ОСОБЕННОСТИ ТЕРМОЛИЗА АРОМАТИЧЕСКИХ КАРБОКСИЛАТОВ Cr (III)

Д.С. Толстогузов, Д.А. Жеребцов, К.Р. Смолякова, К.В. Матвеев, Е.И. Дубинина, Г.А. Хасанова Южно-Уральский государственный университет, г. Челябинск, Россия

В статье рассматриваются основные способы получения углеродных композитных наноматериалов и выделяется метод термолиза как один из основных методов. Для понимания сущности процессов термического разложения как метода синтеза углеродных наноматериалов были рассмотрены ароматические карбоксилаты хрома (III). Это 8гидроксихинолинат, бензоат, салицилат, фталат, *n*-аминобензоат хрома (III). В статье подробно рассматривается методика синтеза этих карбоксилатов хрома (III) из наиболее распространённых неорганических солей хрома (III) в простых условиях. Процесс термического разложения производился в двух средах (воздушная как окислительная и аргоновая как нейтральная) для сравнения получаемых продуктов. Для подробного изучения процессов разложения карбоксилатов хрома (III) использовались методы термического анализа (ТГ и ДСК) на синхронном термоанализаторе Netzsch 449 Jupiter. Для изучения морфологии и состава продуктов применялись методы рентгенофазового анализа, оптической и сканирующей электронной микроскопии и рентгенофлуоресцентного микроанализа. Использовались рентгеновский дифрактометр Rigaku Ultima IV и сканирующий электронный микроскоп с приставкой элементного микроанализа Jeol JSM-7001F. По полученным результатам были рассчитаны предполагаемые формулы исходных карбоксилатов хрома (III). Также были предложены механизмы процессов, протекающих при термическом разложении ароматических карбоксилатов хрома (III). Для более точного определения состава продуктов синтеза карбоксилатов хрома (III) и более точного описания процессов термического разложения этих солей также были подвергнуты термическому разложению и соответствующие ароматические карбоновые кислоты. В приложении к статье находятся все полученные данные для более точной интерпретации результатов и более подробного описания процессов термического разложения.

Ключевые слова: карбоксилаты хрома (III), термический анализ, рентгенофазовый анализ, сканирующая электронная микроскопия

Введение

Углеродные композитные наноматериалы могут быть получены различными способами: методы осаждения и конденсации [1, 2], термолитические методы [1, 3–8], гидротермальный метод [9], золь-гель процесс [1], детонационный метод [10]. Одним из термолитических методов получения углеродных композиционных материалов является термическое разложение карбоксилатов металлов. Таким методом получают углеродные наноматериалы в работах [11–16]. Состав продуктов термического разложения карбоксилатов металлов зависит от условий разложения и состава солей.

Применяются углеродные композитные наноматериалы в разных областях: очистка сточных вод [1, 4, 7, 8], в электроаналитических методах анализа [1], в каталитических процессах [1], в хемосенсорных устройствах [1, 17], как электроды гальванических источников тока и топливных элементов [2, 6, 17].

Рассматривая термограммы карбоксилатов хрома [18–24] можно выделить основные особенности процесса их термолиза. В перечисленных работах нагрев производился до 600–900 °C в атмосфере воздуха, O_2 , N_2 или Ar. Во всех случаях процесс термического разложения карбоксилатов хрома (III) происходил многоступенчато. Твёрдым продуктом термического разложения является Cr_2O_3 , который выше 400 °C приобретает кристаллический порядок [21]. В работах [19, 21] указывается, что Cr_2O_3 образует наноразмерные частицы (от 10 до 50 нм). В работах [25–29] показаны особенности термического разложения ароматических карбоновых кислот. Эти сведения важны при интерпретации термограмм соответствующих солей.

Целью данной работы является интерпретация процессов (и соответствующих температур, тепловых эффектов и изменений массы) при термолизе пяти органических солей хрома, а также определение морфологии и структуры нанокомпозитов, образующихся при их термолизе в аргоне.

Экспериментальная часть

1. Синтез карбоксилатов Cr (III). Для проведения работы были синтезированы ароматические карбоксилаты (салицилаты, бензоаты, 8-гидроксихинолинаты, фталаты, п-аминобензоаты) хрома (III) по методике [30]. Для синтеза использовались химически чистые $CrCl_3 \cdot 6H_2O$, салицилат и бензоат Na, 8-гидроксихинолин, фталевая и *n*-аминобензойная кислоты, NaOH. В качестве растворителей использовались вода и 1,4-диоксан. NaOH растворяли в воде, а эквивалентное количество кислоты (8-гидроксихинолин, фталевая и *n*-аминобензойная кислота) растворяли в 1,4диоксане при нагревании до 80 °C. Растворы NaOH и кислоты смешивали в стехиометрическом соотношении для получения однозамещенного карбоксилата натрия, например, гидрофталата. Салицилат и бензоат натрия растворяли в 1,4-диоксане при 80 °C. После этого раствор натриевой соли приливался к водному растворяли в 1,4-диоксане при 80 °C. После этого раствор натриевой карбоксилатов хрома (III) давали зеленый осадок. В течение нескольких суток образцы просушивали при комнатной температуре. Затем полученные продукты перекристаллизовывали из горячего 1,4-диоксана для очистки от NaCl. Выход продукта реакций составлял 70–90 %.

