Химия элементоорганических соединений Organometallic chemistry

Обзорная статья УДК 546.86+548.312.2+548.312.3+548.312.4+548.312.5 DOI: 10.14529/chem240101

ОРГАНИЧЕСКИЕ СОЕДИНЕНИЯ СУРЬМЫ. СИНТЕЗ, СТРОЕНИЕ, ВОЗМОЖНОСТИ ПРАКТИЧЕСКОГО ПРИМЕНЕНИЯ

В.В. Шарутин⊠

Южно-Уральский государственный университет, г. Челябинск, Россия ^{III} sharutinvv@susu.ru, sharutin50@mail.ru

Аннотация. На основе анализа литературы, опубликованной преимущественно с 2020 по 2023 г., систематизированы и описаны методы получения, некоторые реакции, особенности строения органических соединений сурьмы и примеры их возможного использования.

Ключевые слова: органические соединения сурьмы, синтез, строение, возможности практического применения

Для цитирования: Шарутин В.В. Органические соединения сурьмы. Синтез, строение, возможности практического применения // Вестник ЮУрГУ. Серия «Химия». 2024. Т. 16, № 1. С. 5–53. DOI: 10.14529/chem240101

Review article DOI: 10.14529/chem240101

ORGANIC ANTIMONY COMPOUNDS. SYNTHESIS, STRUCTURE, POSSIBILITIES OF PRACTICAL APPLICATION

V.V. Sharutin[™]

South Ural State University, Chelyabinsk, Russia [™]sharutinvv@susu.ru, sharutin50@mail.ru

Abstract. Based on the analysis of the literature published mainly from 2020 to 2023, the methods of preparation have been systematized and described, together with some reactions, structural features of organic antimony compounds, and examples of their possible use.

Keywords: organic antimony compounds, synthesis, structure, practical application possibilities

For citation: Sharutin V.V. Organic antimony compounds. Synthesis, structure, possibilities of practical application. *Bulletin of the South Ural State University. Ser. Chem.* 2024;16(1):5–53. (In Russ.) DOI: 10.14529/chem240101

Введение

Органические соединения сурьмы (ОСС) представляют практический интерес, поскольку благодаря уникальным свойствам применяются в самых разнообразных областях практической деятельности: в качестве лекарственных препаратов, биоцидов, фунгицидов, как компоненты катализаторов полимеризации, антиоксидантов, добавок к маслам. Весьма эффективны сурьмаорганические производные в качестве реагентов и катализаторов тонкого органического синтеза. Эти обстоятельства в значительной степени и определяют интерес к получению новых органических соединений сурьмы и разработке методов их синтеза.

С момента выхода из печати монографии [1], наиболее полно освещающей вопросы синтеза и реакционной способности органических соединений сурьмы, прошло более 50 лет. В 2020 году

был опубликован обзор, описывающий способы синтеза, особенности строения и возможности использования арильных соединений пятивалентной сурьмы [2], поэтому появление обзорной статьи по алкильным и арильным соединениям трех- и пятивалентной сурьмы, охватывающей литературные источники с 2020 по 2023 годы, является своевременным и актуальным.

Органические соединения сурьмы могут содержать в своем составе от одной до шести связей Sb–C, поэтому в настоящем обзоре производные сурьмы рассматриваются именно в такой последовательности, причем особое внимание уделяется методам их получения, реакционной способности, особенностям строения и примерам возможного использования.

Все органические алкильные, смешаннолигандные и арильные соединения сурьмы можно разделить на две группы, в которых центральный атом металла находится в степенях окисления (III) и (V). В свою очередь, указанные соединения могут иметь в своем составе от одной и более связей Sb–C, наряду с электроотрицательными лигандами X, причем координационное число центрального атома металла может изменяться от трех до шести.

Информация о соединениях сурьмы в настоящем обзоре содержит несколько разделов, в которых последовательно описываются получение и свойства сурьмаорганических производных с одной, двумя, тремя и более связями Sb–C. Обсуждение начинается с производных трехвалентной сурьмы, содержащих минимальное количество органических лигандов и минимальное координационное число атома металла, и заканчивается органическими соединениями пятивалентной сурьмы с максимально большим координационным числом атома металла.

Соединения сурьмы, содержащие одну связь Sb-C

Показано, что фенильные производные сурьмы с диэтиламидными группами при атоме металла легко вступают в реакции обмена с фтальимидом или гидроксипиридином, при этом имеет место образование соединений со связями Sb–N и Sb–C соответственно [3].

$$Ph_{3-x}Sb(NEt_{2})_{x} + x \xrightarrow[H]{N} O \xrightarrow{-x Et_{2}NH} Ph_{3-x}Sb(NEt_{2})_{x} + x \xrightarrow[H]{N} O \xrightarrow{-x Et_{2}NH} Ph_{3-x}Sb(NEt_{2})_{x} + x \xrightarrow[H]{N} O \xrightarrow{-x Et_{2}NH} Ph_{3-x}Sb(O(N)_{x})_{x} = 1:1b \\ x = 3:3a \\ x = 3:3a \\ x = 3:3b \\ x =$$

Известно, что циклопентадиенильные производные трехвалентной сурьмы Cp*SbX₂ (X=Cl, Br, I; Cp*=C₅Me₅), последовательно полученные по реакциям перераспределения радикалов и замещения [1], используют для эффективного получения соответствующих стибанилгалланов и -инданов [4].

Показано, что окислительное присоединение $Cp*SbX_2$ (X=Cl, Br, I; $Cp*=C_5Me_5$) к диилам 13 группы LM (M = Ga, In; L=HC[C(Me)N(Dip)]_2, Dip =2,6-iPr_2C_6H_3) дает соответствующие стибанил-галланы [L(X)Ga]Sb(X)Cp* [X=Br (4), I (5)] и -инданы [L(X)In]Sb(X)Cp* (X=Cl (6), Br (7), I (8)].

Понимание образования связей металл – металл и их электронной структуры является одной из интереснейших научных задач. В работе [5] сообщается о поэтапном синтезе борилзамещенных соединений сурьмы, в которых атомы сурьмы принимают четыре различных степени окисления (+III, +II, +I, +I/0). Найдено, что гомолиз Cp*[(HCNDip)₂B]SbCl (9) (Cp* = C₅Me₅; Dip = 2,6-iPr₂C₆H₃) по связи Sb–C дает диборилдихлордистибан [(HCNDip)₂BSbCl]₂ (10), который реагирует с KC₈ с образованием диборилдистибена [(HCNDip)₂BSb]₂ (11), и следы циклотетрастибана [(HCNDip)₂B]₃Sb₄Cl.

Одноэлектронное восстановление **11** дает калиевую соль анион-радикала диборилдистибена $[(\text{HCNDip})_2\text{BSb}]^{2-}$, $[K(18-c-6)(\text{OEt}_2)][\{(\text{HCNDip})_2\text{BSb}\}_2]$ (**12**), который демонстрирует беспрецедентную неэквивалентную локализацию спина на связи Sb – Sb и, следовательно, несимметричную электронную структуру. Соединения **9–12** охарактеризованы методами гетероядерного ядерного магнитного резонанса (ЯМР) (¹H, ¹³C, ¹¹B), ИК-, УФ-видимой спектроскопии и рентгеноструктурного анализа монокристаллов. Спектроскопия ЭПР разрешает несходные сверхтонкие тензоры Sb для **12**, отражая неэквивалентное распределение спинов, что однозначно отличает **12** от всех ранее охарактеризованных анион-радикалов дипниктена.

Трансметаллированием ppyHgCl [ppy = 2-(2'-пиридил)фенил] трихлоридом сурьмы получен дихлорид [ppySbCl₂] (**13**), охарактеризованный методами многоядерной ЯМР-спектроскопии (¹H и ¹³C), ИК-спектроскопии, ESI-MS, CHN-анализа и рентгеноструктурного анализа (PCA) [6].

В молекулярной структуре **13** обнаружена сильная внутримолекулярная координация N-атома с центральным атомом металла.

Ряд трехвалентных *бис(трет*-бутиламидо)циклодифосфазановых соединений сурьмы $\{[(tBuNP)_2(tBuN)_2]SbX\}$ (X = Ph, OPh, OtBu, N₃, гексаметилдисилиламид, OTf) (14–19) синтезировали из соответствующих хлоридов путем отщепления солей [7].

Вестник ЮУрГУ. Серия «Химия». 2024. Т. 16, № 1. С. 5–53

Химия элементоорганических соединений Organometallic chemistry

Систематическое исследование аддуктов кислоты/основания Льюиса N-гетероциклических карбенов (NHC) и циклического (алкил)(амино)карбена с (1-(2,6-диизопропилфенил)-3,3,5,5тетраметилпирролидин-2-илидена) ААСМе с хлоридами сурьмы(III) общей формулы SbCl₂R (R = Cl, Ph, Mes) проведено в работе [8].

Комплексы (20)–(23) получали прибавлением раствора SbCl₂R при –78 °C к раствору или суспензии (в зависимости от карбена) соответствующего карбена и повышали температуру реакционной смеси до комнатной температуры в течение ночи. Во всех случаях реакция приводила к выпадению бесцветного осадка, который отделяли фильтрованием. Строение соединений доказано спектральными методами анализа и рентгеноструктурными исследованиями.

В литературе описаны весьма интересные факты о синтезе и строении полиядерных соединений сурьмы, в которых присутствуют цепочки от трех и более атомов металлов. Так, в работе [9] описаны синтез и характеристики *трет*-бутильного производного сурьмы, содержащего связи Sb–N, Sb–As и As–P. Получение сурьмаорганического соединения (24) с цепочкой неуглеродных атомов осуществляли по следующей схеме:

Органические производные металлов [L(Cl)M](Ph)SbCp* (M = Al, Ga, In: Cp* = C_5Me_5) путем термической обработки превращаются в соответствующие димеры {[L(Cl)M](Ph)Sb}₂ [10].

Показано, что при этом имеет место гомолитический разрыв связи Sb–C с выделением радикала Cp*, при этом размер лиганда на механизм реакции определяет структуру конечного продукта. Соединения **25–27** охарактеризованы методами ЯМР (¹H, ¹³C), ИК-спектроскопии, элементного анализа и PCA.

Реакции циклоприсоединения дистибена $L(Me_2N)GaSb = SbGa(NMe_2)L$ (L = $HC[C(Me)NDipp]_2$; Dipp = 2,6-i-Pr₂C₆H₃) с органоазидами RN₃ (R = Ph, p-CF₃Ph, 1-адамантил (ada)) приводят к образованию азадистибиранов [$L(Me_2N)GaSb]_2NR$ [R = Ph (**28**), p-CF₃Ph (**29**), ada (**30**) [11]. Циклоприсоединение также происходило в реакциях [$L(X)GaSb]_2$ (X = NMe₂, OEt, Cl) с Me₃Si(H)CN₂ с образованием дистибиранов [$L(X)GaSb]_2C(H)SiMe_3$ [X = NMe₂ (**31**), OEt (**32**), Cl (**33**)]. Соединения **28–33** охарактеризованы методами ИК-, УФ-, ЯМР-спектроскопии, PCA.

С целью получения соединений со связями Sb–Ru исследована реакционная способность бии тридентатных Sb,O- и Sb,N-донорных лигандов по отношению к комплексу [RuCl₂(PPh₃)₃] [3]. В обоих случаях реакция стибинов с [RuCl₂(PPh₃)₃] приводит к образованию смеси [Ph₂ClSb(μ -L)Ru(PPh₃)(μ -Cl)₃Ru(PPh₃)₂SbClPh₂] (L = La: **34a**; L = Lb: **34b**, [Ph₂Sb(μ -L)₂Ru(PPh₃)(μ -Cl)]₂ (L = La: **35a**; L = Lb: **35b**).

Соединения типа **34** возникают в результате формальной потери 1 экв. L⁻ и добавления 1 экв. Cl⁻ относительно ожидаемой формулы [Ph₂Sb(µ-L)RuCl₂(PPh₃)₂]. Соответственно, соединения типа **35** образуются за счет поглощения 2 экв. L⁻ и потери 2 экв. Cl⁻. Попытки выделить чистые **34** или **35** методом фракционной кристаллизации не увенчались успехом. После отбора кристаллов из смесей кристаллических продуктов определены молекулярные структуры **34a** и **34b** с помощью монокристаллической рентгеновской дифракции. Комплексы пяти- и шестикоординированной сурьмы с единственной связью Sb–C получены также по следующим реакциям:

В работе [12] сообщается о выделении и структурной характеристике новых оксокластеров на основе производных пятикоординированной сурьмы(V). Комплексы (RSb)₄(OH)₄(t-BuPO₃)₆ и (RSb)₂(O)(t-BuPO₃H)₆ в присутствии пиридина в сольвотермических условиях образуют шестиядерные органоантимонатные кластеры [(RSb)₆(μ_3 -O)₂(μ_2 -O)₆(t-BuPO₃)₄], где R = p-i-PrC₆H₄ (**36**), p-ClC₆H₄ (**37**). Реакции органостибонатфосфонатов с Ti(OPrⁱ)₄ в присутствии пиридина в сольвотермических условиях приводят к образованию разнометаллических шестиядерных кластеров стибоната титана [(RSb)₂Ti₄(μ_3 -O)₂(μ_2 -O)₂(t-BuPO₃)₄(μ -OCH₃)₄(OCH₃)₄], где R = p-i-PrC₆H₄ (**38**), p-ClC₆H₄ (**39**).

На комплексах **36–39** проводились измерения ширины запрещенной зоны. Они показывают заметное уменьшение ширины запрещенной зоны при переходе от более тяжелых оксо-каркасов на основе основных групп (**36** и **37**) к оксо-каркасам, содержащим титан (**38** и **39**).

Соединения сурьмы, содержащие две связи Sb-C

Производные сурьмы R₂SbX с двумя связями Sb–C изучены в большей степени, чем комплексы RSbX₂, описанные в предыдущем разделе. Как правило, электроотрицательный лиганд X в этих соединениях связан с центральным атомом металла полярной связью, и лишь в некоторых случаях эта связь является ионной.

Так, π -сопряженные молекулы гетерофлуоренов, сшитые с атомом сурьмы, синтезированные из бутиллития и 2,2'-дибромдифенила, при действии иода и хлорида золота превращаются в соответствующие ковалентные производные 40 и 41 [13].

Выделение солей двухкоордированной сурьмы затруднено из-за преимущественного образования димеров или олигомеров. В работе [14] сообщается о первом примере синтеза комплекса с двухкоординатным ионом Sb(I), который образуется при восстановлении тригалогенида сурьмы КС8 в присутствии циклического алкил(амино)карбена (сААС).

Комплекс Sb(I), относящийся к новому классу ациклических катионов 15-й группы с восемью валентными электронами и являющийся более тяжелым валентно-изоэлектронным аналогом углерода, образуется в виде трифлатной соли [(cAAC)₂Sb][OTf] (42), которая охарактеризована с помощью ЯМР-спектроскопии, циклической вольтамперометрии, монокристаллической рентгеновской дифракции.

Выявлена высокая эффективность трифторсульфонатадимезитилсурьмы в каталитическом восстановлении оксидов фосфина до фосфинов [15]. Эксперименты, подкрепленные PCA и рас-

четами, найдут применение при разработке новых кислот Льюиса, имеющих отношение к катализу. Так, образуемый из ковалентного трифторсульфоната димезитилсурьмы (43) и оксида триэтилфосфида ионный комплекс $[Mez_2Sb(O=PEt_3)]^+$ $[OSO_2CF_3]^-$ (44) восстанавливается фенилсиланом до триэтилфосфина с высоким выходом.

Серия устойчивых на воздухе ковалентных и ионных Sb(III)-органических перфторалкил(арил)сульфонатных комплексов с азастибоциновым каркасом {t-BuN(CH₂C₆H₄)₂SbOSO₂C₄F₉ (**45a**); [t-BuN(CH₂C₆H₄)₂Sb(OH₂)]⁺[OSO₂X]⁻, [X = C₆F₅, (**45b**); C₈F₁₇, (**45c**)]} была синтезирована и систематически охарактеризована [16]. Эти комплексы проявляли хорошую термическую стабильность и относительно сильную кислотность по Льюису. Кроме того, они показали высокую каталитическую эффективность, селективность и возможность повторного использования в реакциях Штрекера, реакции типа Манниха, кросс-конденсации альдегидов с кетонами и аминировании эпоксидов.

С помощью полученных соединений были синтезированы семь новых производных карбазола, которые показали хорошую ингибирующую активность в отношении клеток CHT116 и клеток HepG2.

Полученные из [2-(Me₂NCH₂)C₆H₄]₂SbCl и [PhCH₂N(CH₂C₆H₄)₂]SbCl и соответствующей соли серебра(I) комплексы [2-(Me₂NCH₂)C₆H₄]₂SbL (L = ONO₂ (**46**), OSO₂CF₃ (**47**)) и [PhCH₂N(CH₂C₆H₄)₂]SbL (L = ONO₂ (**48**), OSO₂CF₃ (**49**)) были структурно охарактеризованы в растворе с помощью многоядерного ЯМР и в твердом состоянии с помощью инфракрасной спектроскопии и PCA [17]. Во всех соединениях наблюдались внутримолекулярные взаимодействия N→Sb от средних до сильных, что характерно для комплексов гиперкоординированной сурьмы(III). Соединения **46–49** исследованы в качестве катализаторов присоединения нитрометана к бензальдегиду по Генри (нитроальдолу).

Активность комплексов 46–49 обусловлена эффектом взаимодействия положительно заряженной сурьмы с отрицательно заряженным азотом.

В работе [18] описан синтез, структура и характеристики ионного производного сурьмыродамина с фенил-сурьмяным фрагментом (50), установленным в 10'-положении центрального кольца.

Это соединение представляет собой красный флуорофор ($\lambda_{em} = 655$ нм) с квантовым выходом 12 % в ацетонитриле.

Ковалентный нитрат, содержащий две связи Sb–C и дополнительную координацию N→Sb (51), был синтезирован и систематически охарактеризован с помощью таких методов, как ЯМР-спектроскопия, термогравиметрический анализ (ТГА), дифференциальная сканирующая калориметрия (ДСК) и PCA [19].

Установлено, что комплекс **51** обладает относительно высокой кислотностью по Льюису $(3,3 < \text{Ho} \le 4,8)$ и может быть использован в качестве водостойкого катализатора на основе кислоты Льюиса для синтеза синтетически ценных производных бензимидазола на основе альдегидов и арилендиаминов. Эта каталитическая система демонстрирует превосходную устойчивость к широкому спектру функциональных групп, таких как метил, метоксил, фтор, хлор, бром, нитро, циан, трифторметил, 1-нафтальдегид, фурфурол и *н*-бутил, а также возможность повторного использования в 5-кратном масштабе, расширенный синтез.

Катионные пентаметилциклопентадиенильные (Cp*) комплексы сурьмы(III) $[Cp*_2Sb][B(C_6F_5)_4]$ (52), $[Cp*_2Sb][OTf]$ (53), $[Cp*SbCl][B(C_6F_5)_4]$ (54) и $[Cp*Sb][OTf]_2$ (55) были выделены и структурно охарактеризованы [20]. Первоначальный скрининг показывает, что $[Cp*SbCl][B(C_6F_5)_4]$ в значительной степени является кислой по Льюису и может катализировать димеризацию 1,1-дифенилэтилена; $[Cp*_2Sb][B(C_6F_5)_4]$ проявляет незначительную кислотность по Льюису.

Крайне нестабильный [Cp*SbF][B(C₆F₅)₄] не удалось выделить, но стабилизация лигандомIMes позволила выделить [Cp*SbF(IMes)][B(C₆F₅)₄].

Обработка N,C,N-хелатных органопниктогенных(I) соединений ArE (56–58) (Ar=2,6-(RN=CH)₂C₆H₃, E/R=As/Dmp (56), Sb/tBu (57) и Bi/tBu (58), где Dmp=2,6-Me₂C₆H₃) с различными электронодефицитными алкинами RC=CR' (R/R'=CO₂Me (DMAD), R/R'=H/CO₂Me или R/R'=NC₅F₄) дает различные типы гетероциклических соединений [21]. В этих реакциях 56–58

действуют как скрытые диены и участвуют в реакциях гетеро-Дильса – Альдера (DA), особенность, о которой редко сообщалось для более тяжелых соединений пниктогена.

Таким образом, реакции для производного мышьяка дают набор 1-арсанафталинов. Наиболее вероятный механизм включает две стадии, то есть реакцию арса-DA с образованием 1-арса-1,4дигидроиминонафталина с последующей миграцией протона CH→NH. Напротив, эта последовательность реакций обрывается на первой стадии в случае аналога сурьмы, что дает 1-стиба-1,4дигидроиминонафталины. Подобная реакция для висмута дает один из двух продуктов в зависимости от используемого алкина. Все соединения охарактеризованы методами ЯМР-, ИК-, рамановской спектроскопии и рентгеноструктурного анализа. Экспериментальные данные были дополнены расчетным исследованием, включающим описание профилей реакций гетеро-DA и оценку ароматичности гетероциклических производных нафталина.

В работе [22] описан синтез ряда *трет*-бутилзамещенных бис(амидо)диазадиарсетидинидов, функционализированных щелочными металлами [(µ-N(tBu)As)₂(N(tBu)M)₂] (M=K, Rb, Cs, Na), и детально исследованы их твердотельные структуры.

