СИНТЕЗ И ОСОБЕННОСТИ СТРОЕНИЯ ПРОИЗВОДНЫХ ТЕТРА(ПАРА-ТОЛИЛ)СУРЬМЫ

В.В. Шарутин

Южно-Уральский государственный университет, г. Челябинск, Россия

Взаимодействием пента(пара-толил)сурьмы с оксимами и карбоновыми кислотами в бензоле синтезированы оксиматы и карбоксилаты тетра(*пара*-толил)сурьмы *p*-Tol₄SbX $(X = ON = CHR, R = CHCHPh (1), C_6H_4(Br-3) (2); X = OC(O)R', R' = CH_2OC_6H_3Cl_2-2,4 (3),$ $CF_2CF_2C(O)OH$ (4). Строение соединений 1–4 установлено методом рентгеноструктурного анализа (РСА). По данным РСА, атомы сурьмы в комплексах 1-3 имеют координацию искаженной тригональной бипирамиды с тремя арильными лигандами в экваториальной плоскости, при этом аксиальные углы CSbO составляют 178,94(5), 174,4(2) и 176,95(5)°. Кристалл 4 состоит из искаженных тетраэдрических катионов тетра(*пара*-толил)стибония (углы CSbC 106,6(2)°-112,46(19)°) и однозарядных анионов тетрафторэтандиовой кислоты. Данные РСА: (1) [$C_{37}H_{36}$ NOSb, M = 632,42; триклинная сингония, пр. гр. P-1; параметры ячейки: a = 10,789(4) Å, b = 10,811(5) Å, c = 14,558(5) Å; $\alpha = 73,389(18)^\circ$, $\beta = 75,201(15)^\circ$, $\gamma = 87,55(2)^\circ$, V = 1572,3(11) Å³, Z = 2; $\rho(выч.) = 1,336$ г/см³; $\mu = 0,906$ мм⁻¹; F(000) = 648,0; обл. сбора по 20: 6,04–75,9°; $-18 \le h \le 18$, $-18 \le k \le 18$, $-25 \le l \le 25$; всего отражений 115476; независимых отражений 16980 (*R*_{int} = 0,0449); GOOF = 1,003; *R*-фактор 4,58 %]; (2) $[C_{35}H_{33}NOSbBr, M = 685, 28;$ триклинная сингония, пр. гр. *P*-1; параметры ячейки: a = 10,719(18) Å, b = 10,731(13) Å, c = 15,85(2) Å; $\alpha = 101,53(4)^{\circ}$, $\beta = 92,31(8)^{\circ}$, $\gamma = 119,11(5)^\circ, V = 1541(4)$ Å³, Z = 2; ρ (выч.) = 1,477 г/см³; $\mu = 2,219$ мм⁻¹; F(000) = 688,0; обл. сбора по 20: 5,5–77,08°; $-16 \le h \le 16, -17 \le k \le 17, -25 \le l \le 25$; всего отражений 60962; независимых отражений 12480 (R_{int} = 0,0604); GOOF = 1,429; R-фактор 10,99 %]; (3) [С₃₆Н₃₃O₃Cl₂Sb, *M* = 706,27; триклинная сингония, пр. гр. *P*-1; параметры ячейки: a = 10,621(5) Å, b = 11,016(5) Å, c = 15,809(9) Å; $\alpha = 103,55(2)^{\circ}$, $\beta = 108,00(2)^{\circ}$, $\gamma = 98,34(2)^{\circ}$, V = 1662,1(14) Å³, Z = 2; р(выч.) = 1,411 г/см³; μ = 1,024 мм⁻¹; F(000) = 716,0; обл. сбора по 2 θ : 5,68–60,22°; -14 $\leq h \leq 14$, -15 $\leq k \leq 15$, -22 $\leq l \leq 22$; всего отражений 110814; независимых отражений 9738 ($R_{int} = 0.0348$); GOOF = 1.041; R-фактор 2.74 %]; (4) [C₃₂H₂₉F₄O₄Sb, M = 675,30; триклинная сингония, пр. гр. *P-1*; параметры ячейки: a = 10,223(15) Å, b = 12,011(14) Å, c = 12,949(14) Å; $\alpha = 74,32(3)^\circ$, $\beta = 89,65(7)^\circ$, $\gamma = 86,99(5)^\circ$, V = 1529(3) Å³, Z = 2; ρ(выч.) = 1,467 г/см³; μ = 0,961 мм⁻¹; *F*(000) = 680,0; обл. сбора по 20: 6,536–56,708°; $-13 \le h \le 13, -16 \le k \le 16, -17 \le l \le 17$; всего отражений 44836; независимых отражений 7568 (*R*_{int} = 0,0449); *GOOF* = 1,052; *R*-фактор 6,02 %]. Полные таблицы координат атомов, длин связей и валентных углов соединений 1-4 депонированы в Кембриджском банке структурных данных (ССDС 2130472, 2131085, 2131084, 2126158; deposit@ccdc.cam.ac.uk; http://www.ccdc.cam.ac.uk).

