Научная статья УДК 546.865 +547.53.024+547.581.2+548.312.2+548.312.5+548.73 DOI: 10.14529/chem240204

ОСОБЕННОСТИ СТРОЕНИЯ ПРОДУКТОВ РЕАКЦИИ ДЕАРИЛИРОВАНИЯ ПЕНТААРИЛСУРЬМЫ ПОЛИФУНКЦИОНАЛЬНЫМИ КИСЛОТАМИ

Ю.О. Пупкова, О.К. Шарутина, В.В. Шарутин⊠

Южно-Уральский государственный университет, Челябинск, Россия ^{III} sharutin50@mail.ru

> Аннотация. Установлено, что в реакциях с пентафенилсурьмой 2,3-дигидроксибензойная и 5-гидроксипиридин-2-карбоновая кислоты проявляют себя как бифункциональные соединения и образуют биядерные продукты $[Ph_4Sb]^+[Ph_4Sb(O,O'-C_6H_3COOH-3]^-$ **(I)**. Ph₄SbOC(O)C₅H₃NOSbPh₄-4 (II) соответственно. Реакция с 2,3-дигидроксибензойной кислотой протекает с участием только гидроксигрупп, с 5-гидроксипиридин-2-карбоновой кислотой – с участием гидрокси- и карбокси-групп. 2,6-Дигидроксибензойная кислота реагирует с пента(*пара*-толил)сурьмой только по карбоксильной группе, давая 2,6-дигидроксибензоат тетра(*пара*-толил)сурьмы *p*-Tol₄SbOC(O)C₆H₃(OH)₂-2,6 (**III**). Строение соединений **I–III** охарактеризовано методами ИК-спектроскопии и рентгеноструктурного анализа (РСА). По данным РСА, в кристалле I присутствуют катионы $[Ph_4Sb]^+$ с искаженной тетраэдрической координацией атома сурьмы (углы CSbC 99,18(14)°-118,07(16)°, связи Sb-C 2,093(4)-2,119(3) Å) и анионы, содержащие пятичленный металлоцикл [SbO₂C₂], в котором атом сурьмы гексакоординирован (цисуглы CSbC 91,52(13)°-102,90(13)°; CSbO 85,06(12)°-94,73(13)°, OSbO 76,22(9)°). Расстояния Sb-O в цикле составляют 2,122(2) и 2,215(2) Å. Связи Sb-C варьируют в интервале 2,175(3)–2,187(4) Å. В молекуле II атомы сурьмы структурно неэквивалентны. Один из атомов, связанный с атомом кислорода гидроксигруппы, имеет координацию искаженной тригональной бипирамиды (аксиальный угол OSbC 174,5(2)°, углы CSbC в экваториальной плоскости 116,2(3)-120,9(3)°; расстояния Sb-O и Sb-C равны 2,256(5) Å и 2,108(7)-2,174(7) Å соответственно). Координационное число второго атома сурьмы, связанного с кислородом карбоксильной группы, увеличено до 6 за счет координации атома азота пиридинового цикла, расположенного в орто-положении по отношению к карбоксильной группе (расстояние Sb…N равно 2,402(6) Å). Координационный полиэдр атома – искаженный октаэдр (цис-углы при атоме сурьмы изменяются в интервале 72,22(19)°-103,6(3)°). Длина связи Sb-O равна 2,194(5) Å, расстояния Sb-C составляют 2,165(7)-2,189(7) Å. В молекуле III координация атома сурьмы – искаженная тригональная бипирамида: аксиальный угол OSbC 170,30(8)°, углы CSbC в экваториальной плоскости 112,17(9)°-122,09(9)°; связи Sb-O 2,527(2) Å, Sb-C 2,031(2)-2,258(3) Å.

> *Ключевые слова*: пентафенилсурьма, пента(*пара*-толил)сурьма, 2,3-дигидроксибензойная кислота, 5-гидроксипиридин-2-карбоновая кислота, 2,6-дигидроксибензойная кислота, деарилирование, рентгеноструктурный анализ

Для цитирования: Пупкова Ю.О., Шарутина О.К., Шарутин В.В. Особенности строения продуктов реакций деарилирования пентаарилсурьмы полифункциональными кислотами // Вестник ЮУрГУ. Серия «Химия». 2024. Т. 16, № 2. С. 46–57. DOI: 10.14529/chem240204

[©] Пупкова Ю.О., Шарутина О.К., Шарутин В.В., 2024.