Описаны реакции замещения *трет*-бутилзамещенными хлоридами P, As, Sb и Bi. Так, превращение двух эквивалентов tBu_2AsCl в реакции с **59–61** неожиданно приводит к введению только одного арсинового фрагмента, в то время как другой атом азота протонируется при расщеплении эфира. Взаимодействие одного эквивалента tBuECl₂ (E=As, Sb) с **59–61** дало предполагаемые каркасные соединения [(μ -N(tBu)As)₂(NtBu)₂EtBu] (E=As, Sb) с высокими выходами. Подобные реакции **59–61** с двумя эквивалентами tBu₂E'Cl (E'=Sb, Bi) дают двукратно замещенные

Химия элементоорганических соединений Organometallic chemistry

бис(амидо)диазадиарсетидины [(µ-N(tBu)As)₂(N(tBu)E'tBu₂)₂], в которых присутствуют слабые внутримолекулярные Е'…Е'-взаимодействия.

В работе [23] описаны синтез и термоокислительно-восстановительная химия первых аддуктов сурьмы (Sb)- и висмута (Bi)-фосфакетена. При взаимодействии хлорида дифенилпниктогенаPh₂PnCl (Pn = Sb, Bi) с 2-фосфатинолатом натрия [Na[OCP]·(диоксан)_x] образуются соединения тетрафенилдипниктогена (Ph₂Pn–PnPh₂).

Pn = Sb (66) or Bi (67)

Напротив, в реакции N-гетероциклического карбенового аддукта (NHC)–PnPh₂Cl с $[Na[OCP] \cdot (диоксан)_x]$ выделяются комплексы Sb- и Bi-фосфакетена. Сразу после образования пниктоген-фосфакетенового NHC-аддукта [NHC-PnPh₂(PCO)] лиганд NHC переходит от Pn-центра к фосфакетеновому атому углерода, образуя NHC-C(O)P-PnPh₂ (Pn = Sb или Bi).

В твердом состоянии **68** и **69** являются димерами с короткими межмолекулярными взаимодействиями Pn–Pn. Когда соединения **68** и **69** нагревают в ТГФ при 90 °C и 70 °C соответственно, пниктогенный центр Pn(III) термически восстанавливается до Pn(II) с образованием тетрафенилдипниктинов (Ph₂Pn–PnPh₂) и необычной соли OCP на *бис*-карбеновом носителе [(NHC)₂OCP][OCP] (**70**). Образование соединения **70** и Ph₂Pn–PnPh₂ из **68** или **69** является уникальным по сравнению с известной термической реакционной способностью карбенфосфакетеновых комплексов группы 14, что еще больше подчеркивает разнообразную реакционную способность [OCP]- с элементами основной группы. Все новые соединения были полностью охарактеризованы методами монокристаллической рентгеновской дифракции, многоядерной ЯМР-спектроскопии (¹H, ¹³C и ³¹P), инфракрасной спектроскопии и элементного анализа. Электронная структура **70** и механизм образования были исследованы с использованием теории функционала плотности (DFT).

Синтез многоядерных молекулярных соединений с пятью пниктогенами были описаны в [24].

Литирование (*бис*-амидо)диазадиарсетидина (tBuNAs)₂(tBuNH)₂ в алифатических растворителях приводит к димерным металлированным частицам [(tBuNAs)₂(tBuNLi)₂]₂. При взаимодействии с AsCl₃, SbCl₃ и BiCl₃ могут быть получены полициклические соединения [(tBuNAs)₂(tBuN)₂]PnCl (Pn = As, Sb, Bi).

Реакции 71–73 с [tBu₂SbP(tBu)Li(OEt₂)]₂ приводят к интерпниктогенам [(tBuNAs)₂(tBuN)₂]PnP(tBu)SbtBu₂, среди которых 76 является первым примером молекулы, содержащей все пять элементов 15-й группы.

Стабильные радикалы тяжелых элементов основной группы представляют собой сложные синтетические мишени. Хотя было разработано несколько стратегий стабилизации таких частиц с нечетным количеством электронов, количество более тяжелых пниктоген-центрированных радикалов ограничено. В работе [25] сообщается о синтезе серии двухкоординированных пниктоген-центрированных катион-радикалов [(MecAAC)EGa(Cl)L][B(C₆F₅)₄] (MecAAC = $[H_2C(CMe_2)_2NDipp]C$; Dipp = 2,6-i-Pr₂C₆H₃; E = As, Sb, Bi; L = HC[C(Me)NDipp]₂), которые получали одноэлектронным окислением L(Cl)Ga-замещенных пниктиниденов (MecAAC)EGa(Cl)L.

tricoordinated radical cations

dicoordinated radical cations

Комплексы 77–79 были охарактеризованы с помощью спектроскопии электронного парамагнитного резонанса (ЭПР) и рентгеновской дифракции монокристаллов (sc-XRD), в то время как квантово-химические расчеты подтверждают их описание как карбен-координированные пниктоген-центрированные катион-радикалы. Низкая термическая стабильность 79 позволяет получить доступ к металлоидным кластерам висмута, о чем свидетельствует образование [{LGa(Cl)}₃Bi₆][B(C₆F₅)₄].

Показано, что дистибан (Tip)₄Sb₂ (Tip = 2,4,6-триизопропилфенил) образуется при одноэлектронном восстановлении (использование KC8) хлорида диарилсурьмы (Tip)₂SbCl [26]. В свою очередь, дистибан и хлорид диарилсурьмы в этих условиях при двухэлектронном восстановлении превращаются в трехъядерный кластер антимонида [K₃((Tip)₂Sb)₃(THF)₅] (**80**). Замена восстановителя с KC8 на другой щелочной металл привела к выделению в твердом состоянии соответствующих стабильных димерных антимонидов щелочных металлов общей формулы [M₂((Tip)₂Sb)₂(THF)_{p-x}(TolH)_x] (M = Li, Na, Cs). Все полученные соединения охарактеризованы с помощью ЯМР, УФ-, масс-спектрометрии и рентгеноструктурного анализа монокристаллов. Ряд интерпниктогенных соединений с ковалентными одинарными связями между фрагментом диарилвисмута и всеми более легкими пниктогенами были получены из соответствующих диарилгалогенидвисмутанов [27].

Висмутанилстибаны были получены в результате реакции конденсации Mes₂SbH с Ph₂BiNMe₂ или Mes₂BiNMe₂ соответственно. Выделено и полностью охарактеризовано соединение Ph₂BiSbMes₂ (**81**), имеющее разные заместители у атомов висмута и сурьмы. Напротив, выделение Mes₂BiSbMes₂ было невозможно из-за динамического равновесия с Mes₄Bi₂ и Mes₄Sb₂, которое было исследовано с помощью низкотемпературной ¹H-ЯМР-спектроскопии в растворе. Выделенные соединения охарактеризованы методами ЯМР-, ИК-спектроскопии, масс-спектрометрии, элементного анализа и рентгеноструктурного анализа монокристаллов.

Соединения сурьмы, содержащие три связи Sb-C

Получение триметилсурьмы было описано ранее в [1], однако кристаллическое и молекулярное строение (CH₃)₃Sb и ее аддукта с иодпентафторбензолом (CH₃)₃Sb·C₆F₅I (**82**), полученного смешением эквивалентных количеств исходных реагентов, определено лишь в 2022 году [28]. В сокристалле **82** присутствуют направленные межмолекулярные взаимодействия I···Sb, которые на 0,7 Å короче суммы ван-дер-ваальсовых радиусов атомов партнеров и являются самыми короткими галогенными связями С—I···Sb такого типа. Гетеромолекулярные компоненты собраны взаимодействиями I···Sb, F···H и Sb···Sb. Межмолекулярные взаимодействия, наблюдаемые в **82**, соответствуют рассчитанным электростатическим потенциалам.

Триарильные соединения сурьмы привлекательны для использования в катализе из-за богатой гипервалентности и хиральных карманов связывания. Синтез производного трехвалентной сурьмы с тремя объемными 2-бифенильными заместителями осуществляли по классической схеме [29].

Монокристаллы *трис*(2-бифенилил)сурьмы (**83**), пригодные для рентгеноструктурного анализа, были выращены из раствора н-гексана. Показано, что в тригонально-пирамидальных молекулах **83** валентные углы CSbC и длины связей Sb–C составляют 93,76–97,24° и 2,161–2,170 Å соответственно.

В работе [30] сообщается об использовании фторарильных производных сурьмы в качестве катализаторов реакций циклизации полиэфира с раскрытием эпоксида. Триарильные соединения сурьмы синтезировали по методикам, ранее опубликованным в [1]. Методом РСА определено строение ряда триарильных соединений сурьмы Ar_3Sb ($Ar = 4-MeC_6H_4, 3-MeC_6H_4, 4-FC_6H_4$, (2-

MeO)(5-Cl)C₆H₃, (2-MeO)(5-Br)C₆H₃, (2-MeO)C₆H₄), атом металла в которых имеет координацию тетрагональной пирамиды [31–35]. Отметим, что триарильные соединения сурьмы гладко окисляются иодом до соответствующих дииодидов, кроме последних трех, для которых характерно образование нетривиальных трииодидов иодтриарилсурьмы, например [35]:

Высокую каталитическую эффективность показал биметаллический сурьмяноорганический катализатор (87) с четырьмя упорядоченно расположенными кислотно-основными центрами Льюиса/Бренстеда при его использовании в количестве 0,1 мол. % в диастереоселективной прямой реакции Манниха [36].

Эта реакция продемонстрировала неожиданную легкость разделения гомогенного раствора на гетерогенный раствор.

В работе [37] описывается синтез и свойства фенильных комплексов трехвалентной сурьмы 2-BrC₆H₄SbPh₂ (**88**) и 2-(2'-BrC₆H₄)C₆H₄SbPh₂ (**89**), строение которых охарактеризовано ЯМР-спектроскопией, масс-спектрометрией и РСА.

В молекулярных структурах **88** и **89** атомы сурьмы имеют тригональную пирамидальную геометрию. Длины связи Sb–C, равные 2,157(6), 2,162(7), 2,168(6) Å для **75** и 2,123(8), 2,153(8) и 2,160(9) Å для **89**, имеют сходные значения с наблюдаемыми в Ph₃Sb [2,148(3)–2,166(3) Å] [38], *m*-Tol₃Sb [2,146(3)–2,152(3) Å] [39] и {4-(Me₂N)C₆H₄}₃Sb [2,133(3)–2,147(3) Å] [40], как и валентные углы CSbC [94,1(3), 95,9(3), 98,3(2)° в 75] и [96,4(3), 98,2(3), 94,8(3)° в 76], близкие к наблюдаемым в Ph₃Sb [95,12(13)°–97,87(11)°], *m*-Tol₃Sb [96,49(11)–97,28(11)°], {4-(Me₂N)C₆H₄}₃Sb [94,52(11)–97,61(11)°].

Из литиевых солей и хлорида дифенилсурьмы синтезированы два перизамещенных нафталиновых и аценафталиновых комплекса (Ph₂Sb)₂Naph (**90**) и (Ph₂Sb)₂Acenaph (**91**), охарактеризованые ИК-, ЯМР-спектроскопией (¹H, ¹³C) и PCA [41].

Найдено, что атомы Sb имеют тригонально-пирамидальные координационные сферы, валентные углы CSbC (94,74(10)–101,03(12)° для 90 и 95,22(15)–100,05(14)° для 91) указывают на высокий *p*-орбитальный характер связей Sb–C, длины которых (2,134(3)–2,179(3) Å для 90 и 2,137(4)–2,165(4) Å для 91 находятся в типичном диапазоне одинарных связей Sb–C. В кристаллах не наблюдалось межмолекулярных $\pi \cdots \pi$ взаимодействий металл \cdots лиганд.

Ожидание того, что соединения сурьмы должны демонстрировать эмиссию фосфоресценции, основанную на «эффекте тяжелого элемента», побудило авторов работы [42] ввести сурьму в биарил в качестве мостикового атома в системе конденсированных гетеролов. Описаны синтез, молекулярные структуры и оптические свойства новых гетероаценов, конденсированных с бензолом, содержащих атомы сурьмы. Стиболы получали конденсацией дибром(фенил)стибана с дилитиевыми промежуточными продуктами, полученными из соответствующих дибромсоединений. Спектроскопия ядерного магнитного резонанса и рентгеноструктурный анализ показали, что линейный пентациклический стибол был высокосимметричным как в растворе, так и в кристаллическом состоянии. Напротив, изогнутый пентациклический стибол принимает спиральную структуру в растворе, и неожиданно из рацемата кристаллизуются только спиральные молекулы. Все синтезированные соединения (92–94) давали очень слабую эмиссию или не давали никакой эмиссии при комнатной температуре или в твердом состоянии.

Напротив, линейные пента- и тетрациклические стиболы демонстрировали четкую эмиссию фосфоресценции в замороженной матрице CHCl₃ при 77 К в аэробных условиях.

В работе [43] описаны Pd-катализируемые реакции *кросс*-сочетания Sb-арил-1,5азастибоцинов с алкенами. Реакции азастибоцинов с алкенами, такими как винилкетоны, алкены и акрилаты, в присутствии 10 мол. % PdCl₂ при 80 °C в ДМА в аэробных условиях давали аддукты Хека (**95**) с выходами от умеренных до отличных.

Рентгено- и ЯМР-анализ монокристаллов показал, что арильные доноры в этой реакции, Sbарил-1,5-азастибоцины, являются гипервалентными соединениями, которые проявляют внутримолекулярное несвязывающее взаимодействие N···Sb. Это первые примеры арилирования типа Хека, катализируемого солями палладия с использованием гетероциклических гипервалентных сурьмяноорганических соединений. Хотя с азастибоцинами реакции протекают эффективно, с триарилсурьмяными реагентами трех- и пятивалентной сурьмы они практически не идут. Общая стратегия образования связи сурьма – углерод была разработана посредством катализируемого никелем кросс-сочетания галостибинов (96) с арил- или алкилбороновыми кислотами [44].

Полученные стибины можно использовать в качестве полезных партнеров для кросссочетания для дальнейшего превращения в бороновые кислоты. Настоящее исследование выявило химическое поведение стибинов, которые реагируют с арилбороновыми кислотами с образованием связей Sb–C и C–C.

Использование производных сурьмы в супрамолекулярной химии в значительной степени упускалось из виду по сравнению с более легкими элементами 15 группы, а также триподальные лиганды Sb(3-py)₃ (L) координационной химией ранее не исследовались. Показано, что эти лиганды образуют общую гибридную металлоорганическую каркасную (MOK) структуру с солями Cu(I) и Ag(I) (M) слабокоординирующих анионов (PF₆⁻, SbF₆⁻ и OTf⁻), состоящую из катионных субструктур звеньев ромбической клетки (M)₄(L)₄, связанных связями Sb–M [45].

Псевдогексакоординированное соединение сурьмы(III) *трис*[2-(2-пиридил)фенил]стибин (ppy)₃Sb (**103**) с тремя 2-фенилпиридиновыми (ppy) лигандами выделено из продуктов реакции 2- (2-литиофенил)пиридина с трихлоридом сурьмы [46].

Соединение **103** охарактеризовано с помощью спектроскопии ЯМР-, масс-спектрометрии и РСА, который выявил искаженную октаэдрическую геометрию связей вокруг центрального атома сурьмы, при этом три пиридильные группы координируются с атомом сурьмы через три слабые LP(N) $\rightarrow \sigma^*(Sb-C)$ донорно-акцепторные взаимодействия.

Супрамолекулярная химия элементов главных групп представляет собой развивающуюся область, параллельную традиционной области металлоорганической химии. Малоизученные строительные блоки в этой области представляют собой лиганды на основе металлов основной группы, которые имеют подходящую донорную симметрию для создания желаемых молекулярных или расширенных структур. *Трис*(пиридильные) лиганды основной группы Sb(ру)₃ являются потенциальными универсальными строительными блоками, поскольку сдвиг плеч N-донора из 2-

го в 3-е и 4-е положения обеспечивает очень простой способ изменения характера лиганда с моноядерного/хелатирующего на мультидентатный/металломостиковый. В работе [47] исследуется координационное поведение (4-ру)₃Sb лигандов и их способность образовывать металлоорганические каркасы (МК). Получение лиганда осуществляли по классической схеме:

Чтобы исследовать координационный ландшафт лигандов, были выбраны соли AgI, содержащие ряд слабокоординирующих анионов (AgX, X=CF₃SO₃⁻, PF₆⁻, SbF₆⁻). Сложная топология показывает заметное влияние на противоанион и на способность (4-ру)₃Sb лигандов переключать режим координации в зависимости от стерического и донорного характера мостика. Это направляющее структуру влияние плацдарма обеспечивает потенциальную стратегию построения будущего молекулярного и МК-дизайна в этой области.

Бесцветные кристаллические аддукты, полученные кристаллизацией различных соединений серебра(I) с SbPh₃ из 1,2-диаминоэтана (en \equiv H₂N(CH₂)₂NH₂), имеют состав [AgX:SbPh₃·en₂]₂ (**105–107**) (X = Cl, Br, NO₃ [48]).

По данным PCA в ионных комплексах **105–107** биядерные центросимметричные катионы содержат четырехкоординированное серебро, пару мостиковых и пару терминальных лигандовеп, наряду с двумя трифенилстибиновыми группами.

Взаимодействием [Fe₂(CO)₆(μ -S₂C₃H₆)] (**108**) с трифенилстибином в мольном соотношении 1:1 при комнатной температуре в присутствии Me₃NO получали красные кристаллы комплекса [Fe₂(CO)₅(SbPh₃)(μ -S₂C₃H₆)] (**109**) с выходом 88 % [49].

Когда реакцию проводили при мольном соотношение 1:5 в присутствии Me₃NO наблюдали образование **109** с выходом 63 %, наряду с красными кристаллами комплекса **110** (8 %).

Реакция 109 с трифенилстибином в молярном соотношении 1:5 в тех же условиях дала 110 с умеренным выходом (46 %). Соединения 109 и 110 охарактеризованы данными ИК-, ¹H, ¹³C ЯМР-спектроскопии и РСА.

Взаимодействием дибромодицианоаурата калия с хлоридами метоксиметилтрифенилфосфония и тетрафенилстибония в воде с последующей перекристаллизацией из ацетонитрила получе-

комплексы следующего строения: [Ph₃PCH₂OMe][Au(CN)₂Br₂] ны ионные И [Ph₄Sb][Au(CN)₂Br₂] [50]. Кристаллы комплексов охарактеризованы методами ИК-, ЯМРспектроскопии и рентгеноструктурного анализа. Комплексы характеризуются тетраэдрическими катионами метоксиметилтрифенилфосфония и тетрафенилстибония и кристаллографически независимыми плоскоквадратными дибромодицианоауратными анионами. В комплексе [Ph₃PCH₂OMe][Au(CN)₂Br₂] образуют координационные полимерные цепи посредством межанионных контактов Au…Br (3,46 Å).

В другой работе аналогично при взаимодействии дибромодицианоаурата калия с хлоридом тетрафенилстибония в воде с последующей перекристаллизацией из ацетонитрила получен ионный комплекс [Ph₄Sb]⁺[Au(CN)₂Br₂]⁻ (**111**), охарактеризованный методами ИК-, ЯМР-спектроскопии и рентгеноструктурного анализа.

$$K[Au(CN)_2Br_2] + Ph_4SbC1 \xrightarrow{(1) H_2O} [Ph_4Sb][Au(CN)_2Br_2] + KC1$$

$$111$$

В ИК-спектре **111** присутствует характерная для цианогрупп полоса поглощения при 2174 см⁻¹. По данным РСА кристалл комплекса **111** состоит из тетраэдрических катионов тетрафенилстибония и кристаллографически независимых плоскоквадратных дибромодицианоауратных анионов.

На основе известного комплекса [PhP(μ -PyO)₄Ru(CO)] (PyO = 2-пиридилокси) семейство лопастных комплексов группы 15 было расширено до [PhSb(μ -PyO)₄Ru(L)] (L = NCMe (**112**), CO (**113**)) [51].

Комплекс [PhSb(µ-PyO)₄RuCl] проявляет обратимый электрохимический и координационный обмен со своим восстановленным аналогом [PhSb(µ-PyO)₄Ru(NCMe)] при сохранении мотива лопастного колеса и свойств связи Sb–Ru.

О первом примере хирального смешанного кластера золота, защищенного тиолатом/ стибином, сформулированного как $Au_{18}(S-Adm)_8(SbPh_3)_4Br_2$ (где S-Adm = 1-адамантантиолат), сообщалось в [52].

Рентгеновская кристаллография монокристалла 114 показывает, что источником хиральности в кластере является введение вращающегося расположения основных мотивов $Au_2(S-Adm)_3$ и $Au(S-Adm)_2$ на ахиральном ядре Au_{13} и последующее покрытие остальных атомов золота лигандами SbPh₃ и Br⁻.

Реакции L(Cl)Ga-замещенного стибина [L(Cl)Ga]₂SbCl (L=HC[C(Me)NAr]₂; Ar = 2,6-*i*-Pr₂C₆H₃) с N-гетероциклическими карбенами RNHCMe (RNHCMe = [C(R)NMe]₂C:; R = Me, Et, *i*-Pr) дали NHC-координированные стибинидены L(Cl)GaSb-RNHCMe (R=Me **115a**, Et **115b**, *i*-Pr**115c**) и дистибены L(Cl)GaSbSb(RNHCMe)Ga(Cl)L (R = Me **116a**, Et **116b**, *i*-Pr **116c**) [53].

Дистибены **116a** и **116b** реагируют со вторым эквивалентом RNHCMe с разрывом двойной связи Sb–Sb и образованием стибинидов **115a** и **115b**. Комплексы **115a–116b** были охарактеризованы спектроскопически, а твердотельные структуры определены с помощью рентгеновской дифракции монокристаллов.