2. Методы анализа. Полученные карбоксилаты были исследованы на синхронном термическом анализаторе Netzsch STA 449F1 Jupiter. Предварительно была произведена оценка чистоты полученных соединений методом рентгенофлуоресцентного анализа на рентгеновском энергодисперсионном спектрометре Oxford INCAX-max 80, а также методом рентгенофазового анализа на рентгеновском порошковом дифрактометре Rigaku Ultima IV. Термическое исследование проводилось в корундовом тигле при нагревании образцов массой от 15 до 20 мг в интервале температур от 30 °C до 900 °C в двух вариантах атмосферы: воздух и Ar. Скорость нагрева в обоих случаях составляла 10 К/мин. После термолиза солей фазовый состав продуктов их разложения изучался методом рентгенофазового анализа, морфология – методом сканирующей электронной микроскопии на микроскопе Jeol JSM-7001F, а их состав – рентгенофлуоресцентным методом.

Обсуждение результатов

Анализ химического состава карбоксилатов выявил в них некоторое количество примеси NaCl. В основном тексте представлены две термограммы фталата Cr (III), полученные в аргоне и на воздухе, а также расчёт гипотетической формулы фталата Cr (III). По результатам термического анализа разложения карбоксилатов хрома (III) были сделаны расчеты и предложены возможные формулы солей. По разнице в потере масс между термическим разложением на воздухе и в аргоне оценено содержание углерода в композите.

Термограммы образца фталата Cr (III) представлены на рис. 1. На этих термограммах сплошная черная линия обозначает кривую TГ, пунктирная черная линия – ДТГ, красная линия – ДСК. Процесс разложения соли можно разделить с помощью кривых ДТГ на четыре этапа как в атмосфере аргона, так и в атмосфере воздуха. Критерием завершения этапа служит максимум на кривой ДТГ, которому соответствует минимальная скорость потери массы. В процессе термического разложения в интервале температур от 30 °C до 205 °C происходит потеря массы образца величиной 20,13 % (Ar) и 18,59 % (воздух), предположительно при дегидратации примеси фталевой кислоты. Визуальный осмотр и электронная микроскопия не выявили признаков плавления в образовавшихся продуктах. Тем не менее, сходство в первых двух этапов позволяет предполагать, что они относятся к примеси чистой фталевой кислоты и происходящим с ней процессам. Рефлексы примеси кислот можно идентифицировать при сравнении дифрактограмм кислоты и соли.

Плавление *о*-фталевой кислоты при быстром нагревании происходит при 200–211 °C [31–33], после чего она теряет молекулу воды, переходя в ангидрид, который кипит без разложения при 284 °C. На термограмме фталевой кислоты различимы два этапа: первый начинается плавлением

а) в атмосфере аргона, б) в атмосфере воздуха

при 215–217 °C с одновременной потерей массы 27,7–30,2 % из-за дегидратации кислоты и испарения воды. Суммарный эндотермический тепловой эффект плавления, дегидратации и испарения воды составил 500–590 Дж/г. Далее следует потеря массы 69,6–72,3 % за счет испарения фталевого ангидрида, этот процесс сопровождается поглощением 84–100 Дж/г. Дегидратация должна сопровождаться потерей лишь 10,83 масс. %, а наблюдаемая потеря в три раза выше, что позволяет предполагать испарение не только молекул воды, но и ее ассоциатов с молекулами кислоты или ангидрида.

Количество примеси кислоты в образце фталата хрома можно оценить по суммарной потере при нагревании до 300 °C: 56,6–61,1 масс. %. Это соответствует тому, что в процессе синтеза формировалась не кислая, а средняя или основная соль. Отсутствие потерь массы ниже 180 °C может свидетельствовать об отсутствии в среднем или основном фталате хрома молекул кристаллизационной воды. Гидроксид ионы в основных солях часто являются мостиковыми группами, увеличивающими прочность полимерных цепочек структуры, что повышает термическую стой-кость, а также приводит к отсутствию явления плавления соли. Так, гидроксиды трехвалентных металлов, в том числе хрома, не имеют точки плавления и переходят при нагревании в оксид.

Ранее основной фталат хрома был получен путем смешения водного раствора хлорида хрома, гидрофталата калия и гидроксида натрия при 90–95 °C, при этом авторы предложили странный состав полученного соединения $C_8H_{16}O_{16}Cr_3$ или Cr_3 (Phthal)(OH)₁₂ [34]. Остаток Cr_2O_3 при термолизе данного образца составил 40,4 масс. %, анализ на углерод и водород дали 18,19 масс. % С и 2,91 масс. % Н. Основная ступень потери массы для этого образца наблюдалась при 296–325 °C и составила 40,7 масс. %.

Позднее гидрофталат хрома был получен восстановлением CrO₃ при 25 °C этанольным раствором фталевой кислоты [35]. Пологая, растянутая по температуре ступень потери массы для этого образца происходит при 200–550 °C и составила около 48 масс. %. По температурному диапазону и форме кривой TГ этот образец хорошо совпадает с нашим образцом.