Original article DOI: 10.14529/chem240204

STRUCTUAL FEATURES OF THE DEARYLATION REACTION PRODUCTS OF PENTARYLANTIMONY WITH POLYFUNCTIONAL ACIDS

Yu.O. Pupkova, **O.K. Sharutina**, **V.V. Sharutin**[™] South Ural State University, Chelyabinsk, Russia [™] sharutin50@mail.ru

Abstract. It has been established that in reactions with pentaphenylantimony, 2,3-dihydroxybenzoic and 5-hydroxypyridine-2-carboxylic acids behave as bifunctional compounds and form binuclear products [Ph₄Sb]⁺[Ph₄Sb(O,O'-C₆H₃COOH-3]⁻ (I), Ph₄SbOC(O)C₅H₃NOSbPh₄-4 (II), respectively. The reaction with 2,3-dihydroxybenzoic acid occurs with the participation of just hydroxy groups, while the interaction with 5-hydroxypyridine-2-carboxylic acid proceeds with the participation of hydroxy and carboxy groups. 2,6-Dihydroxybenzoic acid reacts with penta(*para*-tolyl)antimony only at the carboxyl group, giving tetra(para-tolyl)antimony 2,6-dihydroxybenzoate p-Tol₄SbOC(O)C₆H₃(OH)₂-2,6 (III). The structures of compounds I-III have been characterized by IR spectroscopy and X-ray diffraction. According to the X-ray diffraction data, crystal I contains $[Ph_4Sb]^+$ cations with a slightly distorted tetrahedral coordination of the antimony atom (the CSbC angles are 99.18(14)°-118.07(16)°, the Sb-C bonds are 2.093(4)-2.119(3) Å) and anions containing a five-membered metallocycle [SbO₂C₂], in which the antimony atom is hexacoordinated (the CSbC cis-angles are 91.52(13)°-102.90(13)°; the CSbO angles equal 85.06(12)°-94.73(13)°, the OSbO angle is 76.22(9)°). The Sb-O distances in the ring are 2.122(2) and 2,215(2) Å. The Sb-C bonds vary in the range 2.175(3)-2.187(4) Å. In molecule II, the antimony atoms are structurally nonequivalent. One of the atoms, associated with the oxygen atom of the hydroxy group, has the coordination of a distorted trigonal bipyramid (the OSbC axial angle equals 174.5(2)°, the CSbC angles in the equatorial plane are 116.2(3)°-120.9(3)°; the Sb-O and Sb-C distances are 2.256(5) Å and 2.108(7)–2.174(7) Å, respectively). The coordination number of the second antimony atom associated with the oxygen of the carboxyl group is increased to 6 due to coordination of the nitrogen atom of the pyridine ring located in the ortho position with respect to the carboxyl group (the Sb...N distance is 2.402(6) Å). The coordination polyhedron of the atom is a distorted octahedron (cis-angles at the antimony atom vary in the range 72.22(19)°-103.6(3)°). The Sb-O bond length is 2.194(5) Å, the Sb-C distances are 2.165(7)-2.189(7) Å. In molecule III the coordination of the antimony atom is a distorted trigonal bipyramid: the OSbC axial angle equals 170.30(8)°, the CSbC angles in the equatorial plane are 112.17(9)°-122.09(9)°; the Sb-O bond is 2.527(2) Å, and the Sb-C bond equals 2.031(2)-2.258(3) Å.