С целью разработки электрофильных катализаторов поздних переходных металлов синтезированы $[(o-(Ph_2P)C_6H_4)_2Sb(OTf)_2]Pt(OTf)$ (117) и $[(o-(iPr_2P)C_6H_4)_2Sb(OTf)_2]Pt(OTf)$ (118) обработкой соответствующих трихлоридов ($[(o-(R_2P)C_6H_4)_2SbCl_2]PtCl$ (R = Ph, iPr)) тремя эквивалентами AgOTf [54]. Кристаллические структуры соединений 117 и 118 подтвердили, что хлоридные лиганды полностью замещены более лабильными трифлатными лигандами. Несмотря на структурное сходство биядерных ядер 117 и 118, только 117 действует как мощный карбофильный катализатор в реакциях циклизации енина. О высокой активности соединения 117 также свидетельствует его влияние на способность производных пиррола и тиофена к присоединению к алкинам.

Структурный и вычислительный анализ показывают, что превосходная реакционная способность 117 является результатом как благоприятных стерических, так и электронных эффектов.

Комплексное исследование реакционной способности галлапниктенов LGaSbGa(Cl)L (L=HC[C(Me)N(Ar)]₂, Ar=Dip=2,6-i-Pr₂C₆H₃) подтвердило нуклеофильный характер пниктогена и электрофильную природу атома галлия [55].

Реакции LGaSbGa(Cl)L с хлоридом имидазолия [IPrH][Cl] давали {[LGa(Cl)]₂Sb⁻} {IPrH⁺} (119), а реакции с HCl и MeI давали пниктаны [LGa(Cl)]₂SbH (122) и L(I)GaSb(Me)Ga(Cl)L (121). Пниктанид 119 реагирует также с [H(OEt₂)₂][BArF₄] (BArF₄=B(C₆F₅)₄) до 122, а реакции с MeI дают [LGa(Cl)]₂SbMe (121). В реакциях одноэлектронного окисления пниктанида 119 образуется соответствующий радикал [LGa(Cl)]₂Sb⁻ (123).

В работе [56] сообщается об использовании трифенильных производных фосфора, мышьяка и сурьмы в фосфоресцентных координационных соединениях при разработке и реализации специализированных триплетных эмиттеров с нетрадиционными элементами. Описаны структурные и фотофизические свойства ряда гомологичных комплексов Pt(II) с монодентатными вспомогательными лигандами на основе P, As, Sb. Два координационных соединения, несущих тридентатные дианионные 2,6-бис(1H-1,2,4-триазол-5-ил)пиридиновые люминофорные клещевые лиганды, и фрагменты CF₃ или *t*-Ви на триазольных кольцах, а также трифенилстибин в качестве монодентатных вспомогательных лигандов, синтезированы по следующей схеме.

$$R \xrightarrow[N-NH]{N-NH} N \xrightarrow[N-N]{N-N} R \xrightarrow[N]{HF/H_2O} (3:1), \\ 70^{\circ}C, 24 h \xrightarrow{N-N-Pt-N-N} Pt \xrightarrow{N-N} R \xrightarrow{Ligand} Complex$$

Электронодонорный или акцепторный эффект периферийного заместителя (*t*-Bu по сравнению с CF₃ соответственно) и его влияние на связывание, кристаллическую упаковку, а также энергию и время жизни возбужденного состояния оценивали в жидких растворах, замороженных стеклообразных матрицах, аморфных твердых телах и кристаллических фазах. Наблюдалась прогрессивно смещенная в красную область фосфоресценция с увеличением атомного номера наряду с возрастающей компенсацией дефектов гибридизации при координации атома Pn к центру Pt(II).

В работе [57] была исследована дериватизация карбонильного кластера осмия $Os_2(CO)_8(\mu_3-SbPh)Os(CO)_3(Cl)_2$ (126), предшественника металлолиганда $Os_2(CO)_8(\mu-SbPh)$ (127). Показано, что реакция 126 с PPh₃ в различных стехиометриях и при активации N-оксида триметиламина в CH₃CN приводит к моно-, ди-, три- и тетразамещению на PPh₃ и CH₃CN. Первая замена произошла в «шипе» $Os(CO)_3Cl_2$, и хотя последующая замена благоприятствовала замещению CH₃CN в осмостибиновой части, последнее не было легким. Замена в пике также остановила высвобождение замещенного осмостибина. Однако CH₃CN-замещенный осмостибин может быть получен *in situ* через производное бис-ацетонитрила 126 путем превращения «шипа» $Os(CO)_2(NCCH_3)Cl_2$ обратно в удаляемую форму $Os(CO)_3Cl_2$ посредством реакции с газообразным CO.

Катехолат трифенилсурьмы(V) типа Ph₃Sb(Cat-DAD) на основе бифункционального 4-(4-(2,6диизопропилфенил)-2,3-диметил-1,4-диазабута-1,3-диен-1-ил)-3,6-ди-*трет*-бутил-*о*-бензохинона (Q-DAD) был использован для синтеза новых биметаллических комплексов сурьмы(V)-цинка(II) Ph₃Sb(Cat-DAD)ZnI₂ (**128**) и сурьмы(V)-меди(I) Ph₃Sb(Cat-DAD)Cu₂Cl₂ (**129**) соответственно, строение которых доказано методом PCA [58].

По данным циклической вольтамперометрии оба редокс-активных центра в **128** доступны для окислительно-восстановительных превращений. Взаимодействие Ph₃Sb(Cat-DAD) с CuCl₂ сопровождается окислением катехолатных центров Cu(II) в комплексе, в результате чего образуется комплекс **129** – гетерометаллический комплекс Sb(V)–Cu(I).

Гетеролептические стибаны Cp*(R)SbCl (R = Dip (130), N(SiMe₃)₂ (131), OB(NDipCH)₂ (132); Cp* = C₅Me₅; Dip = 2,6-i-Pr₂-C₆H₃) реагируют с одновалентным галландиил-LGa (L = HC[C(Me)N(Dip)]₂) с отщеплением 1,2,3,4-тетраметилфульвена с получением гетеролептически стабилизированных металлом гидридов Sb [L(Cl)Ga](R)SbH (R = Dip (133), N(SiMe₃)₂ (134), OB(NDipCH)₂ (135) [59].

Соединения **130–135** охарактеризованы методами гетероядерного ЯМР (¹H, ¹¹B, ¹³C) и ИКспектроскопии, твердотельные структуры соединений **133–135** определены методом РСА монокристаллов. Выявлена тесная корреляция между химическим сдвигом ЯМР ¹Н гидридноголиганда и электроотрицательностью Sb-координирующих атомов.

В рамках усилий по разработке кислот Льюиса основной группы в качестве анионных рецепторов исследован синтез циклометаллированного бипиридинового комплекса иридия (III), декорированного фрагментами сурьмы [60]. Реакцией 4-(дифенилстибино)-2,2'-бипиридина (L) с [(ppy)₂Ir(μ -Cl)]₂ в кипящем метаноле и дихлорметане (1:1 объем.) был получен соответствующий *трис*-хелатный комплекс иридия [(ppy)₂IrL]⁺, который был выделен в виде гексафторфосфатной соли желтого цвета ([136][PF₆]).

Реакция [136][PF₆] с избытком PhICl₂ в ДМСО индуцирует превращение дифенилсурьмяной части в анионный дифенилтрихлорантимонат, что приводит к образованию цвиттерионного комплекса (137), из которого по реакции обмена может быть получен соответствующий тозилат (138). Комплексы охарактеризованы методом ЯМР, а строение 137 подтверждено с помощью рентгеноструктурного анализа. Расчеты DFT и электрохимические измерения показывают, что богатая электронами дифенилтрихлорантимонатная группа в 137 катодно сдвигает окислительно-восстановительную пару Ir(III/IV). Измерения люминесценции также показывают, что 137 излучает меньше, чем 136.

Ряд галогенидных комплексов 13 группы [GaX₃(SbBu₃)] и [InX₃(SbBu₃)] (X = Cl, Br, I) получен реакцией соответствующего тригалогенида с трибутилсурьмой в растворе н-гексана или хлористого метилена [61].

Комплексы **139–144** охарактеризованы ИК-, ¹H, ¹³C и ⁷¹Ga ЯМР-спектроскопией. Приведены рентгеновские кристаллические структуры $[InX_3(SbBu_3)]$ (X = Cl, Br) и $[GaX_3(SbBu_3)]$. Попытки использовать $[InCl_3(SbR_3)]$ и $[GaCl_3(SbR_3)]$ (R = Bu, Et) в качестве прекурсоров из одного источника для выращивания CVD пленок InSb или GaSb при низком давлении оказались безуспешными.

В работе [62] описаны синтез и свойства трех комплексов (*пара*-толил)сурьмы, содержащих гетерополивольфраматные фрагменты [{(*p*-толил)Sb^{III}}₄(*A*- α -XW₉O₃₄)₂]ⁿ⁻ [X = P^V (**145**), As^V (**146**) или Ge^{IV} (**147**)] в водном растворе с использованием обычных однореакторных процедур.

$$\begin{aligned} &4(p\text{-tolyl})\text{SbCl}_{2} + 2[A - \alpha - PW_{9}O_{34}]^{9^{-}} \rightarrow [\{(p\text{-tolyl})\text{Sb}^{\text{III}}\}_{4}(A - \alpha - PW_{9}O_{34})_{2}]^{10^{-}} + 8\text{CI}^{-} \\ &4(p\text{-tolyl})\text{Sb}\text{Cl}_{2} + 2[A - \alpha - AsW_{9}O_{34}]^{9^{-}} \rightarrow [\{(p\text{-tolyl})\text{Sb}^{\text{III}}\}_{4}(A - \alpha - AsW_{9}O_{34})_{2}]^{10^{-}} + 8\text{CI}^{-} \\ &4(p\text{-tolyl})\text{Sb}\text{Cl}_{2} + 2[A - \alpha - \text{GeW}_{9}O_{34}]^{10^{-}} \rightarrow [\{(p\text{-tolyl})\text{Sb}^{\text{III}}\}_{4}(A - \alpha - \text{GeW}_{9}O_{34})_{2}]^{12^{-}} + 8\text{CI}^{-} \end{aligned}$$

Комплексы 145–147 были полностью охарактеризованы в твердом состоянии и в растворе и показали свою растворимость и стабильность в водной среде при pH 7. Биологические исследования показали, что все три полианиона обладают значительной антибактериальной и противоопухолевой активностью. Минимальные ингибирующие концентрации были определены в отношении четырех видов бактерий, включая два штамма патогенных бактерий, Vibrio parahaemolyticus и Vibrio vulnificus. Три новых полианиона также продемонстрировали высокую цитотоксическую активность в линиях клеток человека А549 (немелкоклеточный рак легкого), CH1/PA-1 (тератокарцинома яичников) и SW480 (карцинома толстой кишки).

Трипоидные лиганды с мостиковыми звеньями основной группы хорошо известны в координационной химии и металлоорганическом катализе. Хотя большое количество *mpuc*(2пиридильных) лигандов основной группы [E(2-py)₃] (E = элемент основной группы, 2-py = 2пиридил), охватывающих весь *p*-блок, в настоящее время синтетически доступно, была проделана лишь ограниченная работа по координационной химии *mpuc*(2-пиридильных) лигандов группы 15 для более тяжелых элементов (As, Sb). В исследовании [63] изучена химия семейства лигандов E(6-Me-2-py)₃ (E = As, Sb).

Стабильность на воздухе и влаге всех этих лигандов основной группы делает их особенно привлекательными для будущих каталитических применений.

В работе [64] сообщается о структурах трех гетеролептических Sb-центрированных радикалов [L(Cl)Ga](R)Sb· (R=B[N(Dip)CH]₂ (**149**), 2,6-Mes₂C₆H₃ (**150**), N(SiMe₃)Dip (**151**)), стабилизированных электроположительным металлическим фрагментом [L(Cl)Ga] (L=HC[C(Me)N(Dip)]₂, Dip=2,6-*i*-Pr₂C₆H₃).

Соединения **149–151** представляют собой металлоцентрированные радикалы, на электронные свойства которых в значительной степени влияет электронная природа лигандов R.

Изучены гетероядерные комплексы трехвалентной сурьмы, образующиеся из соединений RSb(pyS)₂ (R = pyS, Ph; pyS⁻ = пиридин-2-тиолат) с [Pt(PPh₃)₄]: [(R)Sb(μ -pyS)₂Pt(PPh₃)] (R = pyS **152**; R = Ph **153**) и их превращения [65]. Реакция **152** с *о*-хлоранилом протекает чисто с отщеплением 2,2'-дипиридилдисульфида и образованием соли **154** [(PPh₃)Pt(μ -pyS)₂Sb(μ -pyS)₂Pt(PPh₃)]⁺[Sb(C₆Cl₄O₂)₂]⁻. Нейтральное несимметричное производное сурьмы **155** [(PPh₃)Pt(μ -pyS)₂Sb(μ -pyS)₂Pt(кS-pyS)] может быть получено реакцией **154** с LipyS. Окисление **153** *о*-хлоранилом дает комплекс **156** [(к-O,O-C₆Cl₄O₂)PhSb(μ -pyS)₂Pt(PPh₃)]. Окисление **152** с помощью PhICl₂ дает комплекс в форме лопастного колеса [Sb(μ -pyS)₄PtCl] (**157**), которое получено также реакцией Sb(pyS)₃ с [PtCl(pyS)(PPh₃)].

При смешивании растворов *трис*(2-метокси-5-бромфенил)стибина и нитрата серебра в смеси метанол:ацетонитрил (1:1 объемн.) получен аддукт (158), представляющий собой кристаллы се-

ребристого цвета (83 %, т. пл. 205 °C) и состоящий из димерной и мономерных молекул общей формулы $[(\mu_2-NO_3)AgSb(C_6H_3OMe-2-Br-5)_3(MeCN)]_2 \cdot 2(C_6H_3OMe-2-Br-5)_3SbAgNO_3(MeCN)$ [66]. Комплекс охарактеризован методом рентгеноструктурного анализа (на рисунке атомы водорода и одна молекула мономера не показаны). В кристаллической ячейке комплекса присутствуют два типа молекул: мономерная и димерная, в которых нитратный лиганд выполняет различные структурные функции: в мономерной молекуле нитратная группа проявляет бидентантные свойства, координируясь двумя атомами кислорода на один атом серебра, а в димерной молекуле эта группа является мостиковой, связывая два атома серебра.

В мономерной молекуле атом серебра Ag(1) имеет искаженную тетраэдрическую координацию. Координационная сфера атома серебра включает *mpuc*(5-бром-2-метоксифенил)стибин, молекулу ацетонитрила, которая координируется на атом металла атомом азота, и хелатную группу NO₃.

Фосфиностибиновые лиганды (*o*-PPh₂C₆H₄)₂SbR [R = *o*-PPh₂C₆H₄ (L1), Ph (L2), Cl (L3)] встраиваются в карбонильные комплексы вольфрама и молибдена, что приводит к образованию μuc -[W(CO)₄{(*o*-PPh₂C₆H₄)₂SbR}] [R = *o*-PPh₂C₆H₄ (**159**), Ph (**160**), Cl (**161**)], [W(CO)₃{(*o*-PPh₂C₆H₄)₃Sb}] (**162**), [W(CO)₃{(*o*-PPh₂C₆H₄)₂SbCl}] (**163**), [(W(CO)₃{(*o*-PPh₂C₆H₄)₂SbR})₂] (**164**), [Mo(CO)₃{(*o*-PPh₂C₆H₄)₂SbR}] [R = *o*-PPh₂C₆H₄ (**165**), Ph (**166**), Cl (**167**)] [67].

Соединения **159** и **162** реагируют с солями MX (M = Cu, Ag, Au и X = Cl⁻, [PF₆]⁻) соответственно, с образованием *цис*-[W(CO)₄{(*o*-PPh₂C₆H₄)₃Sb}{MCl}] [M = Cu (**168**), Ag (**169**)], *цис*-[W(CO)₄{(*o*-PPh₂C₆H₄))₂Sb}{AuCl(*o*-PPh₂C₆H₄)}{AuCl}] (**170**), *цис*-[(W(CO)₄{(*o*-PPh₂C₆H₄))₂Sb}}{AuCl(*o*-PPh₂C₆H₄)}{AuCl}] (**170**), *μuc*-[(W(CO)₄{(*o*-PPh₂C₆H₄))₂Sb}}{AuCl}] (**171**), *μuc*-[W(CO)₃(*μ*-CO){(*o*-PPh₂C₆H₄)}Sb}{Cu}][PF₆] (**172**), *μuc*-[W(CO)₄{(*o*-PPh₂C₆H₄)}Sb}{AgMeCN}][PF₆] (**173**), *μuc*-[W(CO)₄{(*o*-PPh₂C₆H₄)}Sb}{AuB}][PF₆] (**174**), *μuc*-[W(CO)₂(*μ*-CO){(*o*-PPh₂C₆H₄)}Sb}{Cu}[U(CO)₂(*μ*-CO){(*o*-PPh₂C₆H₄)}Sb}{Cu}[U(CO)₂(*μ*-CO){(*o*-PPh₂C₆H₄)}Sb}{Cu}[U(CO)₂(*μ*-CO){(*o*-PPh₂C₆H₄)}Sb}{Cu}[U(CO)₂(*μ*-CO){(*o*-PPh₂C₆H₄)}Sb}{ML}][PF₆] [M = Cu, L = MeCN (**177**), M = Ag, L = MeCN (**178**), M = Au (**179**)]. В комплексах **168–179** расстояния металл-металл меньше сумы соответствующих ван-дер-ваальсовых радиусов. Близость двух металлических центров особенно заметна в **177–179**, что указывает на наличие связи металл – металл.

В рамках интереса к химии катионных сурьмяных кислот Льюиса в качестве лигандов для поздних переходных металлов исследован синтез комплексов платины, содержащих триарилстибиновый лиганд с *о*-[(диметиламино)метил]фенильными группами [68].

Более подробно описан синтез аминостибинового лиганда $Ph_2SbArN(L)$ и его комплекса с дихлоридом платины [LPtCl]Cl, который существует в виде хлоридной соли (**180**). Сообщается о превращении [LPtCl]Cl в трикатионный комплекс [LHPt(SMe₂)]³⁺, который был выделен в виде соли *mpuc*(трифлата) (**181**) из продуктов реакции [LPtCl]Cl с SMe₂, HOTf и AgOTf. Показано, что [LHPt(SMe₂)][OTf]₃ действует как катализатор циклизации 2-аллил-2-(2-пропинил)малоната.

В работе [69] найдено, что реакция окисления ((o-(Ph₂P)C₆H₄)₂)SbClPtCl пероксидом водорода приводит к образованию монокатионного комплекса с фрагментом P=O [((o-(Ph₂P)C₆H₄)₂(o-Ph₂PO)C₆H₄SbPtCl]⁺[Cl]⁻ (**182**), в котором присутствует внутримолекулярная координационная связь P=O→Sb.

Связь Pt–Cl этого комплекса легко активируется добавлением такого лиганда, как циклогексилизоцианид. В присутствии AgBF₄ реакция приводит к образованию ионного комплекса [((o-(Ph₂P)C₆H₄)₂(o-Ph₂PO)C₆H₄)SbPt(CNCy)]⁺[CNCy]⁻. Хлоридная соль реагирует с тетрафторборатом серебра в присутствии PhCCH, при этом образуется новый комплекс [((o-(Ph₂P)C₆H₄)₂(o-Ph₂PO)C₆H₄)SbPt]²⁺ (**183**), катализирующий циклизацию 2-аллил-2-(2-пропинил)малоната.

Авторы работы [70] описали реакции MeCN-замещенных соединений [Re₂(CO)₉(NCMe)] и [H₃Re₃(CO)₁₁(NCMe)] с трифенилстибином. Показано, что кипячение бензольного раствора [Re₂(CO)₉(NCMe)] и SbPh₃ приводило к образованию [Re₂(CO)₉(SbPh₃)] (**184**) с хорошим выходом. Комплекс **184** реагирует с SbPh₃ в присутствии Me₃NO в ацетонитриле с образованием [Re₂(CO)₈(σ -C₆H₅)(μ -SbPh₂)(NCMe)] (**185**), который при дальнейшем взаимодействии с дополнительным количеством SbPh₃ в кипящем бензоле дает известный комплекс [Re₂(CO)₈(σ -C₆H₅)(μ -SbPh₂)(SbPh₃)].

Комплекс **185** представляет собой редкий пример комплекса дирения, содержащего сигмасвязанную фенильную группу и лабильный ацетонитрильный лиганд в одной молекуле, образующийся в результате разрыва связей сурьма-углерод и Re–Re. При нагревании [H₃Re₃(CO)₁₁(NCMe)] с SbPh₃ в кипящем толуоле были получены комплексы [H₃Re₃(CO)₁₁(SbPh₃)] (**186**), [H₂Re₃(CO)₁₁(μ -SbPh₂)(SbPh₃)] (**187**) и [HRe₂(CO)₆(μ -SbPh₂)(SbPh₃)₂] (**188**) вместе с [HRe₂(CO)₇(μ -SbPh₂)(SbPh₃)] (**189**). Соединение **186** представляет собой простой монозамещенный продукт, тогда как комплекс **187** содержит терминально координированный лиганд SbPh₃ и мостиковую группу SbPh₂, образованную вследствие разрыва связи Sb–Ph. Соединение **188** образуется в результате фрагментации кластера и активации лиганда SbPh₃ путем разрыва связи Sb–Ph.

Реакции самосборки между ÅgNO₃, L (PPh₃, PPh₂Py, AsPh₃, SbPh₃) и $[\beta$ -Mo₈O₂₆]⁴⁻ в ДМФА привели к образованию анионов $[\beta$ -{AgL}₂Mo₈O₂₆]²⁻, которые были выделены в виде солей тетрабутиламмония (**189–192**) и охарактеризованы методами РФА, ИК и элементного анализа [71].