Ключевые слова: пента(пара-толил)сурьма, реакция, оксим, карбоновая кислота, рентгеноструктурный анализ

Введение

Возрастающий интерес к органическим соединениям сурьмы во многом определяется растущим потенциалом их применения в самых разнообразных областях практической деятельности: в качестве лекарственных препаратов, биоцидов, фунгицидов, в качестве реагентов и компонентов каталитических систем при полимеризации, в тонком органическом синтезе, в качестве антиоксидантов и др. [1]. Одними из наиболее исследованных сурьмаорганических соединений являются фенильные производные пятивалентной сурьмы общей формулы Ph₄SbX (X – электроотрицательная группа) [2]. В меньшей степени изучены подобные толильные производные [3–24]. С целью расширения экспериментального материала по данному направлению в настоящей работе изучены реакции пента(*пара*толил)сурьмы с циннамальдоксимом, 3-бромбензальдоксимом, 2,4-дихлорфеноксиуксусной и тетрафторянтарной кислотой. Продуктами реакций являлись соответствующие оксиматы тетра(*пара*-

толил)сурьмы *p*-Tol₄SbON=CHCH=CHPh (1), *p*-Tol₄SbON=CHC₆H₄(Br-3) (2) и карбоксилаты тетра(*пара*-толил)сурьмы *p*-Tol₄SbOC(O)CH₂OC₆H₃(Cl₂-2,4) (3), *p*-Tol₄SbOC(O)CF₂CF₂C(O)OH (4), строение которых было доказано рентгеноструктурным анализом.

Экспериментальная часть

Синтез циннамальдоксимата тетра(*пара*-толил)сурьмы *p*-Tol₄SbON=CHCH=CHPh (1). К раствору 288 мг (0,50 ммоль) пента(*пара*-толил)сурьмы в 15 мл бензола прибавляли 73 мг (0,50 ммоль) циннамальдоксима и перемешивали раствор 1 ч при комнатной температуре. Затем прибавляли 3 мл октана и упаривали раствор до объема 4 мл. Наблюдали образование 253 мг (80 %) бесцветных кристаллов комплекса 1 с т. пл. = 164 °C. ИК-спектр (v, см⁻¹): 3026, 3009, 2916, 1591, 1558, 1491, 1447, 1391, 1342, 1308, 1209, 1186, 1132, 1059, 1015, 970, 905, 800, 745, 689, 604, 569, 604, 569, 549, 476, 459. Найдено, %: C 63,26; H 5,20. C₃₇H₃₆NOSb. Вычислено, %: C 70,21; H 5,69.

Соединения 2-4 получали аналогично.

3-Бромбензальдоксимат тетра(*пара*-толил)сурьмы *p*-Tol₄SbON=CHC₆H₄(Br-3) (2). Бесцветные кристаллы, 87 %, т. пл. = 153 °C. ИК-спектр (*v*, см⁻¹): 3059, 3011, 2967, 2916, 2863, 1585, 1545, 1493, 1466, 1420, 1393, 1325, 1312, 1260, 1211, 1188, 1161, 1117, 1069, 1040, 1016, 970, 918, 908, 845, 797, 772, 694, 679, 569, 644, 581, 567, 521, 482, 436. Найдено, %: C 61,16; H 4,90. C₃₅H₃₃NOSbBr. Вычислено, %: C 61,29; H 4,82.