Keywords: pentaphenylantimony, penta(*para*-tolyl)antimony, 2,3-dihydroxybenzoic acid, 5-hydroxypyridine-2-carboxylic acid, 2,6-dihydroxybenzoic acid, dearylation, X-ray diffraction analysis

For citation: Pupkova Yu.O., Sharutina O.K., Sharutin V.V. Structual features of the dearylation reaction products of pentarylantimony with polyfunctional acids. *Bulletin of the South Ural State University. Ser. Chem.* 2024;16(2):46–57. (In Russ.) DOI: 10.14529/chem240204

Введение

В основной части публикаций, посвященных вопросам практического использования органических соединений сурьмы, изучаются различные аспекты их биологической активности [1–6]. Специфичность свойств конкретного соединения обусловлена природой лигандов, связанных с атомом сурьмы. Синтез новых органических производных сурьмы с лигандами, проявляющими биологическую активность, позволяет увеличить разнообразие соединений с полезными свойствами.

Известно, что большинство органических ОН-кислот дефенилируют пентафенилсурьму, образуя производные Ph₄SbX (X – остаток кислоты) [7–10]. Реакции пентаарилсурьмы с органическими соединениями, содержащими несколько реакционноспособных функциональных групп, представляют интерес, поскольку могут приводить к образованию комплексов сурьмы, в которых лиганд выполняет различные структурные функции. С другой стороны, для органических соединений, содержащих различные функциональные группы с подвижным атомом водорода, реакции с пентаарилсурьмой являются своеобразным показателем их активности в этих группах. Так, при взаимодействии пентафенилсурьмы с сульфосалициловой кислотой сначала происходит замещение атома водорода в сульфонатной группе, при избытке пентафенилсурьмы в реакцию вступает карбоксильная группа, а гидроксильная группа участия в реакции не принимает [11]. При взаимодействии пентафенилсурьмы с салициловой кислотой реагирует только карбоксильная группа [12], в то время как реакция пентафенилсурьмы с 4-гидроксибензойной кислотой в толуоле в присутствии метоксида натрия протекает и по карбоксильной, и по гидроксильной группам [13]. В реакции пентафенилсурьмы с 2,4-дигидроксибензойной кислотой независимо от соотношения реагентов участвуют карбоксильная и *пара*-гидроксильная группы, образуя биядерный комплекс – 2-гидрокси-4-тетрафенилстибоксибензоат тетрафенилсурьмы, в молекуле которого тригонально-бипирамидальная координация двух атомов сурьмы искажена в разной степени [14].

Настоящая работа посвящена изучению реакций пентаарилсурьмы с 2,3-, 2,6дигидроксибензойными и 5-гидроксипиридин-2-карбоновой кислотами, а также установлению особенностей строения полученных продуктов.

Экспериментальная часть

Синтез З-карбоксикатехолато-О,О'-тетрафенилстиботат тетрафенилстибония [Ph₄Sb]⁺[Ph₄Sb(O,O'-C₆H₃COOH-3]⁻ (I). Смесь 0,25 г (0,49 ммоль) пентафенилсурьмы и 0,076 г (0,245 ммоль) 2,3-дигидроксибензойной кислоты в 5 мл толуола помещали в стеклянную ампулу и запаивали. Смесь нагревали на водяной бане в течение часа. После охлаждения и медленного удаления растворителя получили 0,445 г (89 %) светло-коричневых кристаллов с т. пл. 210 °С.

ИК-спектр (v, см⁻¹): 3053, 3032, 2355, 1675, 1570, 1551, 1495, 1470, 1435, 1292, 1260, 1202, 1180, 1161, 1018, 995, 970, 839, 741, 729, 723, 701, 650, 613, 513, 498.

Найдено, %: С 65,21, Н 4,43. Для С₅₅Н₄₄О₄Sb₂ вычислено, %: С 65,25, Н 4,39.