На третьем этапе в нашем образце наблюдается потеря массы величиной 20,7 % (Ar) и 26,1 % (воздух) при нагревании от 200 до 575 °C. В два раза меньшая потеря массы по сравнению с [35] объясняется разбавлением образца в два раза примесью фталевой кислоты. На данном этапе медленно происходит разложение (Ar) или горение (воздух) вещества. В атмосфере аргона полимерный углеродистый остаток теряет кислород, водород и углерод (вероятно, в виде летучих CO, H₂, воды и углекислого газа), что приводит к формированию из него аморфного углерода. При дальнейшем нагревании до 900 °C в Ar удаление летучих продолжается и потеря массы на четвертом этапе составляет 6,7 %. В случае нагревания на воздухе при температуре свыше 575 °C потери массы не наблюдается, что объясняется формированием чистого Cr_2O_3 .

Остаток Cr_2O_3 в нашем случае составляет 12,4 масс. %, что совпадает с 24–26 масс. % [35], если учитывать разбавление в два раза примесью фталевой кислоты. Отметим, что этапы быстрой потери массы в диапазоне 180–300 °С на термограмме [35] отсутствуют, а в целом все сходно с нашими кривыми.

Общая потеря массы образца составляет 84,5 % (Ar) и 87,6 % (воздух) от исходной массы образца. Разница в 3,1 мас. % соответствует стеклоуглероду в составе образующегося в аргоне композита Cr_2O_3 . Поскольку соотношение в нем масс углерода и Cr_2O_3 составляет 3,10:12,4, полученный композит состоит из 80,0 мас. % Cr_2O_3 в форме микрочастиц и 20,0 мас. % углерода в форме рентгеноаморфной связки. Образование фазы Cr_2O_3 в обоих случаях подтверждено рентгенофазовым анализом (рис. 2).

Рис. 2. Дифрактограмма твёрдых продуктов термолиза фталата Cr(III) при 900 °C: а) в аргоне; б) на воздухе. Знаком * обозначены рефлексы Cr₂O₃

Методом сканирующей электронной микроскопии исследована морфология продуктов термолиза фталата хрома (III). Отдельные кристаллы Cr_2O_3 имеют размеры 100–200 (Ar) или 200– 800 нм (воздух) (рис. 3), а на макроуровне продукт термолиза наследует сферическую (глобулярную) форму частиц осадка фталата хрома (рис. 4).

Рис. 3. Морфология частиц Cr₂O₃ в продуктах термолиза фталата хрома после разложения при 900 °C на воздухе: а) во вторичных электронах, б) в отражённых электронах

Анализируя полученные данные по термическому разложению исследованных карбоксилатов хрома (III), можно сделать вывод, что их термическое разложение проходит через несколько ступеней. Количество ступеней термического разложения не зависит от характера газовой атмосферы над образцом. На процесс термолиза карбоксилатов Cr(III) влияет прежде всего строение органического аниона, т. е., в данном случае, заместителя в бензольном кольце.

Ниже 150 °С преимущественно происходит потеря адсорбированной воды, а при нагревании до 200 °С общая потеря массы составляет до 20 %. При температурах ниже 200 °С происходило плавление кислот, входивших как примесь в образцы 8-оксихинолината, фталата и салицилата хрома. При дальнейшем нагревании свободные кислоты испарялись из образца. Кристаллогидратами, вероятно, являются только салицилат и п-аминобензоат хрома.

При нагревании образцы (кроме фталата и *n*-аминобензоата хрома (III)) плавились в интервале температур от 170 до 400 °C. Также для бензоата хрома наблюдался узкий экзотермический эффект при 363 °C, сопровождающийся потерей массы 5–6 масс. %, что может относиться к горению следов нитратов, так как этот образец был синтезирован из нитрата хрома. При дальнейшем нагреве происходил пиролиз с образованием аморфного углерода и формированием оксида хрома (III) (в атмосфере Ar) либо полное окисление твёрдого остатка (в атмосфере воздуха) с образованием оксида хрома (III).

В целом для всех образцов наблюдаются одинаковые процессы в разных атмосферах вплоть до начала окисления (или горения) на воздухе, начинающегося в интервале 400–500 °C. Процесс окисления выражен в виде широкого экзотермического пика на кривой ДСК, сопровождающегося потерей массы. Высокая общая потеря массы от 60 до 95 % даже в инертной атмосфере связана с испарением примеси свободной кислоты, с конгруэнтным испарением части соли металла (например, 8-оксихинолината хрома), с преимущественной газификацией органической части соединений до бензола, анилина и хинолина, а не с ее полимеризацией и карбонизацией до аморфного углерода. Декарбоксилирование ароматических кислот при нагревании – часто встречающееся явление, а для некоторых кислот оно начинается еще в твердом состоянии, без плавления. Конгруэнтное испарение 8-оксихинолината алюминия, родственного по структуре к 8оксихинолинату хрома, наблюдается при 300–450 °C [36].