2,4-Дихлорфеноксиацетат тетра(*пара*-толил)сурьмы *p*-Tol₄SbOC(O)CH₂OC₆H₃(Cl₂-2,4) (3). Бесцветные кристаллы, 89 %, т. пл. = 151 °C. ИК-спектр (*v*, см⁻¹): 3024, 2918, 1657, 1591, 1474, 1431, 1389, 1373, 1318, 1279, 1260, 1246, 1231, 1190, 1103, 1072, 1065, 1045, 1015, 912, 864, 839, 804, 725, 698, 646, 608, 577, 557, 471, 442. Найдено, %: C 61,10; H 4,81. C₃₆H₃₃O₃Cl₂Sb. Вычислено, %: C 61,17; H 4,67.

Кислый тетрафторсукцинат тетра(*пара*-толил)сурьмы *p*-Tol₄SbOC(O)CF₂CF₂C(O)OH (4). Бесцветные кристаллы, 91 %, т. пл. = 242 °C. ИК-спектр (*v*, см⁻¹): 3019, 2922, 2866, 1638, 1593, 1493, 1447, 1393, 1358, 1312, 1265, 1190, 1175, 1146, 1101, 1065, 1013, 978, 800, 772, 638, 573, 480, 440. Найдено, %: C 56,79; H 4,38. C₃₂H₂₉F₄O₄Sb. Вычислено, %: C 56,83; H 4,29.

ИК-спектры соединений записывали на ИК-Фурье спектрометре Shimadzu IRAffinity-1S; образец готовили таблетированием с KBr (область поглощения $4000-400 \text{ см}^{-1}$).

Рентгеноструктурный анализ проводили на автоматическом четырехкружном дифрактометре Bruker D8 QUEST (Мо К_{*a*}-излучение, $\lambda = 0,71073$ Å, графитовый монохроматор). Сбор, редактирование данных и уточнение параметров элементарной ячейки, а также учет поглощения проведены по программам *SMART* и *SAINT-Plus* [25]. Все расчеты по определению и уточнению структур выполнены по программам *SHELXL/PC* [26] и *OLEX2* [27]. Структуры определены прямым методом и уточнены методом наименьших квадратов в анизотропном приближении для неводородных атомов. Кристаллографические данные и результаты уточнения структур приведены в таблице.

Параметр	1	2	3	4
Формула	C ₃₇ H ₃₆ NOSb	C ₃₅ H ₃₃ NOSbBr	$C_{36}H_{33}O_3Cl_2Sb$	$C_{32}H_{29}F_4O_4Sb$
M	632,42	685,28	706,27	675,30
Сингония	Триклинная	Триклинная	Триклинная	Триклинная
Пространственная группа	<i>P</i> –1	<i>P</i> –1	<i>P</i> –1	<i>P</i> –1
<i>a</i> , Å	10,789(4)	10,719(18)	10,621(5)	10,223(15)
<i>b</i> , Å	10,811(5)	10,731(13)	11,016(5)	12,011(14)
<i>c</i> , Å	14,558(5)	15,85(2)	15,809(9)	12,949(14)
α, град.	73,389(18)	101,53(4)	103,55(2)	73,32(3)
β, град.	75,201(15)	92,31(8)	108,00(2)	89,65(7)
ү, град.	87,55(2)	119,11(5)	98,34(2)	86,99(5)
$V, Å^3$	1572,3(11)	1541(4)	1662,1(14)	1529(3)
Z	2	2	2	2