Синтез 5-тетрафенилстибокси-пиридин-2-карбоксилат тетрафенилсурьмы $Ph_4SbOC(O)C_5H_3NOSbPh_4-4$ (II). Смесь 0,25 г (0,49 ммоль) пентафенилсурьмы и 0,034 г (0,245 ммоль) 5-гидроксипиридин-2-карбоновой кислоты в 5 мл бензола помещали в стеклянную ампулу и запаивали. Смесь нагревали на водяной бане в течение часа, охлаждали до комнатной температуры. Ампулу вскрывали, раствор концентрировали. Получили 0,18 г (72 %) бесцветных кристаллов с т. пл. 189 °C (с разл.). Для $C_{54}H_{43}NO_3Sb_2$ вычислено, %: С 65,00; H 4,31. Найдено, %: С 64,89; H 4,42. ИК-спектр (v, см⁻¹): 3397, 3273, 3050, 1643, 1570, 1591, 1479, 1429, 1384, 1333, 1273, 1225, 1177, 1161, 1133, 1104, 1065, 1019, 997, 889, 866, 800, 733, 694, 644, 536, 461.

Синтез 2,6-дигидроксибензоата тетра(*пара*-толил)сурьмы *p*-Tol₄SbOC(O)C₆H₃(OH)₂-2,6 (III). Смесь 0,25 г (0,43 ммоль) пента-*пара*-толилсурьмы и 0,066 г (0,43 ммоль) 2,6дигидроксибензойной кислоты в 5 мл бензола помещали в стеклянную ампулу и запаивали, затем смесь нагревали на водяной бане в течение часа. Растворитель удаляли, получили 0,22 г (81 %) бесцветных кристаллов с т. пл. 179 °C. Найдено, %: С 65,51; Н 5,26. Для $C_{35}H_{33}O_4Sb$ вычислено, %: С 65,72; Н 5,16. ИК-спектр (v, см⁻¹): 3269, 3055, 3019, 2924, 2855, 1643, 1611, 1582, 1491, 1456, 1396, 1350, 1321, 1294, 1250, 1213, 1190, 1157, 1117, 1057, 1032, 1011, 849, 818, 799, 762, 704, 667, 610, 588, 534, 482, 459.

ИК-спектры соединения **I–III** записывали на ИК-спектрометре Shimadzu IRAffinity-1S в таблетках КВг в области 4000–400 см⁻¹.

РСА кристаллов **I–III** проведен на дифрактометре D8 Quest фирмы Bruker (Мо*К* α -излучение, $\lambda = 0,71073$ Å, графитовый монохроматор) при 296(2) К. Сбор, редактирование данных и уточнение параметров элементарной ячейки, а также учет поглощения проведены по программам SMART и SAINT-*Plus* [15]. Все расчеты по определению и уточнению структур выполнены по программам SHELXL/PC [16] и OLEX2 [17]. Структуры определены прямым методом и уточнены методом наименьших квадратов в анизотропном приближении для неводородных атомов. Основные кристаллографические данные и результаты уточнения структур приведены в табл. 1, основные длины связей и валентные углы – в табл. 2.

Полные таблицы координат атомов, длин связей и валентных углов депонированы в Кембриджском банке структурных данных (№ 2013238 (I), № 1974750 (II), № 2070390 (III); deposit@ccdc.cam.ac.uk или http://www.ccdc.cam.ac.uk/data_request/cif).