В кристаллических структурах катионов координационное число атома серебра изменяется с 5 (P, As) до 6 (Sb) за счет включения молекулы ДМФА. Изменение типа лиганда на семейство замещенных пиридинов приводит к новым комплексам серебра с различным окружением вокруг Ag+. Для 3-Х-пиридиновых лигандов (X = Cl, Br, I) выделены комплексы с дополнительными молекулами ДМФ [β -{AgL(DMF)}₂Mo₈O₂₆]²⁻.

Разработан новый путь получения комплексов кобальта(II) с нейтральными стибиновыми лигандами. Так, комплексы кобальта(II) $[(Sb^iPr_2Ph)_2CoI_2]$ (193) и $[\{(Sb^iPr_3)Co(\mu_2-I)(I)\}_2]$ (194) были синтезированы из двух эквивалентов лиганда и одного эквивалента йодида кобальта(II) во фторбензоле. При мольном соотношении исходных реагентов 1:4 образуется производное шестикоординированного кобальта (195) [72].

Кроме комплексов, содержащих *n*-донорные лиганды, такие как R₃Sb, в литературе описаны ионные и молекулярные соединения пятивалентной сурьмы с тремя связями Sb–C. Недавнее исследование химии оксидов стибина выявило только два хорошо охарактеризованных примера предполагаемых мономерных оксидов стибина: Mes₃SbO···HO₃SR, где R = Ph и CF₃. С помощью нейтронографии показано, что первый комплекс на самом деле содержат катион гидрокситримезитилстибония [Mes₃SbOH][O₃SPh] [73]. Для подтверждения правильности формулы [Mes₃SbOH][O₃SPh] (**196**), а не Mes₃SbO···HO₃SPh использовались различные методы.

Синтезированы и охарактеризованы новые катехолаты трифенилсурьмы(V) **197–199** на основе 3-формилзамещенных катехолов L1–L3 (L1 – 2,3-дигидрокси-4,6-ди-трет-бутил-бензальдегид, L2 – 2,3-дигидрокси-5,5,8,8-тетраметил-5,6,7,8-тетрагидронафталин-1-карбальдегид, а L3 представляет собой 2,3-дигидрокси-4,5,5,8,8-пентаметил-5,6,7,8-тетрагидронафталин-1-карбальдегид) [74]. Кристаллическая структура комплексов **197**, **198** определена методом РСА.

Установлено, что координационная сфера атома сурьмы дополнена до 6 за счет межмолекулярной донорно-акцепторной связи Sb...O с формильным кислородом соседней молекулы катехолата. В результате наблюдается образование 1D-полимерных структур.

В структуре *mpuc*[трифенилсурьма(V)]гекса(µ-оксидо)теллура(VI) (**200**) центральный атом теллура(VI) координируется с тремя группами Ph₃Sb(V) через пары *цис*-расположенных атомов О с образованием дискретной молекулярной единицы [75].

Атомы Te(VI) и Sb(V) имеют искаженную октаэдрическую [TeO₆] и искаженную тригонально-бипирамидальную [SbC₃O₂] координационную геометрию соответственно. В упаковке молекул преобладают водородные связи С—Н...О и слабые дисперсионные силы с небольшим вкладом связей С—Н... π и стэкинг-взаимодействий π - π .

Реакции дибромидов *mpuc*-(2-метилфенил)сурьмы и *mpuc*(3-фторфенил)сурьмы с роданидом натрия и фторидом натрия при комнатной температуре в водно-ацетоновом растворе приводят к образованию моноядерных производных сурьмы (2-MeC₆H₄)₃Sb(NCS)₂ (**201**) и (3-FC₆H₄)₃SbF₂ (**202**) соответственно [76]. В аналогичных условиях взаимодействие дибромидов трифенил-, *mpuc*(4-метилфенил)-, *mpuc*(3-метилфенил)сурьмы с нитратом и роданидом натрия приводят к образованию мостиковых соединений сурьмы [(4-MeC₆H₄)₃SbONO₂]₂O (**203**), [Ph₃SbNCS]₂O (**204**), [(3-MeC₆H₄)₃SbNCS]₂O (**205**), [(4-MeC₆H₄)₃SbNCS]₂O (**206**). По данным PCA атомы металла в молекулах полученных соединений имеют искаженную тригонально-бипирамидальную координацию с электроотрицательными атомами в аксиальных положениях.

Взаимодействием *трис*(2-метокси-5-хлорфенил)сурьмы с пентафторпропионовой, гептафторбутановой, пентафторбензойной и 2-метоксибензойной кислотами в присутствии пероксида водорода (1:2:1 мольн.) в диэтиловом эфире синтезированы дикарбоксилаты *трис*(2-метокси-5хлорфенил) сурьмы (2-MeO-5-ClC₆H₃)₃Sb[OC(O)R]₂, R = C₂F₅ (207), C₃F₇ (208), C₆F₅ (209), С₆Н₄ОМе-2 (**210**) [77]. В кристаллах полученных соединений атомы сурьмы имеют искаженную тригонально-бипирамидальную координацию с карбоксильными лигандами в аксиальных положениях. В отличие от большинства структурно охарактеризованных дикарбоксилатов триарилсурьмы в соединениях контакты Sb···O(=C) расположены внутри разных экваториальных углов CSbC, которые мало отличаются от идеального значения 120°. В соединениях 207-210 расстояния Sb···O(=C) составляют 3,155(7); 3,210(7) (207); 3,139(11); 3,275(11) (208); 3,224(4); 3,361(4) (209); 3,011(4); 3,060(4) Å (210), при этом самые короткие контакты ожидаемо наблюдаются в молекуле 210, в которой органический радикал в остатке кислоты не содержит электроотрицательных групп, снижающих донорные способности карбонильного кислорода. Атомы кислорода метоксигрупп координированы на атом сурьмы (внутримолекулярные расстояния Sb···O составляют 3,055(5)-3,160(5); 3,081(10)-3,113(11); 3,089(4)-3,187(4); 3,123(5)-3,193(5) Å в соединениях 207–210 соответственно). Однако в молекулах трех ранее синтезированных дикарбоксилатов *mpuc*(2-метокси-5-хлорфенил)сурьмы, содержащих в карбоксилатных лигандах OC(O)R электроотрицательные заместители (R = CH₂Br, CH₂C₆H₄F-3, C₆H₃F₂-2,3), расстояния Sb···O=C [2,997(2)-3,181(3) Å] и Sb…OMe [3,060(1)-3,203(1) Å] [78] близки к аналогичным величинам, наблюдаемым в соединениях 207–210, что не свидетельствует о влиянии природы заместителя R на внутримолекулярные контакты атома Sb с потенциальными координирующими центрами лигандов, окружающих центральный атом.

Взаимодействием трифенилсурьмы и *трис*(пара-толил)сурьмы (4-MeC₆H₄)₃Sb с хлоруксусной, 3,4,5-трифторбензойной, 2,3-дифторбензойной кислотами в присутствии трет-бутилгидропероксида получены дикарбоксилаты триарилсурьмы Ar₃Sb[OC(O)R]₂, Ar = *p*-Tol, R = CH₂Cl (**211**), Ar = Ph, C₆H₂F₃-3,4,5 (**212**), C₆H₃F₂-2,3 (**213**) [79]. По данным рентгеноструктурного анализа атомы Sb в **211–213** имеют координацию тригональной бипирамиды. Аксиальные углы OSbO составляют 174,47(6)° (**211**), 173,98(7)° (**212**) и 175,98(6)° (**213**). Длины связей Sb–O и Sb–C равны 2,145(2), 2,143(2) и 2,104(2)–2,109(2) Å в **211**; 2,121(2), 2,121(2) и 2,098(2)–2,112(3) Å в **212**; 2,1302(18), 2,1132(18) и 2,109(3)–2,117(3) Å в **213**. Внутримолекулярные расстояния Sb…O с карбонильным атомом кислорода (3,054(3), 3,080(3) Å (**211**); 3,033 Å (**212**); 2,959(3), 3,054(2) Å (**213**)) меньше суммы ван-дер-ваальсовых радиусов Sb и O. Структурная организация соединений обусловлена водородными связями типа O…H и F…H, CH…π-, F…π-взаимодействиями и стэкинг-эффектом.

По реакции окислительного присоединения из *mpuc*(2-метокси-5-хлорфенил)сурьмы с бромдифторуксусной и 2,5-дифторбензойной кислотами в эфире в присутствии пероксида водорода синтезированы *бис*(бромдифторацетато)*mpuc*(2-метокси-5-хлорфенил)сурьма (2-MeO-5-ClC₆H₃)₃Sb[OC(O)CBrF₂]₂ (**214**) и *бис*(2,5-дифторбензоато)*mpuc*(2-метокси-5-хлорфенил)сурьма (2-MeO-5-ClC₆H₃)₃Sb[OC(O)C₆H₃F₂-2,5]₂ (**215**), строение которых доказано методами ИК-спектроскопии, ЯМР ¹H, ¹³C, ¹⁹F, элементным анализом и PCA [80]. Особенностями молекулярных структур дикарбоксилатов *mpuc*(2-метокси-5-хлорфенил)сурьмы являются дополнительная координация атома сурьмы тремя атомами кислорода метоксигрупп (наряду с внутримолекулярными взаимодействиями Sb···O(=C)) и необычная ориентация карбоксильных групп относительно фрагмента SbC₃.

Окислением *mpuc*(4-фторфенил)сурьмы гидропероксидом третичного бутила в присутствии 2,4-дифторбензойной, 2,5-дифторбензойной и фенилпропиоловой кислот синтезированы с высоким выходом соответствующие дифенолят и дикарбоксилаты триарилсурьмы (4-FC₆H₄)₃SbX₂ (X = OC₆H₃F₂-2,4 **216**, OC(O)C₆H₃F₂-2,5 **217**, OC(O)CCPh **218**), в которых, по данным PCA, атомы сурьмы имеют тригонально-бипирамидальную координацию [81].

Пять *бис*(пентафторпропионатов) триарилсурьмы общей формулы Ar₃Sb[OC(O)CF₂CF₃]₂ с Ar = Ph (**219**), *m*-Tol, (**220**) *p*-Tol (**221**), C₆H₄F-4 (**222**), C₆H₃(OMe-2)(Br-5) (**223**) синтезированы по реакции окислительного присоединения из триарилсурьмы, карбоновой кислоты и *трет*-бутилгидропероксида в эфире [82]. Все комплексы были охарактеризованы методами рентгеновской дифракции, ИК-, ¹H, ¹³C и ¹⁹F ЯМР-спектроскопии. Показано, что атомы сурьмы в них имеют типичную тригонально-бипирамидальную геометрию с карбоксильными атомами кислорода в аксиальных положениях и атомами углерода арильных групп в экваториальной плоскости. Все комплексы были проверены на их антилейшманиальную активность и цитотоксичность по отношению к макрофагам млекопитающих.

Взаимодействие трифенилсурьмы с 2,3,4,5-тетрафторбензойной кислотой в присутствии *трет*-бутилгидропероксида (1:2:1 мольн.) в диэтиловом эфире приводит к синтезу *бис*(2,3,4,5-тетрафторбензоато)трифенилсурьмы (**224**), продуктом реакции которой с пентафенилсурьмой является 2,3,4,5-тетрафторбензоат тетрафенилсурьмы (**225**) с выходом 95 %, синтез которого по реации пентафенилсурьмы с 2,3,4,5-тетрафторбензойной кислотой протекает с выходом 86 % [83]. По данным РСА, в соединениях атомы сурьмы имеют тригонально-бипирамидальную координацию, причем длины одинарных связей Sb–O в дикарбоксилате (2,117(2); 2,134(2) Å) значительно короче, чем в монокарбоксилате (2,2998(13) Å).

По реакции окислительного присоединения из триарилсурьмы, карбоновой кислоты и гидропероксида *трет*-бутила в эфире синтезированы и структурно исследованы дикарбоксилаты *трис*(5-бром-2-метоксифенил)сурьмы (2-MeO-5-Br-C₆H₃)₃Sb(OC(O)R)₂, где R = C₆HF₄-2,3,4,5 (**226**), CF₂Br (**227**), CF₂CF₃ (**228**) [84]. После перекристаллизации целевых продуктов из бензола по данным рентгеноструктурного анализа атомы сурьмы в молекулах **226–228** имеют тригональнобипирамидальную координацию с атомами кислорода карбоксилатных лигандов в аксиальных положениях. Изучена фотокаталитическая активность синтезированных соединений на примере фотодеструкции органических красителей – метиленового синего и метилового фиолетового.

Аналогичным образом были получены дикарбоксилаты *mpuc*(фторфенил)сурьмы $(4-FC_6H_4)_3Sb[OC(O)R]_2$ (R = CH₂Cl (**229**), C₆F₅ (**230**), C₆F₄H-2 (**231**), CF₂CF₃ (**232**), CF₂CF₂CF₃) (**233**) и (3-FC₆H₄)₃Sb[OC(O)C₆F₄H-2]₂ (**234**) [85]. По данным РСА атомы Sb в комплексах имеют координацию тригональной бипирамиды. Аксиальные углы OSbO составляют 177,68(9); 177,44(12); 176,59(7); 179,59(6); 179,63(9) и 175,72(12)°.

Химия элементоорганических соединений Organometallic chemistry

Дикарбоксилаты три(*м*-толил)сурьмы (3-MeC₆H₄)₃Sb[OC(O)CH₂Cl]₂ и (3-MeC₆H₄)₃Sb[OC(O)C₆H₃F₂-2,3]₂ получены взаимодействием три(*м*-толил)сурьмы с хлоруксусной и 2,3-дифторбензойной кислотами в присутствии *трет*-бутилгидропероксида (мольное соотношение 1:2:1 соответственно) в эфире [86]. Следует отметить, что в аналогичных условиях реакция три(*м*-толил)сурьмы с 2,4-динитробензолсульфоновой кислотой приводит к образованию µ-оксо-*бис*[три(*м*-толил)(2,4-динитробензолсульфонато)сурьмы].

В реакциях окислительного присоединения к трифенил- и три(4-метилфенил)сурьме (окислитель – пероксид водорода) 2,6- и 2,3-дигидроксибензойные кислоты проявляют себя как монофункциональные соединения, образуя дикарбоксилаты триарилсурьмы [87]. Молекулярные структуры синтезированных соединений (235, 236) установлены методом рентгеноструктурного анализа. Выявлена склонность соединений в кристаллах к димеризации с образованием межмолекулярных водородных связей О-Н…О=С.

Однако при взаимодействии трифенилсурьмы с 3,4-дигидроксибензойной кислотой в диэтиловом эфире в присутствии перекиси водорода образуется четырехъядерный макроциклический комплекс (237) [88].

По данным РСА каждый мостиковый лиганд в макроцикле участвует в координации атомов кислорода карбонильной группы с атомами сурьмы и атомов кислорода двух гидроксильных групп с соседним атомом сурьмы, что приводит к образованию хелатного цикла. Четыре атома Sb имеют искаженную октаэдрическую координацию с их окружением $[O_3C_3]$. *Транс*-углы с участием карбонильных атомов кислорода OSbC составляют 174,41(11); 171,78(12); 174,38(11); 171,72(12)°, что несколько меньше теоретического значения, а *транс*-углы OSbC с участием фенольных атомов кислорода изменяются в диапазоне 154,87(12)-159,94(13)°. Мостиковые лиганды имеют почти плоскую структуру, пятичленные циклы [SbO2C₂] обладают небольшим перегибом на диагонали О-О. Связи Sb-C (2,125(4)-2,143(4) Å) длиннее типичных значений в дикарбоксилатах трифенилсурьмы, что можно объяснить увеличением координационного числа до шести. Расстояния Sb-O в металлоциклах отличаются друг от друга (2,023(2)-2,117(2) Å) и близки к аналогичным связям в катехолатных комплексах сурьмы. Расстояния между атомами сурьмы и кислорода карбонильных групп Sb(1)···O(1), Sb(2)···O(5), Sb(3)···O(9) и Sb(4)···O(13) составляют 2,536(3); 2,490(3); 2,533(3) и 2,489(3) Å соответственно, что значительно больше суммы ковалентных радиусов, поэтому указанные связи можно рассматривать как координирующие. Отметим, что расстояния между атомами сурьмы и кислорода карбоксильных групп Sb…O-H [3,649(3)–3,659(3) Å] сравнимы с суммой ван-дер-ваальсовых радиусов атомов сурьмы и кислорода (3,7 Å), что подтверждает монодентатное связывание карбоксильных групп.

Взаимодействием трифенилсурьмы с карбоновыми кислотами в присутствии пероксидов в эфире или $T\Gamma\Phi$ синтезирован ряд дикарбоксилатовтрифенилсурьмы (**238–244**) $Ph_3Sb(O_2CR)_2$ с кротоновой, коричной, метанитрокоричной, *пара*-метоксикоричной, фурилакриловой, винилуксусной и сорбиновой кислотами [89]. В качестве исходных пероксидов использовались водный раствор пероксида водорода (пергидроль с концентрацией пероксида до 45 %) или эфирный 0,8 М раствор, а также *трет*-бутилгидропероксид (98 %). Выходы продуктов составили 40–90 %.

Взаимодействие *mpuc*(2-метокси-5-хлорфенил)сурьмы с 3,3,3-трифторпропионовой кислотой в присутствии пероксида водорода (1:2:1 мол.) в эфире протекает по схеме реакции окислительного присоединения с образованием *бис*(3,3,3-трифторпропионато)*mpuc*(2-метокси-5-хлорфенил)сурьмы) [(MeO-2)(Cl-5)C₆H₃]₃Sb[OC(O)CH₂F₃]₂ (**245**) [90]. По данным PCA, атом сурьмы в комплексе имеет искаженную тригонально-бипирамидальную координацию с карбоксилатными лигандами в аксиальных положениях. Угол OSbO равен 174,2(5)°, суммы углов CSbC в экваториальной плоскости составляют 360°, аксиальные связи Sb–O (2,073(15); 2,092(15) Å) и экваториальные связи Sb–C (2,05(2); 2,065(19); 2,13(2) Å) близки к сумме ковалентных радиусов атомов. Внутримолекулярные расстояния Sb···OMe (3,03(2); 3,119(17); 3,147(19) Å) и Sb···O=C (3,232(19); 2,99(2) Å) значительно меньше суммы ван-дер-ваальсовых радиусов атомов.

По реакции окислительного присоединения между трифенилсурьмой, mpuc(3фторфенил)сурьмой и три(пара-толил)сурьмой и карбоновой кислотой в присутствии гидропебутила в диэтиловом эфире получены роксида третичного с высоким выходом бис(гептафторбутанато)трифенилсурьма (246), бис(пентафторбензоато)*трис*(3-фторфенил)сурьма (247) и бис(бромдифторацетато) трис(пара-толил) сурьма (248) [91]. Соединения идентифицированы методом рентгеноструктурного анализа. По данным РСА, кристалл 246 состоит из четырех типов кристаллографически независимых молекул, целевой продукт 247 является сольватом с бензолом, в 248 присутствуют два типа кристаллографически независимых молекул. В молекулах соединений 246-248 атомы сурьмы имеют искаженную тригонально-бипирамидальную координацию с атомами кислорода карбоксилатных лигандов в аксиальных положениях. Интервалы изменения длин связей Sb-C составляют 2,083(6)-2,117(6) Å (246), 2,095(4)-2,111(3) Å (247), 2,03(3)-2,12(2) Å (248). Расстояния Sb-O (2,142(4); 2,128(5) Å (246); 2,108(3); 2,116(3) Å (247), 2,156(16); 2,140(15) Å (248)) длиннее связей Sb-C, что характерно для ранее структурно охарактеризованных дикарбоксилатов триарилсурьмы. Аксиальные углы OSbO составляют 172,66(10)-179,08(18)° (246), 175,53(10)° (247) и 174,6(7)° (248). В молекулах 246-248 присутствуют внутримолекулярные контакты между атомами сурьмы и кислорода карбоксилатных лигандов (3,210(8)-3,235(8) Å (246); 3,048(4), 3,250(4) Å (247); 3,239(17)-3,254(18) Å (248). Формирование пространственной сетки в кристаллах соединений 246-248 обусловлено наличием слабых водородных связей с участием карбонильных атомов кислорода О...H (2,69; 2,70 Å) (246), 2,50 Å (247), фтора F···H 2,49; 2,57; 2,65 Å (247) и атомов брома Br···H (2,89, 2,94 Å) (248).

Реакцией окислительного присоединения ИЗ три(*м*-толил)сурьмы 2,3,4,5c тетрафторбензойной и пентафторбензойной кислотами в присутствии *трет*бутилгидропероксида (1:2:1 мол.) получены дикарбоксилаты три(*м*-толил)сурьмы: (*m*-Tol)₃Sb[OC(O)C₆HF₄]₂ (**249**) с выходом 80 % и (*m*-Tol)₃Sb[OC(O)C₆F₅]₂ (**250**) с выходом 85 % [92]. Структура соединений **249** и 250 установлена методом РСА. В кристаллической ячейке дикарбоксилата 249 присутствует молекула растворителя, использованного для перекристаллизации (бензол). Кристаллическая ячейка соединения 250 содержит две кристаллографически независимые молекулы. Атомы сурьмы в соединениях 249, 250 имеют искаженную тригонально-бипирамидальную координацию с карбоксилатными лигандами в аксиальных положениях. В кристалле 249 карбоксилатные лиганды находятся в цис-положении, тогда как в кристалле 250 – в транс-положении.