Кристаллографические данные, параметры эксперимента и уточнения структур 1-4

Таблица

Химия элементоорганических соединений

		•		
Параметр	1	2	3	4
ρ(выч.), г/см ³	1,336	1,477	1,411	1,467
μ, мм ⁻¹	0,906	2,219	1,024	0,961
F(000)	648,0	688,0	716,0	680,0
Форма кристалла (размер, мм)	0,29 × 0,25 × 0,14	0,5 imes 0,41 imes 0,23	0,39 × 0,26 × 0,17	0,5 imes 0,14 imes 0,07
Область сбора данных по 20, град.	6,04–75,9	5,5–77,08	5,68–60,22	6,536–56,708
Интервалы индексов отражений	$-18 \le h \le 18,$ $-18 \le k \le 18,$ $-25 \le l \le 25$	$-16 \le h \le 16,$ $-17 \le k \le 17,$ $-25 \le l \le 25$	$-14 \le h \le 14,$ $-15 \le k \le 15,$ $-22 \le l \le 22$	$-13 \le h \le 13,$ $-16 \le k \le 16,$ $-17 \le l \le 17$
Измерено отражений	115476	60962	110814	44836
Независимых отражений (<i>R</i> _{int})	16980	12480	9738	7568
Отражений с $I > 2\sigma(I)$	11412	7776	8276	5801
Переменных уточнения	365	356	383	396
GOOF	1,003	1,429	1,041	1,052
<i>R</i> -факторы	$R_1 = 0,0458,$	$R_1 = 0,1099,$	$R_1 = 0,0274, wR_2$	$R_1 = 0,0602,$
по $F^2 > 2\sigma(F^2)$	$wR_2 = 0,0870$	$wR_2 = 0,3330$	= 0,0640	$wR_2 = 0,1659$
<i>R</i> -факторы	$R_1 = 0,0862,$	$R_1 = 0,1796,$	$R_1 = 0,0379, wR_2$	$R_1 = 0,0826,$
по всем отражениям	$wR_2 = 0,0979$	$wR_2 = 0,3880$	= 0,0687	$wR_2 = 0,1900$
Остаточная электронная плотность (min/max), <i>e</i> /Å ³	-0,54/1,27	-3,14/2,34	-0,56/0,42	-0,77/0,89

Полные таблицы координат атомов, длин связей и валентных углов соединений **1–4** депонированы в Кембриджском банке структурных данных (CCDC 2130472, 2131085, 2131084, 2126158; deposit@ccdc.cam.ac.uk; http://www.ccdc.cam.ac.uk).

Обсуждение результатов

Известно, что кислоты (HX) деарилируют пентаарилсурьму до производных Ar₄SbX с выходом до 95 % [1, 2].

В продолжение исследования реакций пентаарилсурьмы с соединениями, содержащими активный атом водорода, было изучено взаимодействие пента(*пара*-толил)сурьмы с циннамальдоксимом, 3-бромбензальдоксимом, 2,4-дихлорфеноксиуксусной и тетрафторянтарной кислотами. Показано, что взаимодействие эквимолярных количеств реагентов в растворе бензола при комнатной температуре приводит к образованию циннамальдоксимата, 3-бромбензальдоксимата, 2,4дихлорфеноксиацетата и кислого тетрафторсукцината тетра(*пара*-толил)сурьмы (1–4) соответственно:

p-Tol₅Sb + HX \longrightarrow p-Tol₄SbX + p-TolH X = ONCHCH=CHPh (1), ONCHC₆H₄(Br-3) (2), OC(O)CH₂OC₆H₃(Cl₂-2,4) (3), OC(O)CF₂CF₂C(O)OH (4)

Исходная пентаарилсурьма исчезала из реакционной смеси в течение часа (ход реакции контролировали методом TCX, элюент бензол). В случае карбоновых кислот реакции шли несколько быстрее, чем с оксимами, что можно объяснить более высокой реакционной способностью первых. При добавлении к реакционной смеси октана наблюдали кристаллизацию целевого продукта. После практически полного упаривания растворителя образующиеся кристаллы фильтровали, сушили и взвешивали.

Строение соединений 1–4 установлено методом рентгеноструктурного анализа (РСА) (рис. 1–4). По данным РСА, атомы сурьмы в комплексах 1–3 имеют координацию искаженной тригональной бипирамиды с тремя арильными лигандами в экваториальной плоскости, при этом аксиальные углы CSbO составляют 178,94(5), 174,4(2) и 176,95(5)°. Электроотрицательная группа (оксимная или карбоксильная) в соединениях 1–3 находится в аксиальном положении, что полностью согласуется с теорией отталкивания электронных пар валентных орбиталей, причем

Окончание таблицы

наблюдаемые длины связей Sb–O (2,1785(16), 2,147(6), 2,3319(15) Å) несколько превосходят сумму ковалентных радиусов связанных между собой атомов-партнеров (2,14 Å µ) [28].