Таблица 1

Параметр	Ι	II	III
1	2	3	4
Формула	$C_{55}H_{44}O_4Sb_2$	C ₅₄ H ₄₃ NO ₃ Sb ₂	C ₃₅ H ₃₃ O ₄ Sb
M	1012,4	997,39	639,36
Сингония	Моноклинная	Триклинная	Ромбическая
Пр. группа	Сс	P-1	Pbca
a, Å	9,826(3)	10,352(5)	16,384(8)
b, Å	17,696(5)	13,853(8)	17,705(9)
<i>c,</i> Å	26,015(7)	16,591(14)	20,724(12)
α, град	90,00	84,78(3)	90,00
β, град	93,059(16)	85,22(3)	90,00
ү, град	90,00	83,74(2)	90,00
$V, Å^3$	4517(2)	2349(3)	6011(6)
Z	8	2	8
ρ(выч.), г/см ³	1,487	1,410	1,413
μ, мм ⁻¹	1,242	1,193	0,955
F(000)	2032,0	1000,0	2608,0
Размер кристалла, мм	$0,36 \times 0,36 \times 0,08$	$0,2 \times 0,08 \times 0,05$	$0,39 \times 0,17 \times 0,16$
Область сбора данных по 20, град.	5,81–57	5,74–53,6	5,58–66,46
II	$-13 \le h \le 13$,	$-13 \le h \le 13$,	$-25 \le h \le 25$,
интервалы индексов	$-23 \le k \le 23$,	$-17 \le k \le 17$,	$-23 \le k \le 17$,
отражении	$-34 \le l \le 34$	$-20 \le l \le 20$	$-29 \le l \le 29$
Измерено отражений	53074	54699	127127
Независимых отражений	11399	9935	9207
R _{int}	0,0313	0,0844	0,0760
Переменных уточнения	551	541	369
GOOF	1,031	1,090	1,026
<i>R</i> -факторы	$R_1 = 0,0225,$	$R_1 = 0,0557,$	$R_1 = 0,0378,$
по $F^2 > 2\sigma(F^2)$	$wR_2 = 0,0435$	$wR_2 = 0,1615$	$wR_2 = 0,0714$
<i>R</i> -факторы	$R_1 = 0,0281,$	$R_1 = 0,0984,$	$R_1 = 0,0801,$
по всем отражениям	$wR_2 = 0,0449$	$wR_2 = 0,1913$	$wR_2 = 0,0843$
Остаточная электронная плотность (max/min), e/A ³	0,39/-0,38	3,33/-1,20	0,43/-0,73

Кристаллографические данные, параметры эксперимента и уточнения структур I-III

Таблица 2

Основные длины связей и валентные углы в соединениях I-III

Связь	d, Å	Угол	ω , град
		Ι	
Sb(1)–O(1)	2,122(2)	O(1)Sb(1)O(2)	76,21(7)
Sb(1)–O(2)	2,215(2)	O(1)Sb(1)C(1)	86,98(9)
Sb(1)–C(1)	2,188(3)	O(1)Sb(1)C(11)	102,91(10)
Sb(1)–C(11)	2,179(2)	O(1)Sb(1)C(21)	164,15(8)
Sb(1)–C(21)	2.176(3)	O(1)Sb(1)C(31)	85,82(9)
Sb(1)–C(31)	2,182(3)	O(2)Sb(1)C(1)	85,04(9)
Sb(2)–C(51)	2,093(3)	O(2)Sb(1)C(11)	169,07(8)
Sb(2)–C(61)	2,119(2)	O(2)Sb(1)C(21)	88,01(8)
Sb(2)–C(71)	2,111(3)	O(2)Sb(1)C(31)	85,82(9)
Sb(2)–C(81)	2,111(2)	C(1)Sb(1)C(11)	94,72(10)
O(1)-C(41)	1,337(3)	C(1)Sb(1)C(21)	93,30(10)
O(2)-C(42)	1,342(3)	C(1)Sb(1)C(31)	169,51(10)