По измеренным массовым долям образующегося на воздухе оксида хрома можно предложить несколько вариантов формул исходного соединения (табл. 1). Вариант Cr₂(HPhthal)₃(OH)₃, являющийся суммой первых двух вариантов, ближе других к наблюдаемым потерям массы, если учесть эффекты, внесенные примесью свободной кислоты. Остаток Cr₂O₃ составляет 12,4 масс. % (см. рис. 1б), что соответствует 24–26 масс. % Cr₂O₃ для чистого образца соли, если учитывать разбавление в два раза фталевой кислотой. Потеря 3–5 масс. % при нагревании до 170 °C может быть связана с разрушением гидроксогрупп с образованием оксогрупп и воды, а также на десорбцию воды. **Таблица 1**

			+·····	
Величина	Cr(HPhthal)(OH) ₂	Cr(HPhthal) ₂ (OH)	Cr(Phthal)(OH)	Cr ₂ (HPhthal) ₃ (OH) ₃
Молярная масса соли, г/моль	251,14	399,28	233,14	650,42
Доля H ₂ O в форме OH-групп, масс. %	7,17	2,25	3,86	4,15
$\Pi_{OHG} Cr O = 10000 0/$	20.26	10.02	22.60	22.27

Гипотетические формулы полученного фталата хрома

Согласно исследованию морфологии продуктов термолиза можно заключить, что размер образующихся кристаллических частиц Cr_2O_3 доходит до 1 мкм. При этом размер областей когерентного рассеяния Cr_2O_3 значительно меньше и составляет несколько десятков нанометров. Анализируя морфологию твёрдых продуктов термолиза, можно заметить, что размер и форма твёрдых продуктов термолиза зависят от атмосферы термолиза и от того, претерпел ли образец плавление. В случае фталата и *n*-аминобензоата Cr(III) частицы Cr_2O_3 унаследовали сферическую форму прекурсора.

В результате анализа термического разложения рассмотренных карбоксилатов хрома (III) были выявлены следующие закономерности, указанные в табл. 2. Во-первых, общая потеря массы

Таблица 2 а и твёрдых продуктов разложения карбоксилатов хрома (III)	Описание процесса термолиза согласно кривой ТГ – ДСК	Boadyx Ar	еси 8-гидроксихинолина при 30- 1. Испарение примеси 8-гидроксихинолина при 30- сы 14.0 %	ние примеси 8-гидроксихинолина, 2. При 69 °С плавление примеси 8-гидроксихинолина, 3.8 Дж/г теплога процесса 59,3 Дж/г	спарение 8-гидроксихино-лината 3. 400–540 °С – испарение 8-гидроксихино-лината . Около 373,7 °С плавление 8- хрома 29,8 масс. % Около 385 °С плавление 8-	та хрома гидроксихинолината хрома	оение, 35,3 масс. % 4. 540–900 °С – потеря летучих из остатка, потеря	теря остатков ОН-групп остатков ОН-групп 9,1 масс. %	зы 64,6 % Общая потеря массы 53,8 %	и 60-235 °С, потеря массы 14,7 %. 1. Дегидратация при 60-265 °С, потеря массы	одит плавление. Теплота плав- 17,7 %. При 132 °С происходит плавление. Теплота	плавления 18,7 Дж/г	юдается поликонденсация бен- 2. При 363 °С наблюдается поликонденсация бен-	кзотермический пик с потерей зойных анионов (экзотермический пик с потерей	роцесса 58,2 Дж/г массы). Теплота процесса 45,8 Дж/г	блюдается горение, 3. 400-800 °С – потеря летучих из твердого остатка,	40,7 macc. %	теря остатков ОН-групп 4. 800–900 °С – потеря остатков ОН-групп	1,76 macc. %	ы 75,9 % Общая потеря массы 73,4 %	павление с разложением фтале- 1. Двухстадийное плавление с разложением фтале-)5 °С первая стадия, потеря мас- вой кислоты. До 205 °С первая стадия, потеря мас-	79 °С происходит плавление сы в 20,1%. При 183 °С происходит плавление фта-	Теплота процесса 251,8 Дж/г девой кислоты. Теплота процесса 217,3 Дж/г	орая стадия плавления с разло- 2. 205-300 °С – вторая стадия плавления с разложе-	кислоты, потеря массы в 42,5 %. нием фталевой кислоты, потеря массы в 36,5 %.	29.5 Дж/г [Теплота процесса 19.5 Дж/г
ов термическ	JB TaB		1. Испај 210 °C.	2. При 6 КР теплота	О ₃ : <u>3. 400-</u> хрома 3	- гидрокс	4.440–7	5. 775-9 6.6 Macc	Общая 1	1. Дегил	ф- При 125	д. ления 1	ц 2. При 3	I. 30ЙНЫХ	- Macchi).	3.400-7	42,88 m	4. 700–5	1,80 мас	Общая 1	и 1. Двухо	₱- вой кис.	од. Сы в 18 ,	нул: фталево	<i>и</i> , 2. 205–3	ц жением	M. TENJOTZ
ание процесс	ика продукто фазовый сос ные размеры	Ar	77 % Cr ₂ O ₃ и 23 %	аморфный углерод. О	частиц Сг ₂ (26 нм.	Pa3Mep 4ac	инц. 0 25 <u>–</u> 4 мкм			91 % Cr ₂ O ₃	и 9 % амор	ный углерс	ОКР части	Cr ₂ O ₃ : 3 HM	Размер час	тиц:	0,2–1 MKM				80 % Cr ₂ O ₃	20 % amopd	ный углерс	Размер гран	100-200 HN	OKP 4actri	Cr ₂ O ₃ : 2/ H
Описа	Характерист термолиза, их и характери	Воздух	Основной продукт	Сг ₂ О ₃ , ОКР частиц: 4,4 нм	Размер час- тиц: 0,2–0,8	MKM				100 % Cr ₂ O ₃ ,	ОКР частиц	Cr_2O_3 : 5 HM.	Размер час-	тиц: Э́ – – –	0,5-5 мкм						100 % Cr ₂ O ₃ .	ОКР частиц:	35 нм	Размер час-	тиц:	0,1-0,4 MKM	
	Соли, предполагаемая фоммир	putymyua	8-Гидрокси- хинолинат	хрома (III) Cr(8-	OHQ)(OH) ₂					Бензоат	хрома (III)	Cr(Benz) ₃	ИЛИ	Cr(Benz) ₂ (OH)							Фталат хро-	Ma (III)	$Cr_2(HPhthal)_3$	(OH) ₃			