Рис. 1. Строение циннамальдоксимата тетра(*пара*-толил)сурьмы *p*-Tol₄SbON=CHCH=CHPh (1)

Рис. 2. Строение 3-бромбензальдоксимата тетра(*пара*-толил)сурьмы *р*-Tol₄SbON=CHC₆H₄(Br-3) (2)

Химия элементоорганических соединений

Рис. 3. Строение 2,4-дихлорфеноксиацетата тетра(*пара*-толил)сурьмы *p*-Tol₄SbOC(O)CH₂OC₆H₃(Cl₂-2,4) (3)

Кристалл **4** состоит из искаженных тетраэдрических катионов тетра(*пара*-толил)стибония (углы CSbC 106,6(2)°–112,46(19)°) и однозарядных анионов тетрафторэтандиовой кислоты.

Рис. 4. Строение кислого тетрафторсукцината тетра(*пара*-толил)сурьмы *p*-Tol₄SbOC(0)CF₂CF₂C(0)OH (4)

Анионы в кристалле комплекса 4 посредством водородных связей связываются в димеры (рис. 5).

Рис. 5. Димерное строение анионов комплекса 4

Заключение

Таким образом, впервые из пента(*пара*-толил)сурьмы, оксимов и карбоновых кислот в бензоле синтезированы оксиматы и карбоксилаты тетра(*пара*-толил)сурьмы *p*-Tol₄SbX (X = ONCHR, R = CHCHPh (1), C₆H₄(Br-3) (2); X = OC(O)R', R' = CH₂OC₆H₃Cl₂-2,4 (3), CF₂CF₂C(O)OH (4) с выходом до 91 %; строение комплексов **1–4** доказано методом рентгеноструктурного анализа.

Список источников

1. Кочешков К.А., Сколдинов А.П., Землянский Н.Н. Методы элементоорганической химии. Сурьма, висмут. М.: Наука, 1976. 483 с.

2. Шарутин В.В., Поддельский А.И., Шарутина О.К. Синтез, реакции и строение арильных соединений пятивалентной сурьмы // Коорд. химия. 2020. Т. 46, № 10. С. 579–648. DOI: 10.31857/S0132344X20100011

3. Кристаллическая структура С₂₈H₂₈ClSb / К.Н. Акатова, Р.И. Бочкова, В.А. Лебедев, В.В. Шарутин, Н.В. Белов // Докл. АН СССР. 1983. Т. 268, № 6. С. 1389–1391.

4. Строение галогенидов тетраарилсурьмы и изотиоцианата тетрафенилсурьмы / В.В. Шарутин, О.К. Шарутина, А.П. Пакусина, С.А. Смирнова, М.А. Пушилин // Коорд. химия. 2005. Т. 31, № 2. С. 117–124.

5. Синтез и строение *N*,*N*-диметилдитиокарбаматов тетрафенилсурьмы и тетра-*n*-толилсурьмы / В.В. Шарутин, О.К. Шарутина, Т.П. Платонова, А.П. Пакусина, А.В. Герасименко, Е.А. Герасименко, Б.В. Буквецкий, Д.Ю. Попов // Коорд. химия. 2003. Т. 29, № 1. С. 13–17.

6. Сульфонаты тетра- и триарилсурьмы / В.В. Шарутин, О.К. Шарутина, Л.П. Панова, В.К. Бельский // Журн. общ. химии. 1997. Т. 67, №. 9. С. 1531–1535.

7. Синтез и строение 4-метилбензолсульфоната тетра-*n*-толилсурьмы / В.В. Шарутин, А.П. Пакусина, И.В. Егорова, Т.К. Иваненко, А.В. Герасименко, А.С. Сергиенко. // Коорд. химия. 2003. Т. 29, № 5. С. 336–340.

8. Реакции пентаарилсурьмы с диацилатами триарилсурьмы / В.В. Шарутин, О.К. Шарутина, А.П. Пакусина, В.К. Бельский // Журн. общ. химии. 1997. Т. 67, № 9. С. 1536–1541.