Химия элементоорганических соединений Organometallic chemistry

Окончание табл. 2

Связь	d, Å	Угол	<i>w</i> , град			
O(3)–C(47)	1,301(4)	C(11)Sb(1)C(21)	102,91(10)			
O(4)-C(47)	1,229(3)	C(11)Sb(1)C(31)	93,27(9)			
Sb(2)O(4)	2,683(2)	C(21)Sb(1)C(31)	91,52(9)			
$O(2)\cdots O(3)$	2,491(3)	C(51)Sb(2)C(61)	99,19(10)			
$H(3)\cdots O(2)$	1,74	C(51)Sb(2)C(71)	118,10(11)			
	,	C(51)Sb(2)C(81)	117,20(12)			
		C(61)Sb(2)C(71)	101,27(9)			
		C(61)Sb(2)C(81)	102,63(10)			
		C(71)Sb(2)C(81)	114,01(10)			
Ι						
Sb(1)–O(3)	2,256(5)	O(3)Sb(1)C(31)	174,5(2)			
Sb(1)–C(1)	2,132(7)	C(1)Sb(1)C(11)	120,9(3)			
Sb(1)–C(11)	2,136(7)	C(1)Sb(1)C(21)	116,2(3)			
Sb(1)–C(21)	2,108(7)	C(1)Sb(1)C(31)	120,7(3)			
Sb(1)–C(31)	2,174(7)	N(1)Sb(2)C(81)	164,0(2)			
Sb(2)–O(1)	2,194(5)	C(51)Sb(2)C(61)	165,8(3)			
Sb(2)–C(51)	2,176(7)	O(1)Sb(2)C(71)	164,6(2)			
Sb(2)–C(61)	2,189(7)	O(1)Sb(2)N(1)	72,22(19)			
Sb(1)-C(1)	2,132(7)	C(1)Sb(1)C(11)	120,9(3)			
Sb(1)-C(11)	2,136(7)	C(1)Sb(1)C(21)	116,2(3)			
Sb(1)-C(21)	2,108(7)	C(1)Sb(1)C(31)	120,7(3)			
Sb(1)-C(31)	2,174(7)	N(1)Sb(2)C(81)	164,0(2)			
Sb(2)–O(1)	2,194(5)	C(51)Sb(2)C(61)	165,8(3)			
Sb(2)-C(51)	2,176(7)	O(1)Sb(2)C(71)	164,6(2)			
Sb(2)-C(61)	2,189(7)	O(1)Sb(2)N(1)	72,22(19)			
Связь	<i>d</i> , Å	Угол	ω, град			
Sb(2)–C(71)	2,165(7)	N(1)Sb(2)C(51)	86,6(2)			
Sb(2)–C(81)	2,169(7)	O(1)Sb(2)C(51)	85,1(2)			
Sb(2)N(1)	2,402(6)	O(1)Sb(2)C(81)	91,9(2)			
O(3)-C(44)	1,297(8)	C(51)Sb(2)C(81)	94,0(3)			
O(1)-C(46)	1,292(8)	C(61)Sb(2)C(81)	95,4(3)			
O(2)-C(46)	1,208(8)	N(1)Sb(2)C(71)	92,4(3)			
		C(51)Sb(2)C(71)	93,6(3)			
		C(71)Sb(2)C(81)	103,6(3)			
		C(61)Sb(2)C(71)	94,5(3)			
III III III III III III III III III II						
Sb(1)–O(1)	2,5265(19)	O(1)Sb(1)C(31)	170,30(8)			
Sb(1)-C(1)	2,066(2)	C(1)Sb(1)C(11)	117,63(10)			
Sb(1)–C(11)	2,031(2)	C(11)Sb(1)C(21)	112,17(9)			
Sb(1)–C(21)	2,258(3)	C(1)Sb(1)C(21)	122,09(9)			
Sb(1)–C(31)	2,103(2)	O(1)Sb(1)C(1)	77,54(8)			
O(1)–C(47)	1,282(3)	O(1)Sb(1)C(11)	79,30(8)			
O(2)-C(47)	1,225(3)	O(1)Sb(1)C(21)	84,70(7)			
O(3)-C(42)	1,317(3)	C(1)Sb(1)C(31)	92,80(9)			
O(4)-C(46)	1,353(3)	C(11)Sb(1)C(31)	106,39(10)			
H(4)…O(1)	1,77	C(21)Sb(1)C(31)	99,99(9)			
H(3)····O(2)	1,78					

Обсуждение результатов

Дигидроксибензойные кислоты часто используют в химии комплексных соединений как лиганды, демонстрирующие амбидентатные свойства, т. е. возможность координировать на атомы металла различными способами [18–22]. Кроме того, известно, что дигидроксибензойные кислоты проявляют биологическую активность, в частности обладают анальгетическим и противовоспалительным действием, и применяются в фармакологии. Производные пиридина имеют широкое применение в качестве биологически активных веществ, в частности, многократно доказана их противоопухолевая активность на различных клеточных линиях [23–29]. Введение в соединения сурьмы таких лигандов позволит расширить спектр их практически значимых свойств. Помимо этого, производные сурьмы, в состав которых входит лиганд с гетероатомами, представляют интерес и с фундаментальной точки зрения в связи с возможностью дополнительной координации атома сурьмы на гетероатом (кислород, азот, серу) и повышения координационного числа атома сурьмы до 6 и более [30, 31].