Взаимодействием *трис*(4-фторфенил)сурьмы с 2,3-дифторбензойной, 3,5-динитробензойной, 2-метоксибензойной, бромдифторуксусной, фенилакриловой, муравьиной и пропиоловой кислотами в присутствии *трет*бутилгидропероксида (1:2:1 мольн.) в диэтиловом эфире при комнатной температуре синтезированы дикарбоксилаты *трис*(4-фторфенил)сурьмы (4-FC₆H₄)₃Sb[OC(O)R]₂, где R = C₆H₃F₂-2,3 (**251**), C₆H₃(NO₂)₂-3,5 (**252**), C₆H₄OMe-2 (**253**), CF₂Br (**254**), CH=CHPh (**255**), CH₃ (**256**) и C=CH (**257**) [93]. Поданным РСА атом Sb в комплексе **251** имеет координацию тригональной бипирамиды с карбоксилатными лигандами в аксиальных положениях. Аксиальный угол OSbO составляет 176,95(6)°. Длины связей Sb–O и Sb–C равны 2,135(2); 2,121(2) и 2,113(3)–2,116(3) Å. Расстояния Sb···O=C составляют 3,040(2); 2,861(3) Å.

По реакции окислительного присоединения между mpuc(2-метоксифенил)сурьмой, 2,5дифторкарбоновой кислотой и гидропероксидом третичного бутила в диэтиловом эфире получен с выходом 72 % buc(2,5-дифторбензоат) mpuc(2-метоксифенил)сурьмы (**258**) [94]. По данным РСА, в кристалле соединения **258** присутствуют два типа кристаллографически независимых молекул *a* и *b*, геометрические параметры которых незначительно отличаются друг от друга. В молекулах атомы сурьмы имеют искаженную тригонально-бипирамидальную координацию с атомами кислорода карбоксилатныхлигандов в аксиальных положениях. Также в кристалле присутствует сольватная молекула диэтилового эфира. Суммы углов CSbC в экваториальной плоскости молекул **258***a* и **258***b* составляют 359,9(3) и 359,8(3)° соответственно. Аксиальные углы OSbO составляют 174,60(16)° (1а) и 175,51(17)° (1б). Длины связей Sb–C имеют близкие значения:

Химия элементоорганических соединений Organometallic chemistry

2,097(7)–2,127(6) Å в **258***a*, 2,107(7)–2,115(6) Å в **258***b*. Расстояния Sb–O (2,112(5); 2,131(5) Å в **258***a*, 2,107(5); 2,128(5) Å в **258***b*) соизмеримы с ковалентными длинами связей Sb–O. Бидентатные карбоксилатные лиганды координируют на атом металла менее симметрично в молекуле **258***a*, при этом внутримолекулярные расстояния Sb···O(=C) равны 3,116(7), 3,063(7) Å в **258***a*, а в **258***b* – 3,120(6), 3,126(7) Å. В молекулах в **258***a* и **258***b* наблюдаются короткие расстояния между атомами кислорода метокси-групп и атомами сурьмы (3,080(6); 3,138(7); 3,164(4) Å для **258***a*, 3,023(6); 3,085(5); 3,194(7) Å для **258***b*), что повышает КЧ атома сурьмы до 10.

Взаимодействие *трис*(2-метокси,5-хлорфенил)сурьмы с карбоновой кислотой в присутствии третбутилгидропероксида (1:2:1 мол.) в эфире протекает по схеме реакции окислительного присоединения с образованием дикарбоксилатов *трис*(2-метокси,5- хлорфенил)сурьмы [(MeO-2)(Cl-5)C₆H₃]₃Sb[OC(O)R]₂ (R = CH₂Cl (**259**), CH₂CH₂Ph (**260**), C=CH (**261**), C=CPh (**262**)) [95]. Согласно данным PCA, атомы сурьмы в **259–262** имеют искаженную тригонально-бипирамидальную координацию с карбоксилатными лигандами в аксиальных положениях. Углы OSbO равны 176,67(14); 174,88(5); 173,59(15); (174,22(14)°), 172,61(6)°, аксиальные связи Sb–O (2,121(5), 2,125(5) Å (**259**), 2,085(1), 2,097(1) Å (**260**), 2,087(4)–2,137(4) Å (**261**), 2,1109(17), 2,1017(17) Å (**262**)) и экваториальные связи Sb–C (2,104(7)–2,120(6) Å (**259**), 2,110(2)–2,120(2) Å (**260**), 2,075(6)–2,133(6) Å (**261**), 2,108(3)–2,115(2) Å (**262**)) близки к сумме ковалентных радиусов атомов-партнеров. Внутримолекулярные расстояния Sb—O=C (3,018(3), 3,179(3) Å (**259**), 3,098(3), 3,135(3) Å (**260**), 3,204(3)–3,220(5) Å (**261**), 3,129(3), 3,158(3) Å (**262**)) и Sb—OMe (3,127(3)–3,161(3) Å (**259**), 3,077(3)–3,210(3) Å (**260**), 3,136(3)–3,172(3) Å (**261**), 3,139(3)–3,186(3) Å (**262**)).

Окисление *трис*(3-фторфенил)сурьмы гидропероксидом третичного бутила в присутствии 2метилкарборанилкарбоновой кислоты приводит к образованию *бис*(2-метилкарборанилкарбоксилата) *трис*(3-фторфенил)сурьмы (**263**), особенности строения которого установлены методом рентгеноструктурного анализа [96]. Показано, что в молекулах соединения **263** атомы сурьмы имеют искаженную тригонально-бипирамидальную координацию с атомами кислорода карбоксилатных лигандов в аксиальных положениях. Связи Sb–C (2,104(4)–2,114(8) Å) короче расстояний Sb–O (2,113(3) Å), аксиальный угол OSbO составляет 178,48(15)°, углы CSbC равны 109,7(2)°, 118,4(2)°, 131,8(3)°, при этом значительное увеличение одного из углов связано с *цис*конформацией карбоксилатных лигандов относительно экваториальной плоскости. В структуре **263** присутствуют внутримолекулярные контакты Sb···O=C между атомами сурьмы и кислорода карбонильных групп карбоксилатных лигандов (3,089(3) Å). Формирование пространственной сетки в кристалле **263** обусловлено наличием слабых водородных связей с участием атомов бора карбоксилатных лигандов и фтора арильных лигандов: В····H (3,19 Å) и F····B (3,45 Å).

Взаимодействием *трис*(5-бром-2-метоксифенил)сурьмы с 3,4-дигидроксибензойной кислотой в присутствии трет-бутилгидропероксида (1:2:1 мольн.) в диэтиловом эфире при комнатной температуре синтезирован и структурно охарактеризован сольват 4-карбоксипирокатехолато-O,O'*трис*(5-бром-2-метоксифенил)сурьмы с хлороформом (5-Br-2-MeOC₆H₃)₃Sb[O,O'C₆H₃COOH-4] · 2CHCl₃ (**264**) [97]. По данным рентгеноструктурного анализа, атом сурьмы имеет искаженную тригонально-бипирамидальную координацию с одним из атомов кислорода пирокатехолатного лиганда в аксиальном положении. Длины связи Sb–C лежат в интервале значений 2,107(5)– 2,131(5) Å. Экваториальные углы CSbC равны 95,9(2)–125,7(1)°. Длины связей Sb–O неравноценны (2,095(4) и 2,013(3) Å), но близки к сумме ковалентных радиусов атомов сурьмы и кислорода (2,05 Å). В кристалле **264** присутствуют тесные контакты атомов водорода хлороформа с атомами кислорода катехолатного лиганда (2,40 Å) и атома водорода катехолатного лиганда с атомами хлора молекул хлороформа (2,95 Å). В кристаллах соединение **264** находится в виде димеров, где две молекулы связываются между собой двумя водородными связями O(6)…H(7) (1,864 Å) при сумме ван-дер-ваальсовых радиусов водорода и кислорода 2,57 Å.

Синтез *бис*(тиофен-2-альдоксимато)*трис*(5-бром-2-метоксифенил)сурьмы (**265**) осуществляли окислительной реакцией присоединения *трис*(5-бром-2-метоксифенил)сурьмы с тиофен-2альдоксимом в присутствии *трет*-бутилгидропероксида при мольном соотношении 1:2 реагентов [98]. По данным РСА, в кристалле присутствуют два типа кристаллографически независимых молекул, геометрические параметры которых незначительно отличаются. Координационный полиэдр атомов сурьмы в молекуле представляет собой искаженную тригональную бипирамиду. Сумма экваториальных углов CSbC равна 360°, значения отдельных углов различаются от теоретических 120° не более чем на 8,6(8)°. Аксиальный угол OSbO равен 175,8(4)°. Среднее значение длин связей Sb–C составляет 2,13(2) Å. Расстояния Sb–O равны 2,08(1) Å. Расстояния между атомом Sb и атомами N иминоксигруппы 2,80(2)–2,94(2) Å. Расстояния между атомами N и O не зависят от расстояний между атомами Sb и N; они равны 1,39(2)–1,43(2) Å. В молекулах имеются контакты между атомами Sb и O метоксигрупп, соответствующие расстояния составляют 3,13(1)–3,23(1) Å. Молекулы в кристалле связаны межмолекулярными водородными связями между атомами H и Br (2,883 Å), S (2,992 Å) и N (2,715 Å). В молекулах имеются внутримолекулярные короткие контакты между атомом O иминоксигруппы и S (2,72(1)–2,80(1) Å), а также атомом O метоксигруппы (2,93(2)–3,03(2) Å).

Окисление *трис*(5-бром-2-метоксифенил)сурьмы гидропероксидом третичного бутила в диэтиловом эфире в присутствии пентафторбензойной кислоты, 2-бромбензальдоксима и 4метилбензолсульфоновой кислоты (1:1:2 мольн.) приводит к образованию *бис*(пентафторбензоата) *трис*(5-бром-2-метоксифенил)сурьмы (**266**), *бис*(2-бромбензальдоксимата)*трис*(5-бром-2метоксифенил)сурьмы (**267**), *бис*(4-метилбензолсульфоната) *трис*(5-бром-2-метоксифенил)сурьмы (**268**) соответственно [99]. По данным РСА, атомы сурьмы в кристаллах имеют искаженную тригонально-бипирамидальную координацию с атомами кислорода карбоксилатных, оксиматных и сульфонатных лигандов в аксиальных положениях (аксиальные углы составляют 176,4(1)° для **266**, 169,1(1)° для **267**, 169,72(9)° для **268**). Расстояния Sb–O составляют 2,086(2) и 2,120(2) Å для **266**, 2,069(3) и 2,072(3) Å для **267**, 2,134(3) и 2,118(3) Å для **268**. Длины связей Sb–C изменяются в интервалах 2,097(3)–2,108(3) Å для **266**, 2,119(6)–2,123(6) Å для **267**, 2,104(3)–2,123(3) Å для **268**.

Взаимодействием *трис*(3-фторфенил)сурьмы с 2,5-диметилбензолсульфоновой и дибромфторуксусной кислотами в присутствии *трет*-бутилгидропероксида (1:2:1 мольн.) получены *бис*(2,5-диметилбензолсульфонат) *трис*(3-фторфенил)сурьмы (**269**) и *бис*(дибромфторацетат) *трис*(3-фторфенил)сурьмы (**270**) [100]. По данным рентгеноструктурного анализа, атомы Sb имеют искаженную тригонально-бипирамидальную координацию. Аксиальные углы OSbO равны 178,2(3)° (**269**) и 174,0(4)° (**270**); сумма углов CSbC в экваториальной плоскости 360°. Длины связей Sb–O составляют 2,108(9), 2,111(8) Å (**269**) и 2,124(12), 2,131(12) Å (**270**); интервалы изменения длин связей Sb–C составляют 2,090(11)–2,21(3) Å и 2,090(14)–2,096(16) Å. Структурная организация в кристаллах обусловлена слабыми водородными связями типа О…Н 2,53–2,70 Å (**269**) и 2,57–2,60 Å (**270**), F…H 2,46–2,59 Å (**269**) и Вг…H 3,02 Å (**270**). В **270** также наблюдаются короткие контакты С…F между арильными лигандами соседних молекул 3,079 и 3,085 Å.

Окислительное присоединение к *трис*(2-метоксифенил)сурьме кислотных остатков 4метилбензолсульфоновой кислоты в присутствии *трет*-бутилгидропероксида (1:2:1 мольн.) в диэтиловом эфире при комнатной температуре приводит к синтезу *бис*(4-метилбензолсульфонато)*трис*(2метоксифенил)сурьмы, которая после перекристаллизации из бензола охарактеризована в виде сольвата с бензолом (2-MeOC₆H₄)₃Sb[OSO₂C₆H₄Me-4]₂ · 2PhH (**271**) [101]. По данным PCA, атомы сурьмы в **271** имеют искаженную тригонально-бипирамидальную координацию с атомами кислорода в аксиальных положениях. Значение угла OSbO составляет 175,49(9)°. Длины связей Sb–C лежат в интервале значений 2,093(3)–2,098(3) Å. Формирование кристаллической структуры в соединении **271** обусловлено наличием слабых межмолекулярных водородных связей S=O···H–C 2,61–2,7 Å.

Две работы посвящены исследованию особенностей строения дикарбоксилатов триарилсурьмы: *бис*[(2Е)-3-фенилпроп-2-еноата] *трис(пара-*толил)сурьмы *p*-Tol₃Sb[OC(O)CH=CHPh]₂(**272**) [102] и *бис*(гекса-2,4-диеноата) трифенилсурьмы Ph₃Sb(O₂CCH=CH–CH=CH–CH₃)₂ (**273**) [103], полученные из триарилсурьмы, пероксида водорода, карбоновой кислоты в эфире и имеющие строение тригональной бипирамиды.

В случае реакций $[PhI(пиридин)_2]^{2+}$, $PhI(OAc)_2$ и PhI(OTf)(OAc) с Ph_3Sb образуются дикатионные комплексы Sb(V), легированные пиридином, например **274** [104].

Реакция с PhI(OAc)(OTf) была менее селективной, при этом имело место образование оксомостиковой формы дисурьмы.

Окисление *трис*(2-метокси-5-бромфенил)сурьмы гидропероксидом третичного бутила в диэтиловом эфире в присутствии воды, бензойной кислоты, 2,6-дигидроксибензойной кислоты и 2хлор-4-фторфенола приводит к образованию оксида *трис*(2-метокси-5-бромфенил)сурьмы (275), дибензоата *трис*(2-метокси-5-бромфенил)сурьмы (276), µ-оксо-[гексакис(2-метокси-5-бромфенил)бис(2,6-дигидроксибензоато)дисурьмы] (277), µ-оксо-[гексакис(2-метокси-5-бромфенил)-бис(2-хлор-4-фторфеноксо)дисурьмы] (278) соответственно [105]. По данным РСА, кристалл сольвата 275 с хлороформом состоит из центросимметричных биядерных молекул, содержащих цикл Sb₂O₂ с тетрагональной координацией атомов сурьмы (длины связей Sb–O равны 1,961(4) и 2,041(5) Å, расстояния Sb-C составляют 2,114(6)-2,153(6) Å). В сольвате 276 с бензолом атомы сурьмы имеют искаженную тригонально-бипирамидальную координацию с атомами кислорода карбоксилатных лигандов в аксиальных положениях (Sb-O 2,075(4); 2,105(4) Å), карбонильные атомы кислорода координированы с центральным атомом металла (Sb···O=C 3,023(6); 3,077(8) Å), длины связей Sb-C (2,104(5)-2,112(5) Å) значительно меньше, чем в 275. Интервалы изменения длин связей Sb-C в практически линейной биядерной молекуле сольвата 277 с ацетонитрилом (угол SbOSb равен 178,05(18)°) составляют 2,101(5)-2,106(5) и 2,100(5)-2,104(5) Å. Длины связей атомов сурьмы с мостиковым атомом кислорода (1,925(4); 1,936(4) Å) меньше суммы ковалентных радиусов сурьмы и кислорода и расстояний между атомом сурьмы и терминальным карбоксильным лигандом (Sb–O 2,263(4); 2,214(4) Å). Карбонильные атомы кислорода координированы с центральным атомом металла (Sb···O=C 3,484(8), 3,512(9) Å) в меньшей степени, чем в 276. В кристалле сольвата 278 с бензолом присутствуют два типа кристаллографически независимых угловых молекул (углы SbOSb 163,75(18)°; 164,27(19)°) разница длин Sb-O_{мост} (1,939(11)-1,981(13) Å) и Sb-O_{терм} (2,096(11)-2,208(11) Å) не такая резкая, как в случае комплекса 277.

Установлено, что, независимо от соотношения исходных реагентов, продуктами реакции трифенил- и три-(*пара*-толил)сурьмы с 2,5-динитрофенолом в присутствии *трет*-бутилгидропероксида в диэтиловом эфире являются биядерные соединения сурьмы [Ar₃SbOC₆H₃(NO₂)₂-2,5]₂O (Ar = Ph **279**, 4-MeC₆H₄ **280**), пентакоординированные атомы сурьмы в которых связаны между собой через атомы кислорода [106]. Углы O_{акс}SbO_{акс} (175,31(8)–178,17(9)°) мало различаются. Фрагменты Sb–O–Sb молекул изогнуты (углы SbOSb составляют 139,70(10) и 142,32(12)° соответственно).

По аналогичной схеме из трифенил- и три(пара-толил)сурьмы с 2,4-дифтор-, 2-хлор-4-фтори 2,5-дифторфенолами в присутствии *трет*-бутилгидропероксида (1:1:1 мольн.) в диэтиловом эфире получены с выходом до 98 % µ₂-оксо-*бис*[(2,4-дифторфеноксо)трифенилсурьма] (**281**), µ₂оксо-*бис*[(2-хлор-4-фторфеноксо)трифенилсурьма] (**282**) и µ₂-оксо-*бис*[(2,5-дифторфеноксо)*трис*(пара-толил)сурьма] (**283**) [107]. Соединения идентифицированы методом РСА. Показано, что атомы сурьмы в соединениях **281–283** имеют искаженную тригонально-бипирамидальную координацию с атомами кислорода в аксиальных позициях. Молекулы соединения **282** центросимметричны, инверсионный центр представлен мостиковым атомом кислорода. Аксиальные углы OSbO мало различаются и составляют 176,32(11), 179,00(10)° в **281**; 178,6(4)° в **282**; 176,3(2), 175,8(2)° в **283**. Фрагменты Sb–O–Sb молекул **281–283** изогнуты, углы SbOSb составляю то 140,87(13); 141,0(10); 142,3(3)°. Средние значения расстояний Sb–C в соединениях **281–283** составляют 2,111(3); 2,202(9); 2,110(8) Å соответственно. Терминальные связи Sb–O длиннее, чем связи Sb–O с мостиковым атомом кислорода. Организация молекул в кристаллах соединений обусловлена водородными связями с участием атомов фтора H…F 2,47– 2,62 (**281**), 2,57 (**282**), 2,50–2,52 (**283**) Å, а также за счет CH…π взаимодействий колец арильных и ароксидных лигандов.

Представлен улучшенный путь к комплексам сурьмы $Ar_3Sb(NSO)_2$, заключающийся в добавлении раствора тионилхлорида в ТГФ к жидкому аммиаку для получения аниона $[NSO]^-$ с последующим прибавлением к реакционной смеси соответствующего сухого дибромида триарилсурьмы при –78 °C [108]. Выход соответствующих комплексов $Ph_3Sb(NSO)_2$ (**284**), $Tol_3Sb(NSO)_2$ (**285**) и Mes₃Sb(NSO)₂ (**286**) составлял 58–78 %.

Рd-катализируемое региоселективное С–Н арилирование является полезным инструментом для химической модификации ароматических гетероциклов, а производные 2-арилбензофурана представляют интерес как биологически активные вещества. Показано, что реакция дифторидов триарилсурьмы с бензофуранами в аэробных условиях в 1,2-ДХЭ с использованием

5 мол. % Pd(OAc)₂ и 2 экв. CuCl₂ при 80 °C давал множество 2-арилбензофуранов с выходами от умеренных до высоких [109].

Реакция чувствительна к электронной природе заместителей в бензольном кольце дифторидов триарилсурьмы: электронодонорная группа показала более высокую реакционную способность, чем электроноакцепторная группа. Рентгеноструктурный анализ монокристалла дифторида *трис*(4-метилфенил)сурьмы (**287**) показал, что центральный атом сурьмы имеет тригональнобипирамидальную геометрию.

Весьма большим блоком представлены дигалогениды триарилсурьмы. Так, строение дихлорида трифенилсурьмы (288) изучено в работе [110]. При взаимодействии *mpuc*(3фторфенил)сурьмы с хлором, бромом и иодом в бензоле получены дихлорид, дибромид и дииодид *mpuc*(3-фторфенил)сурьмы (289–291) [111]. Дихлорид и дибромид были также получены в реакции *mpuc*(3-фторфенил)сурьмы с дигалогенидами меди в ацетоне. Дифторид *mpuc*(3фторфенил)сурьмы (292) получен по реакции обмена из дихлорида *mpuc*(3-фторфенил)сурьмы и фтористого натрия. По данным РСА, центросимметричные молекулы дихлорида и дибромида и четыре типа кристаллографически независимых молекул дииодида имеют конфигурацию тригональной пирамиды с электроотрицательными лигандами в аксиальных положениях.

Взаимодействием дибромида *трис*(2-метокси-5-хлорфенил)сурьмы и фторида натрия в водноацетоновом растворе получен с выходом 92 % дифторид *трис*(2-метокси-5-хлорфенил)сурьмы (**293**), кристаллизующийся из смеси ацетонитрил–октан [112]. По данным РСА, кристаллы **293** жѐлтокоричневого цвета имеют мало искаженную тригонально-бипирамидальную координацию с аксиально расположенными атомами галогена. Длины связей Sb–C равны 2,09(4); 2,08(5) и 2,06(4) Å, валентные углы CSbC составляют 116,99(2); 122,05(2); 120,86(1)°. Значения длин связей Sb–F равны 1,995(3) и 1,936 (3). Атомы кислорода метокси-групп координируются на атом металла [внутримолекулярные расстояния Sb···OMe 3,25(5); 3,04(3) и 3,11(5) Å]. Валентные углы Sb···O (O(3)–Sb(1)–O(1), O(1)–Sb(1)–O(2), O(2)–Sb(1)–O(3)) равны 108,2(9), 114,4(7) и 115,3(9)° соответственно. Аксиальный угол FSbF равен 179,13(9)°, экваториальные углы имеют значения 114,78(3), 116,01(2) и 113,45(2)°.