9. Синтез и строение 4-метилбензолсульфоната тетра-*n*-толилсурьмы / В.В. Шарутин, О.К. Шарутина, Т.А. Тарасова, А.Н. Харсика, В.К. Бельский // Журн. общ. химии. 1999. Т. 69, № 12. С. 1979–1981.

10. Внедрение триоксида серы по связи Sb–C в пентаарилсурьме / В.В. Шарутин, О.К. Шарутина, Т.П. Платонова, А.П. Пакусина, О.Н. Тоичкина // Журн. общ. химии. 2000. Т. 70, № 11. С. 1932.

11. Синтез и строение оксиматов тетра- и триарилсурьмы / В.В. Шарутин, О.К. Шарутина, О.В. Молокова, А.П. Пакусина, А.В. Герасименко, А.С. Сергиенко // Коорд. химия. 2002. Т. 28, № 8. С. 581–590.

Химия элементоорганических соединений

12. Синтез и строение оксиматов тетра- и триарилсурьмы / В.В. Шарутин, О.К. Шарутина, О.В. Молокова, Е.Н. Эттенко, Д.Б. Криволапов, А.Т. Губайдуллин, И.А. Литвинов // Журн. общ. химии. 2001. Т. 71, № 8. С. 1317–1321.

13. Арокситетраарильные соединения сурьмы. Синтез, строение и термическое разложение / В.В. Шарутин, О.К. Шарутина, П.Е. Осипов, Е.Б. Воробьева, Д.В. Муслин, В.К. Бельский // Журн. общ. химии. 2000. Т. 70, № 6. С. 931–936.

14. Сопшина Д.М. Синтез и строение продукта реакции пента-*пара*-толилсурьмы с гептаф-торпропил(*t*-бутил)дикетоном-1,3 *p*-Tol₄Sb[*t*-BuC(O)CHC(O)C₃F₇] // Вестник ЮУрГУ. Сер. «Хи-мия». 2022. Т. 14, № 1. С. 50–58. DOI: 10.14529/chem220106.

15. Ефремов А.Н., Шарутин В.В. Реакции пентафенилсурьмы и пента(*пара*-толил)сурьмы с каликсареном [4-*t*-BuC₆H₂OH(S-2)]₄ // Вестник ЮУрГУ. Сер. «Химия». 2021. Т. 13, № 1. С. 47– 57. DOI: 10.14529/chem210105.

16. Шарутина О.К. Ферроценкарбоксилат тетра(*пара*-толил)сурьмы. Синтез и строение // Вестник ЮУрГУ. Сер. «Химия». 2021. Т. 13, № 4. С. 63–71. DOI: 10.14529/chem210404.

17. Сенчурин В.С., Орленко Е.Д. 4-Нитрофенилацетаты тетра- и три(*пара*-толил)сурьмы. Синтез и особенности строения // Вестник ЮУрГУ. Сер. «Химия». 2019. Т. 11, № 2. С. 66–74. DOI: 10.14529/chem190207.

18. Синтез и строение фторбензоатов тетра- и триарилсурьмы. / В.В. Шарутин, О.К. Шарутина, Е.А. Бондарь, А.П. Пакусина, Н.Ю. Адонин, В.Ф. Стариченко // Коорд. химия. 2002. Т. 28, № 5. С. 356–363.

19. Синтез и строение пентафтор- и пентахлорфеноксидов тетра- и триарилсурьмы / В.В. Шарутин, О.К. Шарутина, А.Н. Ефремов, П.В. Андреев // Журн. неорг. химии. 2017. Т. 62, № 10. С. 1330–1336. DOI: 10.7868/S0044457X17100075.

20. Шарутин В.В., Шарутина О.К. Синтез и строение производных тетра(*пара*-толил)сурьмы (4-MeC₆H₄)₄SbX, X = OC(O)C₆H₄(NO₂-2), OC(O)C=CPH, ON=CHC₆H₄(NMe₂-4) // Журн. неорг. химии. 2017. Т. 62, № 7. С. 925–929. DOI: 10.7868/S0044457X17070224.