				Окончание табл. 2
Соли, предполагаемая	Характеристи термолиза, их и и характерн	ика продуктов фазовый состав иые размеры	Описание процесса термоли:	за согласно кривой ТГ – ДСК
формула	Воздух	Ar	Воздух	Ar
		Размер частиц: 0,1-1 мкм	3. 400–575 °С – горение, от 300 до 575 °С потеря 26,06 %	 3. 300–575 °С – потеря летучих из твёрдого остатка 21,15 %
			4. 575-900 °С – процесс завершён	 4. 575-900 °С – медленная потеря летучих из остат- ка 6,72 масс. %
			Общая потеря массы в 87,6 %	Общая потеря массы в 84,5 %
Салицилат хрома (III)	100 % Сг ₂ О ₃ ОКР частиц:	$\begin{array}{c} 39 \ \% \ (35 \ \% \\ Cr_2O_3 + 65 \ \% \end{array}$	 Потеря адсорбированных растворителей при 30– 170 °С, потеря массы в 4,3 % 	 Потеря адсорбированных растворителей при 30– 170 °С, потеря массы в 5,4 %
Čr(HSal) ₃ или Cr(HSal) ₂ (OH)	40 нм, Размер	Сг ₃ С ₂) и 61 %	2. При 157 °С наблюдается плавление салициловой кислоты. Теплота процесса 100,5 Дж/г	2. При 156 °С наблюдается плавление салициловой кислоты. Теплота процесса 94,4 Дж/г
	частиц: 100–500 нм	аморфный углерод. ОКР частиц Сг ₂ О ₃ : 100 нм,	 При 220 °С наблюдается пик испарения. При 170–290 °С происходит испарение салицило- вой кислоты, потеря 74,7 %. Теплота процесса 214,6 Дж/г 	 При 220 °С наблюдается пик испарения. При 170–270 °С происходит испарение салицило- вой киспоты, потеря 63,9 %. Теплота процесса 176,3 Дж/г
		ОКР частиц Cr ₃ C ₂ : 24 нм. Размер час-	 Двухстадийный процесс термолиза и горения: 290–450 °С (потеря 8,0 %) и 450–655 °С (потеря 8,1 %). 340–655 °С – горение 	 Двухстадийный процесс термолиза: 270–475 °C (потеря летучих из кокса 9,5 %) и 475–900 °C (поте- ря 9,0 %)
		тиц: 70–200 нм	 655–900 °С – процесс завершён Общоя потома мосст 05 2 % 	5. 800-900 °С – предполагаемый процесс частично- го восстановления Сг ₂ О ₃ до Сг ₃ С ₂ Облиов полема мосон 87 8 °С
<i>n</i> -Аминобен- зоат хрома (III)	95 % Cr ₂ O ₃ . ОКР частиц:	86 % Cr ₂ O ₃ и 14 % аморф-	1. Потеря адсорбированных растворителей при 40– 140 °C с потерей массы 5,07 %	1. Потеря адсорбированных растворителей при 40– 125 °С с потерей массы 2,6 %
Cr(p- NH ₂ Benz)(OH) ₂	15 нм, Размер час- тин: 30–160 нм	ный углерод. ОКР частиц: 15 нм. Размер час- тиц: 20—140 нм	 2. Многостадийный термолиз с потерей массы: 140–295 °C: -15,03 %, 295-510 °C: -36,72 %, 510–900 °C: -25,14 % 	 2. Многостадийный термолиз с потерей массы: 125–210 °C: -7,02 %, 210–315 °C: -10,56 %, 315–480 °C: -26,82 %, 480–575 °C: -9,51 %, 575 000 °C: -3.20 %,
			Общая потеря массы в 81,96 %	Общая потеря массы 60,69 %
			3. 125–280 °С – испарение, 99,9 %. Теплота процес- са 246 Дж/г	3. 125-260 °С – испарение, 99,0 %. Теплота процес- са 188 Дж/г