Ряд 3-алкилтио/арилтиозамещенных 4,6-ди-*трет*-бутилкатехолатов трифенилсурьмы(V) типа (3-RS-4,6-DBCat)SbPh₃, где R = *н*-бутил (294), *н*-гексил (295), *н*-октил (296), циклопентил (297), циклогексил (298), бензил (299), фенил (300) и нафтил-2 (301), синтезировали из соответствующих тиоэфиров катехола и Ph₃SbBr₂ в присутствии основания [113]

Химия элементоорганических соединений Organometallic chemistry

Кристаллические структуры соединений **294**, **295**, **296** и **298** были определены с помощью рентгеноструктурного анализа монокристаллов. Координационный полиэдр **294–296** лучше описать как тетрагональную пирамиду с разной степенью искажения, а **298** – как искаженную тригональную бипирамиду ($\tau = 0.014$; 0.177; 0.26; 0.56 соответственно).

Синтезирован и охарактеризован ряд циклометаллатов и двух *трис*-арильных комплексов Sb(V) с µ²-пероксомостиком, полученных из R/S-миндальной кислоты (= R/S-ManH₂) [114].

Строение циклометаллатов 1Sr/s, [Sb(o-тол)₃(ман)], 2Sr/s, [Sb(m-тол)₃(ман)], 4Sr/s, [Sb(o-PhOMe)₃(man)], 5Sr/s, [Sb(Mes)₃(man)] и 6Sr/s, [Sb(p-mpem-BuPh)₃(man)] подтверждено PCA. Комплексы 3Sr/s, [(Sb(p-tol)₃(manH)₂O₂], в твердом состоянии содержат мостиковый анион O₂²⁻, но в растворе ДМСО превращаются в циклометаллаты с сопутствующим выделением H₂O₂ и образованием комплексов [Sb(p-tol)₃(man)], 3Sr'/s'. Все комплексы прошли первоначальное тестирование как против фибробластов человека, так и против промастигот L. major V121. Было обнаружено, что значения IC50 находятся в диапазоне от 2,07 (6Sr) до >100 (4Sr) мкм и от 0,21 (5Ss) до >100 (4Ss) мкм для фибробластов и паразитов соответственно. Два комплекса оказались неэффективными, не проявляющими токсичности (4S/r). Несмотря на степень токсичности для млекопитающих, селективность большинства комплексов превышала SI, равный трем, и поэтому были оценены по их антиамастиготной активности. Отличная антиамастиготная активность наблюдалась для комплексов как при 10 мкм, так и при 5 мкм, с процентным значением заражения в диапазоне от 0,15 до 3,00 % для тех, которые тестировались при 10 мкм и 0,25–2,50 % для комплексов при 5 мкм.

В работе [115] описан синтез $[o-MePhS(C_6H_4)SbPh_3]^{2+}$ (**302**) и $[o-MePhS(C_6H_4)Sb(p-Tol)_3]^{2+}$ (**303**) – две дикатионные стибониево-сульфониевые бифункциональные кислоты Льюиса, полученные метилированием производных фенилтиоэфира $[o-PhS(C_6H_4)SbPh_3]^+$ и $[o-PhS(C_6H_4)Sb(p-Tol)_3]^+$ соответственно.

Оценка транспортных свойств хлор-анионов этих производных с использованием однослойных везикул ПОФХ, нагруженных хлоридом, показывает, что **303** можно использовать в качестве прехлорофора, который легко активируется восстановлением сульфониевого фрагмента. Эта активация, которая наблюдалась в водном растворе, также может осуществляться in situ в присутствии однослойных везикул РОРС, нагруженных хлоридом.

В работе [116] сообщается о энантиоселективном переносном гидрировании бензоксазинов, катализируемом новой хиральной парой катион/анион сурьмы. Ряд хиральных катализаторов пниктогена может быть получен из триарилстибина с легкодоступными аналогами миндальной

кислоты, и катализатор демонстрирует замечательную эффективность энантиоконтроля даже при загрузке 0,05 мол. %.

Новые полифункциональные пространственно затрудненные 3,5-ди-трет-бутилкатехолы с дополнительной фенольной группой в шестом положении, соединенной мостиковым атомом серы – (6-(CH₂-S-tBu₂Phenol)-3,5-DBCat)H₂ (L1), (6-(S-tBu₂Φeнол)-3,5-ДБКат)H₂ (L2) и (6-(S-Φенол)-3,5-ДБКат)H₂ (L3) (3,5-ДБКат дианион 3,5-ди-трет-бутилкатехолат), – синтезированы и подробно охарактеризованы [117]. Реакция обмена катехолов L1 и L3 с дибромидом трифенил-сурьмы(V) в присутствии триэтиламина приводит к соответствующим катехолатам трифенил-сурьмы(V) (6-(CH₂-S-tBu₂Phenol)-3,5-DBCat)SbPh₃ (**304**) и (6-(S-Φенол)-3,5-ДБКат)SbPh₃ (**305**). Электрохимические свойства катехолов L1–L3 и катехолатов **304** и **305** исследовали методом циклической вольтамперометрии. Электрохимическое окисление L1–L3 на первой стадии протекает с образованием соответствующих *o*-бензохинонов.

Второй процесс представляет собой окисление фенольной части. Комплексы **304** и **305** значительно расширяют свои окислительно-восстановительные возможности за счет того, что могут выступать как донорами электронов за счет катехолатного металлоцикла, способного к последовательному окислению, так и донорами атомов водорода, образуя устойчивый феноксильный радикал.

В поисках единой комбинации антилейшманиозных комплексов были синтезированы и охарактеризованы шесть гетероплетных сурьмаорганических гидроксидохинолинолатных комплексов общей формулы [SbPh₃(C₉H₄NORR')(OH)] (**306–312**), полученных из галогенидзамещенных хинолинолов (8-гидроксихинолины) [118].

Рентгеновская дифракция монокристаллов всех комплексов показывает общее искаженное шестикоординатное октаэдрическое окружение с центральным атомом Sb(V), арильными груп-

Химия элементоорганических соединений Organometallic chemistry

пами и атомом азота хинолинолатного лиганда, связанными в экваториальных плоскостях, с двумя атомами кислорода (гидроксил и хинолинолят) в аксиальной плоскости в почти линейной конфигурации. Комплексы показали превосходную антипромастиготную активность (IC50: 2,03-3,39 мкм) и различную цитотоксичность для млекопитающих (IC50: 12,7-46,9 мкм), что привело к диапазону индекса селективности 4,52-16,7. Все комплексы продемонстрировали превосходную антиамастиготную активность с диапазоном процента заражения от 2,25 до 9,00 %. Все комплексы работали значительно лучше, чем исходные хинолинолы и сопоставимые карбоксилатные комплексы [SbPh₃(O_2 CRR')₂], что указывает на синергетическую роль Sb(V) и хинолинольных фрагментов В повышении смертности паразитов. Два комплекса [SbPh₃(C₉H₄NOBr₂)(OH)], [SbPh₃(C₉H₄NOI₂)(OH)] обеспечивают идеальное сочетание высокой селективности и хорошей активности по отношению к лейшманиальным амастиготам.

В работе [119] сообщается о синтезе бидентатных кислот Льюиса на основе соединений сурьмы, имеющих в своем составе фрагмент *о*-C₆F₄.

Эти соединения могут быть легко получены реакцией o-C₆F₄(SbPh₂)₂ с o-хлоранилом или октафторфенантра-9,10-хиноном с образованием соответствующих дистиборанов **313** и **314** общей формулы o-C₆F₄(SbPh₂(диолат))₂ с диолатом = тетрахлоркатехолат для **313** и октафторфенантрен-9,10-диолат для **314** соответственно. В то время как **313** очень плохо растворим, его аналог октафторфенантрен-9,10-диолата **314** легко растворяется в CH₂Cl₂ и быстро превращается в соответствующий фторид-хелатный комплекс [7- μ_2 -F]-, который был выделен в виде соли [Bu₄N]⁺. В целом, экспериментальные результаты в сочетании с компьютерным анализом и расчетами сродства к анионам фтора показывают, что **313** является одним из самых сильных хелаторов анионов фтора на основе сурьмы, приготовленных на сегодняшний день. Другой примечательный аспект этой работы касается использования лиганда октафторфенантрен-9,10-диолата и его способности придавать благоприятные свойства растворимости и кислотности по Льюису.

Описан синтез катехолатных комплексов (ditCat)SbPh₃ (**315**), (ditCat)Ni(2,2'-bpy) (**316**) и (3,6-tBu-ditCat)VCp₂ (**317**), содержащих аннелированный дитиетовый цикл бифункционального *о*хинона, аннелированного дитиетовым кольцом (ditQ) с SbPh₃, (2,2'-bpy)Ni(CO)₂ и VCp₂ соответственно [120].

 $L_nM = Ph_3Sb$, (2,2'-bpy)Ni, Cp_2V

Структура комплекса **315** подтверждена рентгеноструктурным анализом. Отметим, что комплекс **315** в толуоле обратимо связывает молекулярный кислород с образованием спироэндопероксида (3,6-tBu-ditCat)SbPh₃·O₂·C₇H₈ (**318**).

Получен ряд катехолатных комплексов триарилсурьмы(V) с *p*-диметиламинопиридином и *p*цианопиридином общего вида [(Cat)SbAr₃(p-Me₂N–Py)] (**319–322**) и [(Cat)SbAr₃(p-CN–Py)] (комплексы **323–326**) и изучены их молекулярное строение и электрохимические свойства [121].

В качестве редокс-активного лиганда использованы 3,6-ди-трет-бутил-о-бензохинон, 4,5пиперазин-1,4-диил-3,6-ди-трет-бутил-о-бензохинон, 4,5-дихлор-3,6-ди-трет-бутил-о-бензохинон. Молекулярное строение ряда комплексов в кристаллическом состоянии установлено методом PCA. Все комплексы имеют искаженное октаэдрическое строение, дополнительный нейтральный пиридиновый лиганд занимает одно из апикальных положений.

2,5-Дигидрокси-3,6-ди-трет-бутил-*n*-бензохинон (QtBuDiol) взаимодействует с Ph₃SbBr₂ в толуоле в присутствии триэтиламина с образованием ионного комплексного соединения [Et₃NH]⁺[(Dionet-BuDiolate)SbPh₃Br]⁻ (**327**) [122].

Данная реакция в среде метанола приводит к полному вытеснению бромид ионов из координационной сферы сурьмы с образованием соответствующего 1,2-диолата трифенилсурьмы(V) (Dionet-BuDiolate)SbPh₃ · MeOH (**328**).

Молекулярное строение комплексов установлено методом PCA. В обоих комплексах наблюдается хиноидный тип распределения связей в шестичленном углеродном цикле и двойные связи C=O в фрагментах $Ph_3SbO_2C_6(t-Bu)_2O_2$. Формально комплексы можно рассматривать как производные 3,6-ди-трет-бутил-о-бензохинона с металлоорганическим фрагментом Ph_3SbO_2 в положениях 4 и 5 хинонового кольца.

Восемь карбоксилатов тетраарилсурьмы общей формулы $Ar_4SbOC(O)R$ с Ar = Ph (*a*), *p*-Tol (*b*), $R = C_6F_5$ (**329**), CH_2CF_3 (**330**), CF_2Br (**331**), $CF_2CF_2CF_3$ (**332**) синтезированы и охарактеризованы [123].

Все структуры были аналитически охарактеризованы с помощью FT-IR, ¹H, ¹³С ЯМРспектроскопии. Ранее синтезированные структуры также были проанализированы с помощью рентгеновской дифракции, и их твердотельные структуры имели типичную тригональнобипирамидальную геометрию с центральным атомом сурьмы с карбоксильным атомом кислорода и одним из атомов углерода арильной группы, занимающим аксиальное положение с остальными тремя арильными группами в экваториальной плоскости. Все комплексы были проверены на их антилейшманиальную активность и цитотоксичность по отношению к макрофагам млекопитающих. Было замечено, что аналоги тетрафенилсурьмы гораздо более эффективны по сравнению с комплексами тетра(*n*-толил)сурьмы со значениями IC50 в диапазонах 2,90-7,75 мкм и 64,97-124,71 мкм соответственно для промастиготного анализа и 70,87-76,28 мкм, 9,08-10,18 мкм для макрофагов. Интересно, что кривая доза – реакция для карбоксилатов тетрафенилсурьмы представляет собой стандартную сигмовидную кривую, в то время как для всех тетра-*n*толильных комплексов сурьмы наблюдается необычная перевернутая U-образноя форма, что свидетельствует о том, что они эффективны только в малых дозах. Все карбоксилаты тетрафенилсурьмы были оценены на предмет их антиамастиготной активности и показали многообещающие результаты: 1,00 % ± 1,44 (1a), 5,25 % ± 1,72 (2a), 20,75 % ± 8,46 (3a), 5,75 % ± 1,62 (4a) при 10 мкм.

Метакрилат тетрафенилсурьмы (**333**) и кротонат тетрафенилсурьмы (**334**) получены действием кислот на Ph_5Sb либо на Ph_4SbBr в присутствии Et_2NH [124]. По данным PCA оба соединения представляют собой искаженные тетрагонально-пирамидальные комплексы. Полимеризацией стирола с добавками $Ph_4SbO_2CC(CH_3)=CH_2$ и $Ph_4SbO_2CCH=CHCH_3$ синтезирован прозрачный сурьмасодержащий полистирол, растворимый в хлороформе, дихлорметане, $T\Gamma \Phi$.

Взаимодействие пентафенилсурьмы с 3-гидроксибензойной кислотой в диоксане при нагревании протекает с участием карбоксильной и гидроксильной групп с образованием 3тетрафенилстибоксибензоата тетрафенилсурьмы (**335**) [125].

1,2,4,5-Бензолтетракарбоновая кислота в реакции с пентафенилсурьмой проявляет себя как полифункциональное соединение и образует тетраядерный комплекс – 1,2,4,5-бензолтетракарбоксилат *тетракис*(тетрафенилсурьмы) (**336**).

Особенности строения синтезированных соединений установлены методом рентгеноструктурного анализа. Взаимодействием пентаарилсурьмы Ar_5Sb (Ar = Ph, 4-MeC₆H₄) с фторсодержащими карбоновыми кислотами получены карбоксилаты тетраарилсурьмы Ph₄SbOC(O)R (R = CF₂Br **337**, CF₂CF₂CF₃ **338**), (4-MeC₆H₄)₄SbOC(O)CF₂CF₃ **339** и (4-MeC₆H₄)₄SbOC(O)CF₂CF₂CF₃ **340** [126]. Несмотря на избыточное количество карбоновой кислоты в реакционной смеси, сольваты карбоксилатов тетраарилсурьмы Ar4SbOC(O)R · HOC(O)R с ней не образуются. Методом рентгеноструктурного анализа установлено, что в соединениях **337–340** атомы Sb имеют координацию искаженной в разной степени тригональной бипирамиды. Кристаллы **339** и **340** содержат по два типа кристаллографически независимых молекул. Аксиальные углы CSbO в **337**, **338**, **339**, **340** равны 175,32(14)°, 178,87(8)°, 178,56(13)° и 178,33(10)°, 178,16(13)° и 179,58(15)° соответственно. Внутримолекулярные расстояния Sb···O с карбонильным атомом кислорода составляют 3,506(4) Å **337**), 3,517(6) Å (**338**), 3,565(6) Å (**339**), 3,527(6) Å (**340**). Вторые карбонильные атомы кислорода в кристаллах **339** и **340** не участвуют в координации с центральным атомом металла.

Взаимодействием пентафенилсурьмы с 2,3-дифторбензойной и 2,3,4,5,6-пентафторбензойной кислотами в бензоле получены с выходом до 98 % 2,3-дифторбензоат тетрафенилсурьмы (**341**) и 2,3,4,5,6-пентафторбензоат тетрафенилсурьмы (**342**), которые также были синтезированы по реакции перераспределения лигандов из пентафенилсурьмы и дикарбоксилатов трифенилсурьмы [127]. Соединения идентифицированы методом РСА. Показано, что атомы сурьмы в соединениях **341**, **342** имеют искаженную тригонально-бипирамидальную координацию с атомами кислорода в аксиальных позициях. Согласно данным РСА, аксиальные углы OSbO несколько различаются и составляют 177,90(5)° в **341** и 179,00(5)° в **342**. Расстояния Sb–C_{экв} в соединениях **341** и **342** составляют 2,116(2); 2,119(2); 2,118(2) и 2,1073(17); 2,1158(18); 2,1152(19) Å соответственно, что значительно короче длин связей Sb–C_{акс} (2,169(2) и 2,1617(19) Å). Организация молекул в кристаллах соединений обусловлена водородными связями и CH… π -взаимодействиями колец арильных и карбоксильных лигандов. Основным отличием структур **341** и **342** являются различные длины связей Sb–O (2,2864(18) и 2,3168(18) Å), что обусловлено увеличением электроотрицательности карбоксильного лиганда в **342**, вызванного присутствием пяти электроотрицательных атомов фтора в бензоатном заместителе.

По реакциям замещения между пентафенилсурьмой и пентафторпропионой кислотой и по реакции перераспределению лигандов между пентафенилсурьмой и *бис*(пентафторпропионатом) трифенилсурьмы получен пентафторпропионат тетрафенилсурьмы (**343**) [128]. По данным PCA, атом сурьмы имеет искаженную тригонально-бипирамидальную координацию с атомом кислорода карбоксилатного и атомом углерода фенильного лигандов в апикальных положениях. Аксиальный угол CSbO составляет 178,19(1)°, сумма экваториальных углов CSbC равна 355,78(14)°. Среднее значение длин связей Sb–C_{экв} составляет 2,129(4) Å, при этом длина связи Sb–C_{акс} сопоставима с экваториальными и имеет значение 2,124(3) Å. Расстояние Sb–O составляет 2,325(3) Å. Характерной особенностью всех карбоксилатов тетраарилсурьмы является наличие внутримолекулярного контакта атома сурьмы с карбонильным атомом кислорода. Данное расстояние Sb-··O=C составляет 3,492(5) Å. Это взаимодействие приводит к увеличению одного из экваториальных углов, расположенного со стороны внутримолекулярного контакта, до 122,67(14)°. Организация молекул в кристалле обусловлена водородными связями с участием карбонильного атома кислорода.

Хлорацетат тетра(*пара*-толил)сурьмы *p*-Tol₄SbOC(O)CH₂Cl (**344**) синтезирован из эквимолярных количеств пента(*пара*-толил)сурьмы и хлоруксусной кислоты в бензоле при комнатной температуре [129].

$$p-\text{Tol}_5\text{Sb} + \text{HOC}(O)\text{CH}_2\text{Cl} \xrightarrow{\text{PhH}, 20 \,^{\circ}\text{C}, 24 \,\text{v}} p-\text{Tol}_4\text{SbOC}(O)\text{CH}_2\text{Cl} + \text{TolH}_{334}$$

Нагревание исходных реагентов при мольном соотношении 1:2 в кипящем бензоле (1 ч) приводит к образованию *бис*(хлорацетато)три(*пара*-толил)сурьмы *p*-Tol₃Sb[OC(O)CH₂Cl]₂ (**345**).

$$p-\text{Tol}_5\text{Sb} + 2 \text{ HOC}(O)\text{CH}_2\text{Cl} \xrightarrow{\text{PhH, 80 °C, 1 ч}} p-\text{Tol}_3\text{Sb}[OC(O)\text{CH}_2\text{Cl}]_2 + 2 \text{ TolH}$$

345

Вестник ЮУрГУ. Серия «Химия». 2024. Т. 16, № 1. С. 5–53 При комнатной температуре реакция протекает с образованием аддукта хлорацетата тетра(*пара*-толил)сурьмы с хлоруксусной кислотой *p*-Tol₄SbOC(O)CH₂Cl · HOC(O)CH₂Cl (**346**).

$$p$$
-Tol₅Sb + 2 HOC(O)CH₂Cl $\xrightarrow{\text{PhH, 20 °C, 24 ч}} p$ -Tol₄SbOC(O)CH₂Cl HOC(O)CH₂Cl + TolH

По данным РСА расстояния Sb–O составляют 2,2613(18) Å для **344**, 2,151(4) и 2,160(4) Å для **345** и 2,405(9) Å для **346**. Длины связей Sb–C изменяются в узком интервале значений (2,110(2)–2,128(2) Å для **344**, 2,107(5)–2,112(5) Å для **345**, 2,060(8)–2,205(9) Å для **346**). Структурная организация в кристаллах обусловлена слабыми межмолекулярными контактами типа C=O···H (2,68–2,68 Å для **344**, 2,56–2,63 Å для **345**, 2,23– 2,71 Å для **346**). В кристаллах **344** и **346** присутствуют межмолекулярные контакты Cl···H (2,87–2,88 Å и 2,80–2,89 Å).