21. Синтез и строение комплексов иридия [*p*-Tol₄Sb]⁺[*p*-Tol₄Sb(DMSO)]⁺[IrBr₆]²⁻ и [*p*-Tol₄Sb(DMSO)]⁺[IrBr₄(DMSO)₂]⁻ / В.В. Шарутин, О.К. Шарутина, В.С. Сенчурин, Н.В. Сомов // Журн. неорг. химии. 2016. Т. 61, № 8. С. 1017–1022. DOI: 10.7868/S0044457X16080146.

22. Шарутин В.В., Шарутина О.К., Ефремов А.Н. Исследование кристаллических структур 2,4,6-трихлорфеноксида и 3,4,5-трифторбензоата тетра(*n*-толил)сурьмы // Журн. структ. химии. 2020. Т. 61, № 9. С. 1490–1497. DOI: 10.26902/JSC_id60682.

23. Шарутин В.В., Шарутина О.К., Ефремов А.Н. Арильные сурьмаорганические производные трехкоординированного углерода // Журн. неорг. химии. 2020. Т. 65, № 1. С. 49–55. DOI: 10.31857/S0044457X20010158.

24. Фторсодержащие карбоксилаты тетраарилсурьмы. Синтез и строение / В.В. Шарутин, О.К. Шарутина, А.Н. Ефремов, Е.В. Артемьева // Журн. неорг. химии. 2020. Т. 65, № 4. С. 482–486. DOI: 10.31857/S0044457X20040170.

25. Bruker. SMART and SAINT-Plus. Versions 5.0. Data Collection and processing software for the SMART system. Bruker AXS Inc., Madison, Wisconsin, USA, 1998.

26. Bruker. SHELXTL/PC. Versions 5.10. An integrated system for solving, refining and displaying crystal structures from diffraction data. Bruker AXS Inc., Madison, Wisconsin, USA, 1998.

27. OLEX2: complete structure solution, refinement and analysis program / O.V. Dolomanov, L.J. Bourhis, R.J. Gildea, J.A.K. Howard, H. Puschmann // J. Appl. Cryst. 2009. Vol. 42. P. 339–341. DOI: 10.1107/S0021889808042726.

28. Covalent radii revisited / B. Cordero, V. Gómez, A.E. Platero-Prats, M. Revés, J. Echeverría, E. Cremades, F. Barragána, S. Alvarez // Dalton Trans. 2008. P. 2832–2838. DOI: 10.1039/B801115J.

Шарутин Владимир Викторович – доктор химических наук, главный научный сотрудник управления научной и инновационной деятельности, Южно-Уральский государственный университет (Челябинск). E-mail: sharutin50@mail.ru.

Поступила в редакцию 17 октября 2022 г.

