SDBS. Release 2021. National Institute of Advanced Industrial Science and Technology.

23. Bruker. SMART and SAINT-Plus. Versions 5.0. Data collection and processing software for the smart system. Bruker AXS Inc., Madison, Wisconsin, USA, 1998.

24. Bruker. SHELXTL/PC. Versions 5.10. An integrated system for solving, refining and displaying crystal structures from diffraction data. Bruker AXS Inc., Madison, Wisconsin, USA, 1998.

25. Dolomanov O.V., Bourhis L.J., Gildea R.J. OLEX2: complete structure solution, refinement and analysis program. *Journal of Applied Crystallography*. 2009;42:339–341. DOI: 10.1107/S0021889808042726.

Received 27 June 2022

ОБРАЗЕЦ ЦИТИРОВАНИЯ

Калимуллина Л.В., Шарутин В.В. Деарилирование три(*орто*-толил)висмута мезитиленсульфоновой кислотой // Вестник ЮУрГУ. Серия «Химия». 2022. Т. 14, № 4. С. 55–63. DOI: 10.14529/chem220405

FOR CITATION

Kalimullina L.V., Sharutin V.V. Dearylation of tri(*ortho*-tolyl)bismuth with mesitylenesulfonic acid. *Bulle*tin of the South Ural State University. Ser. Chemistry. 2022;14(4):55–63. (In Russ.). DOI: 10.14529/chem220405