Взаимодействием пента(*пара*-толил)сурьмы с ферроценкарбоновой кислотой в бензоле (нагревание при 80 °C в течение 15 минут) получен ферроценкарбоксилат тетра(*пара*-толил)сурьмы (4-MeC₆H₄)₄SbOC(O)C₅H₄FeC₅H₅ (**347**) [130]. Комплекс **347** охарактеризован методами ИКспектроскопии и рентгеноструктурного анализа. В ИК-спектре **347** присутствуют полосы, характеризующие колебания связей Sb–C, Sb–O, CO₂-группы и ферроценового фрагмента. По данным рентгеноструктурного анализа в молекуле кристалла **347** координация атома сурьмы искаженная октаэдрическая вследствие того, что карбоксилатный лиганд является бидентатным хелатирующим. Диагональные углы в октаэдре составляют 147,5(2); 156,7(2); 167,0(2)°. Расстояния Sb–O(1) и Sb–O(2) равны 2,475(6) и 2,313(5) Å, связи Sb–C существенно различаются (2,114(6); 2,142(6), 2,152(6); 2,168(6) Å). Структурная организация кристалла обусловлена в основном взаимодействиями C–H… π -типа.

Соединения сурьмы, содержащие четыре связи Sb-C

В основе эффективного получения производных сурьмы общей формулы Ar₄SbX (где X – электроотрицательный лиганд) лежат реакции пентаарилсурьмы с соединениями, содержащими подвижный атом водорода. В этом случае синтез целевого продукта происходит в одну стадию, а его выделение не является трудоемким. Таким способом получены ароксиды, оксиматы, β-дикетонаты и карбоксилатытетрафенил- и тетра(*пара*-толил)сурьмы [124, 131–135].

В реакциях с пентафенилсурьмой такие полифункциональные карбоновые кислоты, как пиридин-2,6- и 2,5-дикарбоновые кислоты, проявляют себя как бифункциональные соединения, образуя пиридин-2,6- и 2,5-дикарбоксилат *бис*(тетрафенилсурьмы) (**348** и **349** соответственно) [136].

При взаимодействии пентафенилсурьмы с 2-[(6-гидрокси-5-нитрозо-4(3*H*)-оксопиримидин-2ил)сульфанил]уксусной кислотой с участием карбоксильной группы и гидроксильной группы в пиримидиновом кольце образуется 2-{[5-нитрозо-4(3*H*)-оксо-6-(тетрафенилстибокси)пиримидин-2-ил]-сульфанил}ацетат тетрафенилсурьмы (**350**).

$$2Ph_{5}Sb + \underbrace{O=N}_{HO} \underbrace{NH}_{N} CH_{2}CH(O)OH \xrightarrow{6e_{H3OT}}_{-2C_{6}H_{6}} Ph_{4}Sb \underbrace{NH}_{O} CH_{2}CH(O)OSbPh_{4} \cdot 0.5PhH S50$$

Особенности строения синтезированных соединений установлены методом РСА.

Пентафенилсурьма и пента(*пара*-толил)сурьма реагируют с каликсареном [4-*t*-BuC₆H₂OH(S-2)]₄ (CArH) с отщеплением арена и образованием ионных продуктов [Ph₄Sb]⁺ [CAr]⁻·TolH (**351**), [*p*-Tol₄Sb]⁺ [CAr]⁻· H₂O (**352**) с выходом до 96 % [137].

Соединения идентифицированы методом ИК-спектроскопии и рентгеноструктурного анализа (РСА). По данным РСА, соединения 1 и 2 представляют собой ионные комплексы с сольватными молекулами толуола (351) и воды (352). Катион имеет тетраэдрическую координацию атома сурьмы с арильными лигандами в вершинах полиэдра, анион представлен депротонированной формой п-трет-бутилтиакаликс[4]арена. Три трет-бутильные группы, фенильное кольцо и сольватированный толуол в структуре соединения 351 и два *трет*-бутильных фрагмента в структуре соединения 352 разупорядочены по двум позициям. Тетраэдрическая координация атомов сурьмы в катионах соединений 351 и 352 искажена в незначительной степени. Углы CSbC отклоняются от теоретического значения и варьируются в пределах 106,0(4)-117,7(4)° (351), 105,75(15)-112,84(15)° (352). Среднее значение длин связей Sb-C составляет 2,101(3) и 2,106(4) Å в структурах 351 и 352 соответственно. Анион [CAr] находится в конформации конуса, верхний обод которого представлен *трет*-бутильными группами в *пара*-положении, а нижний – гидроксигруппами, одна из которых депротонирована. Длина одной связи С_{Аг}-О (1,318(4) (**351**) и 1,326(4) (352) Å) меньше среднего значения длин связей С_{Аг}-OH (1,338(4) (351) и 1,343(4) (352) Å), что свидетельствует о повышении ее кратности и локализации отрицательного заряда именно на этом атоме кислорода. При этом протоны образуют внутримолекулярные водородные связи с соседним атомом кислорода. Расстояния Н···O составляют 2,16; 1,69; 1,77 Å в 351 и 1,92; 1,79; 1,76 Å в **352**. Двугранные углы между противоположными феноксидными кольцами составляют $60,64 \text{ и } 87,07^{\circ}$ (**351**) и $83,85 \text{ и } 80,42^{\circ}$ (**352**), что указывает на менее симметричный анион в структуре 351, чем в 352. Формирование пространственной структуры кристаллов обусловлено образованием водородных связей между ионами с участием атомов кислорода и серы, а также $CH^{...}\pi$ взаимодействий, при этом ионы в кристалле соединения 351 образуют цепочки, а в кристалле соединения 352 - слои.

Взаимодействием эквимолярных количеств пентафенилсурьмы и камфора-10-сульфоновой кислоты в бензоле получен и структурно охарактеризован сольват камфора-10-сульфоната тетрафенилсурьмы с бензолом $Ph_4SbOSO_2C_{10}H_{15}O\cdot[Ph_4Sb]^+[OSO_2C_{10}H_{15}O]^-\cdot 2PhH$ (**353**) [138]. По данным рентгеноструктурного анализа, в кристалле присутствуют молекулы аренсульфоната тетрафенилсурьмы, в которых атомы сурьмы имеют искаженную тригонально-бипирамидальную координацию с атомами углерода и кислорода в аксиальных положениях (угол CSbO 178,1(5), расстояние Sb–O составляет 2,495(12) Å), наряду с тетраэдрическими катионами тетрафенилсти-бония, камфора-10-сульфонатными анионами и сольватными молекулами бензола. Длины связей Sb–C и S–O в молекуле **353** изменяются в интервалах 2,071(18)–2,124(17) Å и 1,449(13)–1,485(12) Å. Тетраэдрические катионы тетрафенилстибония несколько искажены [CSbC 99,0(6)°–119,0(6)°, расстояния Sb–C равны 2,088(14)–2,175(17) Å], длины связей S–O в анионах составляют 1,425(13)–1,476(11) Å. Структурная организация в кристалле **353** обусловлена слабыми межмолекулярными контактами типа S=O····H–C (2,34–2,68 Å).

Сходными геометрическими характеристиками обладает полученный из эквимолярных количеств пентафенилсурьмы и 1-нафталинсульфоновой кислоты в бензоле гидрат 1нафталинсульфоната тетрафенилсурьмы Ph₄SbOSO₂Naft-1·H₂O (**354**) [139]. По данным PCA, атомы сурьмы имеют искаженную тригонально-бипирамидальную координацию с атомами углерода и кислорода в аксиальных положениях (угол CSbO 172,3(6)°, расстояние Sb…O составляет 2,84(1) Å). Длины связей Sb–C и S–O в **354** изменяются в узком интервале значений (2,000(13)–2,132(13) Å и 1,441(4)–1,456(4) Å). Структурная организация в кристалле **354** обусловлена слабыми межмолекулярными контактами типа S=O···H–C 2,50–2,71 Å.

В полученном по этой же схеме сольвате 2,4-динитробензолсульфоната тетра(*пара*-толил)сурьмы с ацетоном *p*-Tol₄SbOSO₂C₆H₃(NO₂)₂-2,4 · Me₂C=O (**355**) по данным рентгеноструктурного анализа атомы сурьмы имеют искаженную тетраэдрическую координацию (CSbC 99,85(9)–123,74(9)°) [140], однако присутствует координация одного из атомов кислорода сульфогруппы с центральным атомом металла (расстояние Sb···O составляет 2,814(4) Å), поэтому правильнее считать координацию центрального атома металла тригонально-бипирамидальной (аксиальный угол O(1)Sb(1)C(11) 172,78(8)°, экваториальные углы составляют 123,74(8), 114,60(8), 102,92(8)°). Длины связей Sb–C в **355** изменяются в узком интервале значений (2,091(2)–2,111(2) Å). Структурная организация в кристалле **355** обусловлена слабыми межмолекулярными контактами типа O···H–C 2,25–2,69 Å.

Взаимодействием пентафенилфосфора и пентафенилсурьмы с 2-сульфобензойной кислотой в бензоле получены с выходом до 90 % (2-карбокси)бензолсульфонаты тетрафенилфосфония [Ph₄P]⁺[OSO₂C₆H₄(COOH-2)]⁻ (**356**) и тетрафенилстибония [Ph₄Sb]⁺ [OSO₂C₆H₄(COOH-2)]⁻(**357**) [141]. Соединения **356** и **357** были также синтезированы из хлоридов тетрафенилфосфония, -стибония и 2-сульфобензойной кислоты в воде с выходом до 89 %. Комплексы охарактеризованы методами рентгеноструктурного анализа. Представляют собой бесцветные кристаллы с т. пл. 202 °C (**356**) и 160 °C (**357**), растворимые в аренах и полярных растворителях.

Аренсульфонаты тетраарилсурьмы можно получать по реакции обмена. Так, взаимодействием хлорида тетра(*пара*-толил)стибония*p*-Tol₄SbCl (**358**) с бензолсульфоновой кислотой в воде синтезирован бензолсульфонат тетра(*пара*-толил)стибония *p*-Tol₄SbOSO₂Ph (**359**) [142]. По данным PCA, хлорид тетра(*пара*-толил)стибония *p*-Tol₄SbCl (**358**) имеет молекулярное строение с искаженной тригонально-бипирамидальной координацией атома сурьмы (углы CSbC варьируются в пределах 96,12(8)–124,83(8)°, аксиальный угол CSbCl составляет 174,91(6)°, расстояния Sb–C и Sb–Cl составляют 2,107(2)–2,170(2) и 2,7230(13) Å). Аналогичное строение имеет бензолсульфонат тетра(*пара*-толил)стибония *p*-Tol₄SbOSO₂Ph (**359**), в котором аксиальный угол CSbO составляет 176,44(13)°, а расстояния Sb–C и Sb–O составляют 2,105(4)–2,150(4) и 2,409(3) Å.

Гексабромоплатинаты органилтрифенилфосфония и -стибония синтезированы при взаимодействии гексабромоплатината калия с бромидами органилтрифенилфосфония в ацетонитриле или воде [143]. Комплексы [Ph₃PC₂H₅]₂[PtBr₆] (**360**) и [Ph₃PCH₂Ph]₂[PtBr₆] (**361**) получены перекристаллизацией из диметилсульфоксида; комплексы [Ph₃PCH₂Ph][PtBr₅(Et₂SO-*S*)] (**362**), [Ph₄Sb·Et₂SO-*O*]₂[PtBr₆] (**363**) – перекристаллизацией гексабромоплатинатов бензилтрифенилфосфония и тетрафенилстибония из диэтилсульфоксида. По данным рентгеноструктурных исследований атомы фосфора в катионах имеют искаженную тетраэдрическую координацию, атомы сурьмы – искаженную тригонально-бипирамидальную координацию за счет взаимодействия Sb···O=SEt₂.

Взаимодействием дицианодииодоаурата калия с галогенидами тетра(*пара*-толил)сурьмы и алкилтрифенилфосфония в водном растворе синтезированы кристаллические комплексы золота красного цвета [*p*-Tol₄Sb][Au(CN)₂I₂] (**364**), [Ph₃PMe][Au(CN)₂I₂] (**365**), [Ph₃PCH₂CN][Au(CN)₂I₂] (**366**), строение которых установлено методами ИК-спектроскопии, спектроскопии ЯМР и РСА [144]. Катионы тетра(*пара*-толил)сурьмы и алкилтрифенилфосфония имеют искаженную тетраэдрическую координацию. Дицианодииодоауратные анионы имеют плоское строение с квадратной координацией атома золота. Образование пространственной сетки кристаллов обусловлено слабыми водородными связями СN…H–C между катионами и анионами (2,39; 2,59 Å в **364;** 2,70; 2,48; 2,52; 2,68 Å в **365** и 2,73; 2,50; 2,67; 2,44 Å в **366**).

При кристаллизации продуктов реакций пентафенилсурьмы с 2,4-динитробензолсульфоновой кислотой и пента(*пара*-толил)сурьмы с бромоводородной кислотой из смеси бензол – октан на воздухе наряду с целевыми продуктами – 2,4-динитробензолсульфонатом тетрафенилсурьмы и бромидом тетра(паратолил)сурьмы – выделены новые ионные комплексы сурьмы с трехкоординированным атомом углерода в катионе [(Ph₄SbO)₃C]⁺[OSO₂C₆H₃(NO₂)₂-2,4]⁻.3PhH (**367**) и [(*p*-Tol₄SbO)₃C]⁺Br⁻ (**368**) [145]. Катионы имеют практически плоские центральные фрагменты CO₃Sb₃. Углы ОСО и COSb близки к 120°, связи C–О изменяются в интервале 1,277(4)–1,290(3) Å, расстояния Sb–O (2,266(2)–2,299(2) Å). Установлено, что комплексы образуются в результате взаимодействия целевых продуктов указанных реакций с карбонатами *бис*(тетраарилсурьмы), которые также образуются в условиях реакций из пентаарилсурьмы и углекислого газа воздуха.

В работе [146] сообщатся о энантиоселективном переносном гидрировании бензоксазинов, катализируемом новой хиральной парой катион/анион сурьмы.

Ряд хиральных катализаторов пниктогена может быть быстро получен из триарилстибина с легкодоступными аналогами миндальной кислоты, и катализатор демонстрирует замечательную эффективность энантиоконтроля даже при загрузке 0,05 мол. %. Кроме того, свойства катализатора и понимание механизма были исследованы с помощью исследований нелинейных эффектов и ¹Н ЯМР.

Пентафенилсурьма ранее кристаллизовалась либо в квадратно-пирамидальной, либо в тригонально-бипирамидальной геометрии. Исследование структуры SbPh₅ в растворенном состоянии позволило заключить, что в растворе пентафенилсурьма сохраняет квадратно-пирамидальную геометрию. Этот факт, несовместимый с VSEPR геометрией, которую также принимает BiPh₅ в твердом состоянии, контрастирует с тригонально-бипирамидальной геометрией PPh₅ и AsPh₅. В работе [147] представлены кристаллографические, спектроскопические и расчетные данные, показывающие, что SbPh₅ фактически принимает в растворе тригонально-бипирамидальную геометрию, соответствующую VSEPR.

Отмечено, что данные дифракции высокого разрешения позволяют пересмотреть τ для несольватированной SbPh₅ до 0,216.

Отметим, что в работах [148, 149], проводимых по этой теме параллельно в лаборатории рентгеноструктурного анализа Южно-Уральского государственного университета, установлено, что молекулы пентафенилсурьмы, пента(*пара*-толил)сурьмы и их сольватов с бензолом, диоксаном, тетрагидрофураном и ксилолом имеют тригонально-бипирамидальную конфигурацию.

Таким образом, исследования в области строения сурьмаорганических соединений представляют значительный интерес для многих химиков, что подтверждается также и обнаруженными недавно фактами при изучении структур необычных соединений сурьмы, таких как [*p*-Tol₄Sb]{[F₃CC(O)CHC(O)CF₃]₂Li} (**369**) [150] и [(3-FC₆H₄)₂SbOC(O)C₆H₃F₂-2,5]₂·PhH (**370**) [151].

Список источников

1. Кочешков К.А., Сколдинов А.П., Землянский Н.Н. Методы элементоорганической химии. Сурьма, висмут. М.: Наука, 1976. 483 с.

2. Шарутин В.В., Поддельский А.И., Шарутина О.К. // Коорд. химия. 2020. Т. 46, № 10. С. 579. DOI: 10.1134/S1070328420100012.

3. Gericke R., Wagler J. // Inorg. Chem. 2020. V. 59. P. 6359. DOI: 10.1021/acs.inorgchem.0c00466.

4. Helling C., Wölper C., Cutsail G.E. et al. // Chem.-Eur. J. 2020. V. 26. P. 13390. DOI: 10.1002/chem.202001739.

5. *Helling C., Haak J., Wölper C. et al.* // Inorg. Chem. 2022. V. 61. P. 5124. DOI: 10.1021/acs.inorgchem.2c00251.

6. Deka R., Sarkar A., Gupta A. et al. // Eur. J. Inorg. Chem. 2020. V. 22. P. 2143. DOI: 10.1002/ejic.202000094.

7. Musongong J.T., Otang M.E., Mash B.L et al. // Dalton Trans. 2020. V. 49. P. 6341. DOI: 10.1039/d0dt01163k.

8. Philipp M.S.M., Krahfuss M.J., Radacki K., Radius U. // Eur. J. Inorg. Chem. 2021. V. 38. P. 4007. DOI: 10.1002/ejic.202100632.

9. *Ritter C., Michel N., Rinow A. et al.* // Eur. J. Inorg. Chem. 2021. V. 21. P. 2514. DOI: 10.1002/ejic.202100303.

10. *Helling C., Wölper C., Schulz S. //* Eur. J. Inorg. Chem. 2020. P. 4225. DOI: 10.1002/ejic.202000747.

11. Weinert H.M., Wölper C., Schulz S. // Chem. Sci. 2022. V. 13. P. 3775. DOI: 10.1039/D2SC00314G.

12. Ugandhar U., Navaneetha T., Ali J. et al. // Inorg. Chem. 2020. V. 59. P. 6689. DOI: org/10.1021/acs.inorgchem.9b03238.

13. Inaba R., Oka K., Iwami T. et al. // Inorg. Chem. 2022. V. 61. P. 7318. DOI: 10.1021/acs.inorgchem.2c00158.

14. Siddiqui M.M., Sarkar S.K., Nazish M. et al. // J. Am. Chem. Soc. 2021. V. 143. P. 1301. DOI: 10.1021/jacs.0c12084.

15. Sharma D., Balasubramaniam S., Kumar S. et al. // Chem. Commun. 2021. V. 57. P. 8889. DOI: 10.1039/D1CC03038H.

16. *Li N., Fan Q., Xu L. et al.* // Mol. Catal. 2021. V. 511. P. 111727. DOI: 10.1016/j.mcat.2021.111727.

17. Suteu R., Rat C.I., Silvestru C. et al. // Appl. Organomet. Chem. 2020. V. 34. e5393. DOI: 10.1002/aoc.5393.

18. *Kumar G.R., Yang M., Zhou B., Gabbai F.P.* // Mendeleev Commun. 2022. V. 32. P. 66. DOI: 10.1016/j.mencom.2022.01.021.

19. Zhou C., Lei J., Liu Y. et al. // Appl. Organomet. Chem. 2020. V. 34. e5881. DOI: 10.1002/aoc.5881.

20. *Coughlin O., Krämer T., Benjamin S.L.* // Dalton Trans. 2020. V. 49.P. 1726. DOI: 10.1039/D0DT00024H.

21. Kořenková I.M., Kremláček I.V., Hejda M. et al. // Chem. -Eur. J. 2020. V. 26. P. 1144. DOI: 10.1002/chem.201904953.

22. *Ritter C., Bergunde J., Weigend F., Hänisch C. //* Z. Anorg. Allg. Chem. 2021. Bd. 647. S. 1830. DOI: 10.1002/zaac.202100214.

23. Walley J.E., Warring L.S., Kertész E. et al. // Inorg. Chem. 2021. V. 60. P. 4733. DOI: 10.1021/acs.inorgchem.0c03683.

24. Ritter C., Weigend F., Hänisch C. // Chem. -Eur. J. 2020. V. 26. P. 8536. DOI: 10.1002/chem.202002279.

25. *Krüger J., Haak J., Wölper C. et al.* // Inorg. Chem. 2022. V. 61. P. 5878. DOI: 10.1021/acs.inorgchem.2c00249.

26. Nag E., Kulkarni A., Gorantla S.M.N.V.T. et al. // Dalton Trans. 2022. V. 51. P. 1791. DOI: 10.1039/D1DT03398K.

27. *Dunaj T., Dollberg K., von Hänisch C. //* Dalton Trans. 2022. V. 51. P. 7551. DOI: 10.1039/D2DT00472K.