Ранее нами выявлено, что взаимодействие пентафенилсурьмы с 2,4-дигидроксибензойной кислотой независимо от соотношения реагентов протекает с участием карбоксильной и *пара*гидроксильной групп и приводит к образованию 2-гидрокси-4-тетрафенилстибоксибензоата тетрафенилсурьмы, в молекуле которого тригонально-бипирамидальная координация двух атомов сурьмы искажена в разной степени [14].

В настоящей работе установлено, что 2,3-дигидроксибензойная кислота при взаимодействии с пентафенилсурьмой проявляет свойства дигидроксибензола, при этом карбоксильная группа остается инертной даже при нагревании реакционной смеси, содержащей избыток пентафенилсурьмы. Реакция протекает по схеме 1:

Схема 1. Синтез 3-карбоксикатехолато-О,О'-тетрафенилстиботат тетрафенилстибония (I)

Продуктом реакции является 3-карбоксикатехолато-О,О'-тетрафенилстиботат тетрафенилстибония (I) с выходом 89 %.

При взаимодействии пентафенилсурьмы с 2,3-дигидроксибензойной кислотой можно было ожидать образование и других продуктов, например 3-карбоксикатехолато-O,O'трифенилсурьмы (схема 2) или 2,3-дигидроксибензоата тетрафенилсурьмы (схема 3).

Схема 2. Одно из возможных направлений реакции, приводящее к образованию 3-карбоксикатехолато-О,О'-трифенилсурьмы

Схема 3. Одно из возможных направлений реакции, приводящее к образованию 2,3-дигидроксибензоата тетрафенилсурьмы

Химия элементоорганических соединений Organometallic chemistry

Разрыв двух связей Sb–C в молекуле пентафенилсурьмы при взаимодействии с Нкислотами встречается крайне редко и в литературе описан на единичных реакциях, например [32], поэтому, как мы считаем, образование 3-карбоксикатехолато-O,O'-трифенилсурьмы является маловероятным.

Нам не удалось выделить, казалось бы, очевидный продукт – 2,3-дигидроксибензоат тетрафенилсурьмы, даже при мольном соотношении пентафенилсуьмы и кислоты 1:1 без нагревания. Мы предполагаем, что реакция деарилирования начинается с замещения атома кислорода именно в карбоксильной группе: продукт 1 является наиболее энергетически выгодным среди трех возможных (схема 4), но разница в энергии их образования небольшая, что легко преодолевается в условиях нагревания в толуоле:

Схема 4. Продукты первой стадии реакции пентафенилсурьмы с 2,3-дигидроксибензойной кислотой

Изомеры 1–3 могут снова взаимодействовать с пентафенилсурьмой и продукт реакции перегруппировывается в наименее стерически загруженную форму (соединение I), выделенную нами.

Согласно данным PCA, координационный полиэдр атома сурьмы Sb(1) в анионе I может быть рассмотрен как искаженный октаэдр (рис. 1). Экваториальная плоскость сформирована двумя атомами кислорода и двумя атомами углерода фенильных лигандов. Другие два атома углерода фенильных лигандов расположены в аксиальных позициях.

Аксиальный угол C(1)Sb(1)C(31) равен 169,51(10)°, в то время, как *транс-*углы O(1)Sb(1)C(21) и O(2)Sb(1)C(11) в экваторальной плоскости составляют 164,15(8)° и 169,07(8)°. Сумма углов в экваториальной плоскости атома Sb(1) равна 359,99°. Атом Sb(1) отклоняется от средней плоскости [O(1)O(2)C(11)C(21)] на 0,019 Å.