на воздухе выше, чем в аргоне, что связано с образованием углеродного остатка при термолизе в аргоне. Интересна роль кислорода в окислении расплава: в отсутствие кислорода более значительная часть образца успевает конгруэнтно испариться (например, 8-гидроксихинолинат хрома, свободная п-аминобензойная кислота). Во-вторых, число стадий разложения в аргоне зависит от устойчивости аниона и разнообразия форм воды и ОН-групп в структуре: по две стадии у 8оксихинолината и салицилата, три у фталата и по пять у бензоата и *n*-аминобензоата. В-третьих, основные пики на кривых ДСК для одной соли в разных атмосферах повторяются, особенно ниже температуры возгорания, что свидетельствует о слабом влиянии кислорода на эти процессы, особенно, если они идут в твердой фазе. В-четвёртых, основным продуктом разложения во всех случаях был Cr₂O₃. Это значит, что кислород от органического остатка прочно связан с атомом хрома и первоначально во всех случаях образуется оксид хрома (III), но в атмосфере Ar он будет восстанавливаться углеродом при достаточно высоких температурах. Несмотря на термодинамическую выгоду восстановления до металла и далее – до образования карбида Cr₃C₂, скорость этой реакции при сравнительно низких температурах невысока. Восстановление Cr₂O₃ в случае Cr(HSal)₃ происходило, возможно, из-за намного более мелких частиц оксида и углеродной матрицы и их более тесного контакта друг с другом. Кроме того, именно салицилат образует композит с наибольшим количеством углерода (61 %). Низкие содержания углерода в композитах, полученных из бензоата (9% углерода) и *n*-аминобензоата (14% углерода), свидетельствуют об образовании при их термолизе прочных летучих молекул (вероятно, бензола и анилина), покидающих образец. Авторы [37] предложили сложную структуру фталатов хрома. О строении салицилатов железа и хрома сообщалось ранее [38].

Достойно внимания разное поведение продуктов термолиза выше 600 °С. Салицилат и фталат хрома при нагревании на воздухе, после сгорания всего углерода не изменяют массу в этом диапазоне (потери менее 1 %). Напротив, 8-оксихинолинат, бензоат и пара-аминобензоат хрома продолжают снижать массу на 4–8 %, что может быть объяснено потерей ОН-групп. Таким образом, формирование из расплава салицилата и фталата протекает сразу в безводную фазу Cr_2O_3 , а в других солях хрома ОН-группы, по-видимому, входили в координационную сферу катиона и удерживались в кристалле оксида до 900 °С.

Выводы

Термолиз ароматических карбоксилатов хрома в атмосфере аргона может быть использован для получения углеродных композитных материалов с нанодисперсным Cr_2O_3 , а в случае салицилата – и с нанодисперсным Cr_3C_2 . Полученные термограммы интерпретированы с точки зрения механизма термического разложения. На основании данных термогравиметрического анализа предложены формулы полученных солей хрома (III): $Cr(8OHQ)(OH)_2$, $Cr(Benz)_2(OH)$, $Cr_2(HPhthal)_3(OH)_3$, $Cr(HSal)_2(OH)$, $Cr(p-NH_2Benz)(OH)_2$. Твёрдыми продуктами разложения являются Cr_2O_3 в атмосфере воздуха и композит $Cr_2O_3/стеклоуглерод$ (или $Cr_3C_2/Cr_2O_3/$ стеклоуглерод для салицилата хрома) в атмосфере Аг. Установлено, что полученные частицы Cr_2O_3 имеют размеры от 30 нм до 4 мкм, а размер областей когерентного рассеяния - от 3 до 100 нм. Размер частиц и размер областей когерентного рассеяния Cr_2O_3 при получении их на воздухе оказывается больше, чем в атмосфере аргона, что может быть связано с препятствием со стороны углеродной матрицы росту и рекристаллизации частиц оксида металла.

Благодарности и поддержка грантами

Работа выполнена при поддержке Министерства науки и высшего образования России, Постановление Правительства РФ № 220 от 09.04.2010 г. Заявка № 220-4120-8031, тема: «Инновации для очистки воздуха и воды, снижения углеродного следа: наноматериалы и нанокомпозиты, фотокаталитические и электрохимические подходы».

Список источников

1. Zhu M., Diao G. // Nanoscale. 2011. V. 3. P. 2748. DOI: 10.1039/c1nr10165j.

2. *Shi J., Jiang B., Li C. et al.* // Materials Chemistry and Physics. 2020. V. 245. P. 122533. DOI: 10.1016/j.matchemphys.2019.122533.

3. Zhao Z., Suna Y., Dong F. // Nanoscale. 2015. V. 7. P. 15. DOI: 10.1039/C4NR03008G.

4. Yang N., Zhu S., Zhang D. et al. // Materials Letters. 2008. V. 62. P. 645. DOI: 10.1016/j.matlet.2007.06.049.

5. *Inyang M., Gao B., Zimmerman A. et al.* // Chemical Engineering Journal. 2014. V. 236. P. 39. DOI: 10.1016/j.cej.2013.09.074.

6. *Chou S.-L., Wang J.-Z., Wexler D. et al.* // Journal of Material Chemistry. 2010. V. 20. P. 2092. DOI: 10.1039/b922237e.