DOI: 10.14529/chem230105

SYNTHESIS AND STRUCTURE OF DERIVATIVES TETRA(PARA-TOLYL)ANTIMONY

V.V. Sharutin, sharutin50@mail.ru

South Ural State University, Chelyabinsk, Russian Federation

Tetra(p-tolyl)antimony oximates and carboxylates p-Tol₄SbX (X = ONCHR, R = CHCHPh (1), $C_6H_4(Br-3)$ (2), X = OC(O)R', R' = CH₂OC₆H₃Cl₂-2.4 (3), CF₂CF₂C(O)OH (4). X-ray diffraction analysis, antimony atoms in complexes 1-3 have a distorted trigonal bipyramid coordination with three aryl ligands in the equatorial plane, while the CSbO axial angles are 178.94(5)°, 174.4(2)°, and 176.95(5)°. Crystal 4 consists of distorted tetrahedral tetra(p-tolyl)stibonium cations (CSbC angles 106.6(2)°-112.46(19)°) and singly charged tetrafluoroethanedioic acid anions. X-ray diffraction data: (1) $[C_{37}H_{36}NOSb, M = 632.42;$ triclinic syngony, sp. gr. P-1; cell parameters: a = 10.789(4) Å, b = 10.811(5) Å, c = 14.558(5) Å; $\alpha = 73.389(18)^{\circ}$, $\beta = 75.201(15)^{\circ}$, $\gamma = 87.55(2)^\circ$, V = 1572.3(11) Å³, Z = 2; ρ (calc.) = 1.336 g/cm³; $\mu = 0.906$ mm⁻¹; F(000) = 648.0; region 2 θ collection: 6.04°–75.9°; -18 $\leq h \leq$ 18, -18 $\leq k \leq$ 18, -25 $\leq l \leq$ 25; total reflections 115476; independent reflections 16980 ($R_{int} = 0,0449$); GOOF = 1.003; R-factor 4,58 %]; (2) $[C_{35}H_{33}NOSbBr, M = 685.28;$ triclinic syngony, sp. gr. P-1; cell parameters: a = 10.719(18) Å, b = 10.731(13) Å, c = 15.85(2) Å; $\alpha = 101.53(4)^{\circ}$, $\beta = 92.31(8)^{\circ}$, $\gamma = 119.11(5)^{\circ}$, V = 1541(4) Å³, Z = 2; $\rho(\text{calc.}) = 1.477 \text{ g/cm}^3$; $\mu = 2.219 \text{ mm}^{-1}$; F(000) = 688.0; region 2 θ collection: 5.5 $^\circ$ -77.08°; $-16 \le h \le 16$, $-17 \le k \le 17$, $-25 \le l \le 25$; total reflections 60962; independent reflections 12480 ($R_{int} = 0.0604$); GOOF = 1.429; R-factor 10.99 %]; (3) [$C_{36}H_{33}O_3Cl_2Sb$, M = 706.27; triclinic syngony, sp. gr. P-1; cell parameters: a = 10.621(5) Å, b = 11.016(5) Å, c = 15.809(9) Å; $\alpha = 103.55(2)^{\circ}, \beta = 108.00(2)^{\circ}, \gamma = 98.34(2)^{\circ}, V = 1662.1(14) \text{ Å}^3, Z = 2; \rho(\text{calc.}) = 1.411 \text{ g/cm}^3;$ $\mu = 1.024 \text{ mm}^{-1}$; F(000) = 716.0; region 2 θ collection: 5.68°–60.22°; $-14 \le h \le 14, -15 \le k \le 15$, $-22 \le l \le 22$; total reflections 110814; independent reflections 9738 ($R_{int} = 0.0348$); GOOF = 1.041; *R*-factor 2.74 %]; (4) $[C_{32}H_{29}F_4O_4Sb, M = 675,30;$ triclinic syngony, sp. gr. *P*-1; cell parameters: a = 10.223(15) Å, b = 12.011(14) Å, c = 12.949(14) Å; $\alpha = 74.32(3)^{\circ}$, $\beta = 89.65(7)^{\circ}$, $\gamma = 86.99(5)^\circ$, V = 1529(3) Å³, Z = 2; ρ (calc.) = 1.467 g/cm³; $\mu = 0.961$ mm⁻¹; F(000) = 680.0; region collection for 20: $6.536^{\circ}-56.708^{\circ}$; $-13 \le h \le 13$, $-16 \le k \le 16$, $-17 \le l \le 17$; total reflections 44836; independent reflections 7568 ($R_{int} = 0.0449$); GOOF = 1.052; R-factor 6.02 %]. Complete tables of atomic coordinates, bond lengths, and bond angles for compounds 1, 2, 3 and 4 have been deposited at the Cambridge Crystallographic Data Center (CCDC 2130472, 2131085, 2131084, 2126158; deposit@ccdc.cam.ac.uk; http:// www.ccdc.cam.ac.uk).

Keywords: penta(para-tolyl)antimony, reaction, oxime, carboxylic acid, X-ray diffraction analysis

Received 17 October 2022

ОБРАЗЕЦ ЦИТИРОВАНИЯ

Шарутин В.В. Синтез и особенности строения производных тетра(*пара*-толил)сурьмы // Вестник ЮУрГУ. Серия «Химия». 2023. Т. 15, № 1. С. 50–57. DOI: 10.14529/chem230105

FOR CITATION

Sharutin V.V. Synthesis and structure of derivatives tetra(*para*-tolyl)antimony. *Bulletin of the South Ural State University. Ser. Chemistry.* 2023;15(1):50–57. (In Russ.). DOI: 10.14529/chem230105