28. Bujak M., Stammler H.-G., Vishnevskiy Y.V., Mitzel N.W. // CrystEngComm. 2022. V. 24. P. 70. DOI: 10.1039/D1CE01268A. 29. Fritzsche A.-M., Scholz S., Krasowska M. et al. // Phys. Chem. Chem. Phys. 2020. V.22.P. 10189. DOI: 10.1039/C9CP06924K. 30. Gini A., Paraja M., Galmés B. et al. // Chem. Sci. 2020. V. 11. P. 7086. DOI: 10.1039/D0SC02551H. 31. Egorova I., Zhidkov V., Zubakina I. et al. // J. Organomet. Chem. 2020. V. 907. P. 121077. DOI: 10.1016/j.jorganchem.2019.121077. 32. Шарутин В.В., Шарутина О.К. // Журн. общ. химии. 2020. Т. 90. С. 1577. DOI: 10.31857/S0044460X20100133. 33. Шарутин В.В., Шарутина О.К. // Журн. неорган. химии. 2021. Т. 66. С. 361. DOI: 10.1134/S0036023621030153. 34. Sharutin V.V., Sharutina O.K., Novikov A.S., Adonin S.A. // New J. Chem. 2020. V. 44. P. 14339. DOI: 10.1039/D0NJ02774J. 35. Sharutin V.V., Sharutina O.K., Efremov A.N., Adonin S.A. // Mendeleev Comm. 2022. V. 32. P. 109. DOI: 10.1016/j.mencom.2022.01.035. 36. Tang N., Song X., Yang T. et al. // J. Organomet. Chem. 2021. V. 942. P. 12820. DOI: 10.1016/j.jorganchem.2021.121820. 37. Olaru M., Kegyes K.T., Rat C.I. // Rev. Roum. Chim. 2020. V. 65. P. 719. DOI: 10.33224/rrch.2020.65.7-8.10. 38. Ефремов А.Н., Шарутин В.В. // Вестник ЮУрГУ. Серия «Химия». 2022. Т. 14. С. 14. DOI: 10.14529/chem220202. 39. Sharutin V.V., Sharutina O.K., Kazakov M.V. // Russ. J. Inorg. Chem. 2014. V. 59. P. 1115. DOI: 10.1134/S0036023614100167. 40. Sharutin V.V., Senchurin V.S., Sharutina O.K., Chagarova O.V. // Russ. J. Inorg. Chem. 2012. V. 57. P. 1073. DOI: 10.1134/S0036023612080128. 41. Gehlhaar A., Wölper C., Vight F. et al. // Eur. J. Inorg. Chem. 2022. e202100883. DOI: 10.1002/ejic.202100883. 42. Matsumura M., Matsuhashi Y., Kawakubo M. et al. // Molecules. 2021. V. 26. P. 222. DOI: 10.3390/molecules26010222. 43. Murata Y., Kakusawa N., Arakawa Y. et al. // J. Organomet. Chem. 2020. V. 928. P. 121545. DOI: 10.1016/j.jorganchem.2020.121545. 44. Zhang D., Le L., Qiu R. et al. // Angew. Chem. Int. Ed. 2021. V. 60. P. 3104. DOI: 10.1002/anie.202011491. 45. García-Romero Á., Martín-Álvarez J.M., Miguel D. et al. // Inorg. Chem. 2021. V. 60. P. 19206. DOI: 10.1021/acs.inorgchem.1c03004. 46. Sakabe M., Ooizumi A., Fujita W. et al. // Eur. J. Inorg. Chem. 2020. P. 4373. DOI: 10.1002/ejic.202000795. 47. Waters J.E., Berger G., Peel A.J. et al. // Chem.-Eur. J. 2021. V. 27. P. 12036. DOI: 10.1002/chem.202101291. 48. Effendy Marchetti F., Di Nicola C. et al. // Inorg. Chim. Acta. 2022. V. 534. P. 120825. DOI: 10.1016/j.ica.2022.120825. 49. Islam S., Hossain M.I., Karim M.M., Bhoumik N.C. // J. Chem. Cryst. 2022. V. 52. P. 17. DOI: 10.1007/s10870-021-00884-3. 50. Шевченко Д.П., Хабина А.Е., Шарутин В.В. и др. // Изв. АН. Серия хим. 2021. № 10. C. 1946. EDN: LYGGTO. 51. Gericke R., Wagler J. // Inorg. Chem. 2021. V. 60. P. 18122. DOI: 10.1021/acs.inorgchem.1c02735. 52. Patty J.B., Havenridge S., Tietje-Mckinney D. et al. // J. Am. Chem. Soc. 2022. V. 144. P. 478. DOI: org/10.1021/jacs.1c10778. 53. Krüger J., Wölper C., Auer A.A. et al. // Eur. J. Inorg. Chem. 2022. e202100960. DOI: org/10.1002/ejic.202100960. 54. You D., Smith J.E., Sen S., Gabbai F.P. // Organometallics. 2020. V. 39. P. 4169. DOI: 10.1021/acs.organomet.0c00193. 55. Krüger J., Wölper C., Schulz S. // Angew. Chem. Int. Ed. 2020. V. 60. P. 3572.

DOI: 10.1002/anie.202013618. 56. Gangadharappa S.C., Maisuls I., Schwab D.A. et al. // J. Am. Chem. Soc. 2020. V. 142. P. 21353. DOI: 10.1021/jacs.0c09467. 57. LiY.-Z., YuanZ.-R., GangulyR. et al. // J. Organomet. Chem. 2021. V. 942. P. 121817. DOI: 10.1016/j.jorganchem.2021.121817. 58. Poddel'sky A.I., Smolyaninov I.V., Druzhkov N.O., Fukin G.K. // J. Organomet. Chem. 2021. V. 952. P. 121994. DOI: 10.1016/j.jorganchem.2021.121994. 59. Helling C., Wölper C., Schulz S. // Dalton Trans. 2020. V. 49. P. 11835. DOI: .org/10.1039/D0DT01937B. 60. Lo Y.-H., Gabbai F.P. // Z. Anorg. Allg. Chem. 2020. Bd. 646. S. 636. DOI: 10.1002/zaac.201900186. 61. Cairns K.R., Greenacre V.K., Grose L.A. et al. // J. Organomet. Chem. 2020. V. 912. P. 121176. DOI: 10.1016/j.jorganchem.2020.121176. T., Yang P., Dammann I. // Inorg. Chem. 2020. V. 59. P. 2978. 62. Ма DOI: 10.1021/acs.inorgchem.9b03322. 63. Plajer A.J., Crusius D., Jethwa R.B. et al. // Dalton Trans. 2021. V. 50.P. 2393. DOI: 10.1039/D0DT03732J. 64. Helling C., Cutsail G.E., Weinert H. et al. // Angew. Chem. Int. Ed. 2020. V. 59. P. 7561. DOI: 10.1002/anie.202000586. 65. Wächtler E., Gericke R., Block T. et al. // Inorg. Chem. 2020. V. 59. P. 15541. DOI: 10.1021/acs.inorgchem.0c02615. 66. Шарутина О.К. // Вестник ЮУрГУ. Серия «Химия». 2021. Т. 13. № 1. С. 21. DOI: 10.14529/chem210102. 67. Piesch M., Gabbai F.P., Scheer M. // Z. Anorg. Allg. Chem. 2021. Bd. 647. S. 266. DOI: 10.1002/zaac.202000249. 68. Rodrigues R.R., Gabbal F.P. // Molecules. 2021. P. 1985. DOI: 10.3390/molecules26071985. 69. Smith J.E., Yang H., Gabbai F.P. // Organometallics. 2021. V. 40. P. 3886. DOI: 10.1021/acs.organomet.1c00371. 70. Al Mamun Md.A., Rajbangshi S., Ghosh S. et al. // J. Organomet. Chem. 2021. V. 953. P. 122034. DOI: 10.1016/j.jorganchem.2021.122034. 71. Chupina A.V., Shayapov V., Novikov A.S. et al. // Dalton Trans. 2020. V. 49. P. 1522. DOI: 10.1039/C9DT04043A. 72. Taylor W.V., Cashman B.K., Xie Z.-L. et al. // Inorg. Chem. 2022. V. 61. P. 6733. DOI: 10.1021/acs.inorgchem.1c03366. 73. Wenger J.S., Wang X., Johnstone T.C. // Inorg. Chem. 2021. V. 60. P. 16048. DOI: 10.1021/acs.inorgchem.1c02229. 74. Astaf eva T.V., Rumyantcev R.V., Arsenyev M.V. et al. // J. Organomet. Chem. 2021. V. 958. P. 122190. DOI: 10.1016/j.jorganchem.2021.122190. 75. Domasevitch K.V., Senchyk G.A. // Acta Cryst., Sect. E: Cryst. Commun. 2021. V. 77. P. 1229. DOI: 10.1107/S2056989021011294. 76. Шарутин В.В., Шарутина О.К., Сопшина Д.М. // Журн. общ. химии. 2021. Т. 91. № 9. C. 1438. DOI: 10.31857/S0044460X21090158. 77. Шарутин В.В., Шарутина О.К., Хайбуллина О.А. // Журн. общ. химии. 2021. Т. 91. № 9. C. 1446. DOI: 10.31857/S0044460X2109016X. 78.Шарутин В.В., Шарутина О.К. // Журн. неорган. химии. 2021. Т. 66. № 3. С. 358. DOI: 10.31857/S0044457X21030156. 79. Шарутин В.В., Шарутина О.К., Ефремов А.Н. // Коорд. химия. 2021. Т. 47. № 5. С. 293. DOI: 10.31857/S0132344X21050066. 80. Шарутин В.В., Потемкин В.А., Ефремов А.Н. и др. // Изв. Академии наук. Серия химическая. 2022. № 4. С. 707. EDN: KTJZZJ. 81. Ефремов А.Н., Шарутин В.В., Шарутина О.К. // Журн. структ. химии. 2022. Т. 63. № 3. C. 261. DOI: 10.26902/JSC id88696. 82. Artem'eva E.V., Duffin R.N., Munuganti S. et al. // Polyhedron. 2022. V. 213. P. 115627. DOI: 10.1016/j.poly.2021.115627.

- 83. *Sharutin V.V., Sharutina O.K., Efremov A.N. et al.* // J. Fluorine Chem. 2020. V. 234. P. 109517. DOI: 10.1016/j.jfluchem.2020.109517.
- 84. Артемьева Е.В., Шарутина О.К., Шарутин В.В., Буланова А.В. // Журн. неорган. химии. 2020. Т. 65. С. 22. DOI: 10.31857/S0044457X20010031.
- 85. Шарутин В.В., Шарутина О.К., Ефремов А.Н., Слепухин П.А. // Журн. неорган. химии. 2020. Т. 65. № 7. С. 907. DOI: 10.31857/S0044457X20070193.
- 86. Шарутин В.В., Шарутина О.К. // Журн. общ. химии. 2021. Т. 91. № 9. С. 598. DOI: 10.31857/S0044460X21040156.
- 87. Шарутин В.В., Шарутина О.К., Губанова Ю.О., Фоминых А.С. // Журн. общ. химии. 2020. Т. 90. № 1. С. 136. DOI: 10.31857/S0044460X20010175.
- 88. Sharutin V.V., Sharutina O.K., Gubanova Y.O. et al. // Mendeleev Comm. 2020. V. 30. P. 97. DOI: org/10.1016/j.mencom.2020.01.032
- 89. Гущин А.В., Малеева А.И., Калистратова О.С., Хамалетдинова Н.М. // Вестник ЮУрГУ. Серия «Химия». 2021. Т. 13. № 1. С. 5. DOI: 10.14529/chem210101.
- 90. Хайбуллина О.А. // Вестник ЮУрГУ. Серия «Химия». 2021. Т. 13. № 1. С. 39. DOI: 10.14529/chem210104.
- 91. Шарутина О.К. // Вестник ЮУрГУ. Серия «Химия». 2022. Т. 14. № 4. С. 26. DOI: 10.14529/chem220402.
- 92. *Рыбакова А.В.* // Вестник ЮУрГУ. Серия «Химия». 2021. Т. 13. № 4. С. 91. DOI: 10.14529/chem210407.
- 93. Белов В.В. // Вестник ЮУрГУ. Серия «Химия». 2021. Т. 13. № 4. С. 101. DOI: 10.14529/chem210408.
- 94. *Ефремов А.Н., Шарутин В.В.* // Вестник ЮУрГУ. Серия «Химия». 2021. Т. 13. № 4. С. 120. DOI: 10.14529/chem210410.
- 95. Лобанова Е.В. // Вестник ЮУрГУ. Серия «Химия». 2020. Т. 12. № 2. С. 23. DOI: 10.14529/chem200203.
- 96. *Брегадзе В.И., Ефремов А.Н., Шарутин В.В.* // Вестник ЮУрГУ. Серия «Химия». 2023. Т. 15. № 1. С. 43. DOI: 10.14529/chem230104.
- 97. Белов В.В. // Вестник ЮУрГУ. Серия «Химия». 2022. Т. 14. № 2. С. 120. DOI: 10.14529/chem220213.
- 98. Artem'evaE.V. // Вестник ЮУрГУ. Серия «Химия». 2020. Т. 12. № 1. С. 35. DOI: 10.14529/chem200104.
- 99. *Ефремов А.Н.* // Вестник ЮУрГУ. Серия «Химия». 2022. Т. 14. № 4. С. 34. DOI: 10.14529/chem220403.
- 100. Сенчурин В.С., Филимонова Д.М., Хроменко В.Е. // Вестник ЮУрГУ. Серия «Химия». 2021. Т. 13. № 3. С. 14. DOI: 10.14529/chem210302.
- 101. *Белов В.В.* // Вестник ЮУрГУ. Серия «Химия». 2022. Т. 14. № 3. С. 16. DOI: 10.14529/chem220302.
- 102. *Murgin A.L., Ovsetsina T.I., Maleeva A.I. et al.* // Crystallography Reports. 2020. V. 65. No. 3. P. 449. DOI: 10.1134/S1063774520030220.
- 103. Fukin G.K., Baranov E.V., Rumyantcev R.V. et al. // Struct. Chem. 2020. V. 31. P. 1841. DOI: 10.1007/s11224-020-01548-2.
- 104. Egalahewa S., Aprile A., Dutton J.L. // Dalton Trans. 2020. V. 49. P. 7507. DOI: 10.1039/D0DT00777C.
- 105. *Ефремов А.Н., Шарутин В.В.* // Вестник ЮУрГУ. Серия «Химия». 2022. Т. 14. № 1. С. 5. DOI: 10.14529/chem220101.
- 106. Шарутин В.В., Шарутина О.К., Ефремов А.Н. // Коорд. химия. 2020. Т. 46. № 1. С. 45.DOI: 10.31857/S0132344X19120065.
- 107. *Ефремов А.Н.* // Вестник ЮУрГУ. Серия «Химия». 2020. Т. 12. № 2. С. 5. DOI: 10.14529/chem200201.
- 108. *McGeachie L.J.R., Carpenter-Warren C.L., Cordes D.B. et al.* // Z. Anorg. Allg. Chem. 2020. Bd. 646. S. 1795. DOI: 10.1002/zaac.202000238.
- 109. *Kitamura Y., Murata Y., Iwai M. et al.* // Molecules. 2021. V. 26. P. 97. DOI: 10.3390/molecules26010097.

110. Yakubenko A.A., Puzyk A.M., Korostelev V.O. et al. // Phys. Chem. Chem. Phys. 2022. V. 24.
111. Шарутин В.В., Шарутина О.К. // Журн. общ. химии. 2021. Т. 91. № 5. С. 835.
DOI: 10.31857/S0044460X21050127.
П.2. <i>Белов В.В.</i> // Вестник Юургу. Серия «Химия». 2022. Г. 14. № Г. С. 59. DOI: 10.14529/chem220107.
113. Smolyaninov I.V., Fukin G.K., Berberova N.T., Poddel'sky A.I. // Molecules. 2021. V. 26.
P. 2171. DOI: 10.3390/molecules26082171. 114. Duffin R.N., Blair V.L., Kedzierski L., Andrews P.C. // J. Inorg. Biochem. 2020. V. 203.
P. 110932. DOI: 10.1016/j.jinorgbio.2019.110932.
115. Park G., Gabbaï F.P. // Chem. Sci. 2020. V. 11. P. 10107. DOI: 10.1039/D0SC04417B.
DOI: 10.1021/jacs.1c02808.
117. Smolyaninov I.V., Poddel'sky A.I., Smolyaninova S.A. et al. // Molecules. 2020. V. 25. P. 1770.
DOI: 10.3390/molecules25081770.
P. 111385. DOI: 10.1016/i.iinorgbio.2021.111385.
119. You D., Zhou B., Hirai M., Gabbai F.P. // Org. Biomol. Chem. 2021. V. 19. P. 4949.
DOI: 10.1039/D10B00536G.
120. Martyanov K.A., Kuropatov V.A., RumyantcevR.V., Cherkasov V.K. // Inorg. Chim. Acta. 2021. V 528 P 120604 DOI: 10.1016/j.jca.2021.120604
121. Охлопкова Л.С., Смолянинов И.В., Баранов Е.В., Поддельский А.И. // Коорд. химия. 2020.
T. 46. № 7. C. 466. DOI: 10.31857/S0132344X20060080.
122. Охлопкова Л.С., Поддельский А.И., Смолянинов И.В., Фукин Г.К. // Коорд. химия. 2020.
1. 40. M° 0. C. 340. DOI: 10.3185 //S0132344X20050039. 123 Artem'eva E V Duffin R N Munuganti S et al. // I. Inorg Biochem 2022, V. 234, P. 111864.
DOI: 10.1016/j.jinorgbio.2022.111864.
124. Гущин А.В., Малеева А.И., Кипелкин Е.В. и др. // Журн. общ. химии. 2021. Т. 91. № 2.
C. 227. DOI: $10.31857/S0044460X21020116$.
С. 1927. DOI: 10.31857/S0044460X20120161.
126. Шарутин В.В., Шарутина О.К., Ефремова А.Н., Артемьева Е.В. // Журн. неорган. хи-
мии. 2020. Т. 65. С. 482. DOI: 10.31857/S0044457X20040170.
127. Ефремов А.Н. // Вестник ЮУрГУ. Серия «Химия». 2020. 1.12. № 4. С. 51. DOI: 10.14529/chem200402.
128. <i>Ефремов А.Н.</i> // Вестник ЮУрГУ. Серия «Химия». 2020. Т. 12. № 3. С. 67. DOI: 10.14529/chem200302.
129. Галиуллина Д.Р., Ефремов А.Н. // Вестник ЮУрГУ. Серия «Химия». 2022. Т. 14, № 3.
C. 23. DOI: 10.14529/chem220303. 130 $HIggmmuug O K$ // Bectuur IOVpEV Cepug (Xumug) 2021 T 13 No 4 C 63
DOI: 10.14529 /chem 210404 .
131. Шарутин В.В., Шарутина О.К., Ефремов А.Н. // Журн. структ. химии. 2020. Т. 61. № 9.
C. 1490. DOI: 10.1134/S0022476620090085.
2020. Т. 65. № 4. С. 482. DOI: 10.1134/S0036023620040178.
133. Гришанина Е.К. // Вестник ЮУрГУ. Серия «Химия». 2022. Т. 14, № 3. С. 44.
DOI: 10.14529/chem220305.
DOI: 10.14529/chem220106.
135. Шарутин В.В. // Вестник ЮУрГУ. Серия «Химия». 2023. Т. 15. № 1. С. 50.
DOI: 10.14529/chem230105.
130. 1 убанова Ю.О., Шарутин Б.Б., Шарутина О.К., Петрова К.Ю. // журн. общ. химии. 2020. Т. 90. № 9. С. 1407. DOI: 10.31857/S0044460X20090127.
137. Ефремов А.Н., Шарутин В.В. // Вестник ЮУрГУ. Серия «Химия». 2021. Т. 13. № 1.
C. 47. DOI: 10.14529/chem210105.
FO Buildin of the South Ural State University, Sar, Chemistry

138. *Красносельская В.В.* // Вестник ЮУрГУ. Серия «Химия». 2022. Т. 14. № 2. С. 33. DOI: 10.14529/chem220204.

139. Шарутина О.К. // Вестник ЮУрГУ. Серия «Химия». 2022. Т. 14. № 1. С. 24. DOI: 10.14529/chem220103.

140. *Тарасова Н.М.* // Вестник ЮУрГУ. Серия «Химия». 2022. Т. 14. № 2. С. 25. DOI: 10.14529/chem220203.

141. *Ефремов А.Н., Шарутин В.В.* // Вестник ЮУрГУ. Серия «Химия». 2022. Т. 14. № 3. С. 34. DOI: 10.14529/chem220304.

142. Шарутин В.В. // Вестник ЮУрГУ. Серия «Химия». 2022. Т. 14. № 4. С. 64. DOI: 10.14529/chem220406.

143. Зыкова А.Р., Шарутин В.В., Шарутина О.К., Сенчурин В.С. // Журн. общ. химии. 2020. Т. 90. № 8. С. 1283. DOI: 10.31857/S0044460X20080168.

144. Шарутин В.В., Шарутина О.К., Ефремов А.Н., Ельцов О.С. // Коорд. химия. 2020. Т. 46. № 9. С. 554. DOI: 10.31857/S0132344X20090030.

145. Шарутин В.В., Шарутина О.К., Ефремов А.Н. // Журн. неорган. химии. 2020. Т. 65. С. 49. DOI: 10.31857/S0044457X20010158.

146. Zhang J., Wei J., Ding W.-Y. et al. // J. Am. Chem. Soc. 2021. V. 143. No. 17. P. 6382. DOI: 10.1021/jacs.1c02808.

147. *Lindquist-Kleissler B., Weng M., Le Magueres P. et al.* // Inorg. Chem. 2021. V. 60. No. 12. P. 8566. DOI: 10.1021/acs.inorgchem.1c00496.

148. *Ефремов А.Н., Шарутин В.В.* // ВестникЮУрГУ. Серия «Химия». 2022. Т. 14. № 2. С. 14. DOI: 10.14529/chem220202.

149. Шарутин В.В., Головин М.С. // Вестник ЮУрГУ. Серия «Химия». 2022. Т. 14. № 2. С. 5. DOI: 10.14529/chem220201.

150. Шарутин В.В. // Вестник ЮУрГУ. Серия «Химия». 2021. Т. 13. № 2. С. 5. DOI: 10.14529/chem210201.

151. Шарутин В.В. // Вестник ЮУрГУ. Серия «Химия». 2022. Т. 14. № 3. С. 5. DOI: 10.14529/chem220301.

Шарутин Владимир Викторович – доктор химических наук, главный научный сотрудник управления научной и инновационной деятельности, Южно-Уральский государственный университет, Челябинск, Россия. E-mail: sharutinvv@susu.ru, sharutin50@mail.ru.

Статья поступила в редакцию 27 октября 2023 г. The article was submitted 27 October 2023.