7. Duman O., Tunc S., Polat T.G. et al. // Carbohydrate Polymers. 2016. V. 147. P. 79. DOI: 10.1016/j.carbpol.2016.03.099.

8. *Zhu Y.-P., Li M., Liu Y.-L. et al.* // Journal of Physical Chemistry. 2014. V. 118. P. 10963. DOI: 10.1021/jp502677h.

9. *Chen Y.-J., Xiao G., Wang T.-S. et al.* // Journal of Physical Chemistry C. 2011. V. 115. № 28. P. 13603. DOI: 10.1021/jp202473y.

10. *Tolochko B.P., Chernyshev A.P., Ten K.A. et al.* // The Physics Of Metals And Metallography. 2008. V. 105, No. 2. P. 134. DOI: 10.1007/s11508-008-2005-5.

11. *Rempel A.A.* // Russ. Chem. Rev. 2007. V. 76, No. 5. P. 435. DOI: 10.1070/RC2007v076n05ABEH003674.

12. Pomogailo A.D., Rozenberg A.S., Dzhardimalieva G.I. // Russian Chemical Reviews. 2011. V. 80, No. 3. P. 257. DOI: 10.1070/RC2011v080n03ABEH004079.

13. Помогайло А.Д., Розенберг А.С., Джардималиева Г.И. // Российский химический журнал. 2009. Т. 53, № 1. С. 140. EDN: LKFLTD.

14. *Иржак Т.Ф., Иржак В.И.* // Высокомолекулярные соединения. 2017. Т. 59, № 6. С. 485. DOI: 10.7868/S2308112017060049.

15. Yan J., Wang H., Jin B. et al. // Journal of Solid State Chemistry. 2021. V. 297. P. 122060. DOI: 10.1016/j.jssc.2021.122060.

16. Zahid M.U., Pervaiz E., Hussain A. et al. // Material Research Express. 2018. V. 5, No. 5. P. 052002. DOI: 10.1088/2053-1591/aac05b.

17. *Dzhardimalieva G.I., Pomogailo A.D.* // Russian Chemical Reviews. 2008. V. 77, No. 3. P. 259. DOI: 10.1070/RC2008v077n03ABEH003682.

18. *Gunnewiek R.F.K., Mendes C.F., Kiminami R.H.G.A.* // Materials Letters. 2014. V.129. P. 54. DOI: 10.1016/j.matlet.2014.05.026.

19. Manoharan S.S., Patil K.C. // Chem. Sci. 1989. V. 101, No. 5. P. 377. DOI: 10.1007/BF02840671.

20. Barbu M., Stoia M., Stefanescu O. // Chem. Bull. "POLITEHNICA" Univ. (Timisoara). 2010. V. 55 (69), No. 2. P. 180.

21. Baranwal B.P., Fatma T., Varma A. // Asian Journal of Chemistry. 2010. V. 22, No. 8. P. 5865.

22. *Elgazwy A.-S.S.H., Khalil M.H., and Hamed E.* // Synthesis and Reactivity in Inorganic, Metal-Organic, and Nano-Metal Chemistry. 2009. V.39. P. 734. DOI: 10.1080/15533170903433345.

23. Koroteev P.S., Dobrokhotova Z.V., Ilyukhin A.B. et al. // TheRoyalSocietyofChemistry. 2021. V. 50. P. 16990. DOI: 10.1039/D1DT02562G.

24. *Masoud M. S., Ali A. E., Gehan S. Elasala et al.* // SpectrochimicaActa Part A: Molecular and Biomolecular Spectroscopy. 2018. V. 193, No. 15. P. 458. DOI: 10.1016/j.saa.2017.12.060.

25. Winter K., Barto D. // Canadian Journal of Chemistry. 1970. V. 48, No. 24. P. 3797. DOI: 10.1139/v70-641.

26. *Rajasekaran M., Anbusrinivasan P., MojumdarS.C.* // Journal of Thermal Analysis and Calorimetry. 2010. V. 100. P. 827. DOI: 10.1007/s10973-010-0761-5.

27. Wesolowski M., Konarski T. // Journal of Thermal Analysis and Calorimetry. 1999. V.55. P. 995. DOI: 10.1023/a:1010162607157.

28. *Radecki A., Wesolowsk M. //* Journal of Thermal Analysis. 1976. V. 9, P. 357. DOI: 10.1007/BF01909400.

29. Teixeira J.A., Nunes W.D.G., Colman T.A.D. et al. // ThermochimicaActa. 2016. V. 624. P. 59. DOI: 10.1016/j.tca.2015.11.023.

30. Фейизоглу (Абдуллаев) А., Алтун О., Фиринци А.и др. // Известия вузов. Северо-Кавказский регион. Естественные науки. 2003. № 3. С. 58. EDN: HYRVZP. 31. Кнунянц И.Л. Химическая энциклопедия. Т. 5. М.: Советская энциклопедия, 1998. 783 с.

32. Никольский Б.П. Справочник химика. Т. 2. М.: Государственное научно-техническое издательство химической литературы, 1963. 1168 с.

33. Кнунянц И.Л. Химический энциклопедический словарь. М.: Советская энциклопедия, 1983. 786 с.

34. *Paavo L., Jouni T. //* Acta Chemica Scandinavica. 1973. V. 27. P. 2287. DOI: 10.3891/acta.chem.scand.27-2287.

35. *Vasović D.D., Stojaković D.R. //* Journal of Coordination Chemistry. 1992. V. 25, No. 3. P. 221. DOI: 10.1080/00958979209409194.

36. Lee T., Lin M.S. // Crystal Growth & Design. 2007. V. 7, No. 9. P. 1803. DOI: 10.1021/cg070226e.

37. *Mishra M.K.* // Oriental Journal of Chemistry. 2017. V. 33, No. 3. P. 1375. DOI: 10.13005/ojc/330338.

38. Звягинцев О.Е., Судариков Б.Н. // Изв. АН СССР, 1955. № 31. С. 78.

Толстогузов Дмитрий Сергеевич – аспирант кафедры «Материаловедения и физико-химии материалов», младший научный сотрудник Управления научно-исследовательской деятельностью, Южно-Уральский государственный университет (г. Челябинск). Е-mail: tolstoguzov.dim@yandex.ru

Жеребцов Дмитрий Анатольевич – доктор химических наук, старший научный сотрудник, Южно-Уральский государственный университет (г. Челябинск). E-mail: zherebtsov_da@yahoo.com.

Смолякова Ксения Романовна – кандидат химических наук, доцент кафедры «Экология и химическая технология», Южно-Уральский государственный университет (г. Челябинск). E-mail: ka_satka@inbox.ru

Матвеев Константин Витальевич – студент кафедры «Экология и химическая технология», Южно-Уральский государственный университет (г. Челябинск). E-mail: konstmatv2003@gmail.com

Дубинина Евгения Игоревна – студент кафедры «Экология и химическая технология», Южно-Уральский государственный университет (г. Челябинск). E-mail: evaigorevna17@mail.ru

Хасанова Гузель Айнуровна – студент кафедры «Экология и химическая технология», Южно-Уральский государственный университет (г. Челябинск). E-mail: guzel-hasanova@rambler.ru

Поступила в редакцию 22 июня 2023 г.

DOI: 10.14529/chem230407

FEATURES OF THERMOLYSIS OF Cr (III) AROMATIC CARBOXYLATES

D.S. Tolstoguzov, tolstoguzov.dim@yandex.ru D.A. Zherebtsov, zherebtsov_da@yahoo.com K.R. Smolyakova, ka_satka@inbox.ru K.V. Matveev, konstmatv2003@gmail.com E.I. Dubinina, evaigorevna17@mail.ru G.A. Khasanova, guzel-hasanova@rambler.ru South Ural State University, Chelyabinsk, Russian Federation

The article discusses the main methods for obtaining carbon composite nanomaterials and highlights the thermolysis method as one of the main methods. To understand the essence of thermal decomposition processes as a method for synthesis of carbon nanomaterials, chromium (III) aromatic carboxylates have been considered. These are chromium (III) 8-hydroxyquinolinate, benzoate, salicylate, phthalate, and *p*-aminobenzoate. The article thoroughly discusses the procedure for the synthesis of these chromium (III) carboxylates from the most common inorganic chromium (III) salts under simple conditions. The thermal decomposition process was carried out in two environments (in oxidizing air and neutral argon), the obtained

products were compared. For a detailed study of the processes of decomposition of chromium (III) carboxylates, thermal analysis methods (TG and DSC) were used on a Netzsch 449 Jupiter synchronous thermal analyzer. To study the morphology and composition of the products, the methods of X-ray phase analysis, optical and scanning electron microscopy, and X-ray fluorescence microanalysis were used. We used a Rigaku Ultima IV X-ray diffractometer and a scanning electron microscope with a Jeol JSM-7001F elemental microanalysis attachment. On the basis of the obtained results, the estimated formulas of the initial chromium (III) carboxylates were calculated. The mechanisms of the processes occurring during the thermal decomposition of chromium (III) aromatic carboxylates were also proposed. For a more accurate determination of the composition of the synthesized chromium (III) carboxylates and a more accurate description of the processes of thermal decomposition of these salts, the corresponding aromatic carboxylic acids were also subjected to thermal decomposition. The appendix to the article contains all the obtained data for a more accurate interpretation of the results and a more detailed description of the thermal decomposition processes.

Keywords: chromium(III) carboxylates, thermal analysis, X-ray phase analysis, scanning electron microscopy

Received 22 June 2023

ОБРАЗЕЦ ЦИТИРОВАНИЯ

Особенности термолиза ароматических карбоксилатов Сг (III) / Д.С. Толстогузов, Д.А. Жеребцов, К.Р. Смолякова и др. // Вестник ЮУрГУ. Серия «Химия». 2023. Т. 15, № 4. С. 160–170. DOI: 10.14529/chem230407

FOR CITATION

Tolstoguzov D.S., Zherebtsov D.A., Smolyakova K.R., Matveev K.V., Dubinina E.I., Khasanova G.A. Features of thermolysis of Cr (III) aromatic carboxylates. *Bulletin of the South Ural State University. Ser. Chemistry.* 2023;15(4):160– 170. (In Russ.). DOI: 10.14529/chem230407