Рис. 1. Строение 3-карбоксикатехолато-О,О'-тетрафенилстиботат тетрафенилстибония (I)

Аксиальные связи Sb(1)–C(1), Sb(1)–C(31) составляют 2,188(3), 2,182(3) Å; экваториальные Sb(1)–C(11), Sb(1)–C(21) – 2,179(2), 2,176(3) Å. Расстояния Sb(1)–O(1), Sb(1)–O(2) в катехолатном цикле значительно отличаются (2,1216(18), 2,2155(17) Å соответственно), что не характерно для подобных структур. Например, в анионе комплекса $[Et_4N]^+[(Cat)SbPh_3Br]^-$ (Cat = 3,6-ди-*трет*-бутилкатехолат) длины связей Sb–O (2,036(4), 2,047(3) Å) практически одинаковы [33]. В молекуле 3,5-динитросалицилато-O,O'-тетрафенилстиботата тетрафенилстибония в металлоцикле расстояния Sb–O тоже мало различаются (2,240(4), 2,200(4) Å), несмотря на то, что атомы кислорода, связанные с атомом сурьмы, принадлежат разным функциональным группам – гидро-ксильной и карбоксильной) [34].

Пятичленный металлоцикл в I имеет практически плоское строение: атомы отклоняются от средней плоскости [Sb(1)O(1)O(2)C(41)C(42)] на 0,026–0,059 Å. Плоскости металлоцикла и ароматического кольца кислоты практически совпадают с экваториальной плоскостью [O(1)O(2)C(11)C(21)], в то время как плоскости фенильных групп [C(11)–C(16)] и [C(21)–C(26)] образуют с ней углы 51,09° и 55,85° соответственно.

В свободной карбоксильной группе двойная связь C(47)–O(4) (1,229(3) Å) короче одинарной C(47)–O(3) (1,301(4) Å); угол O(3)C(47)O(4) не отличается от теоретического значения 120° .

В анионе имеет место внутримолекулярная водородная связь O(3)–H(3)…O(2) со следующими параметрами: расстояния H(3)…O(2) 1,74 Å, O(1)…O(2) 2,491(3) Å, H(3)–O(3) 0.82 Å, угол O(3)–H(3)–O(2) 150,9°, что обеспечивает дополнительную стабилизацию аниона.

Атом сурьмы Sb(2) в катионе имеет сильно искаженную тетраэдрическую координацию. Углы CSb(2)C отличны от тетраэдрических и составляют 99,19(10)–118,10(11)°. Длины связей Sb(2)–C лежат в интервале 2,093(3)–2,119(2) Å. Искажение тетраэдрической координации атома сурьмы Sb(2) обусловлено координацией на карбонильный атом кислорода: расстояние Sb(2)…O(4) равно 2,683(2) Å.

Следует отметить, что в литературе имеются примеры комплексов, в которых 2,3- и 3,4дигидроксибензойные кислоты связаны с центральным атомом как бидентатные хелатирующие лиганды через атомы кислорода гидроксигрупп [18–21].

Реакция пентафенилсурьмы с 5-гидроксипиридин-2-карбоновой кислотой протекает с замещением атомов водорода на фрагменты Ph₄Sb в гидроксильной и карбоксильной группах и приводит к биядерному соединению – 5-тетрафенилстибокси-пиридин-2-карбоксилату тетрафенилсурьмы (II) с выходом 72 % (схема 5).

Схема 5. Синтез 5-тетрафенилстибокси-пиридин-2-карбоксилата тетрафенилсурьмы (II)

Карбоксилатный лиганд в молекуле **II** является мостиковым, связывающим два фрагмента Ph₄Sb, в которых атомы сурьмы отличаются координационным числом (рис. 2). Атом Sb(1) пентакоординирован, тригонально-бипирамидальная координация несколько искажена. Аксиальный угол C(31)Sb(1)O(3) равен 174,5(2)°, сумма улов CSb(1)C в экваториальной плоскости составляет $357,8(3)^{\circ}$ (116,2(3)°, 120,7(3)°, 120,9(3)°). Углы между аксиальными и экваториальными связями C(31)Sb(1)C и O(3)Sb(1)C изменяются в интервалах 92,8(3)–96,6(3)° и 81,9(2)–87,2(2)°, поскольку атом сурьмы выходит из экваториальной плоскости в сторону аксиального атома C(31) на 0,183 Å, следствием чего является увеличение соответствующих углов по сравнению с идеальным значением. Аксиальная связь Sb(1)–C(31) (2,174(7) Å) длиннее трех экваториальных связей Sb(1)–C(1,11,21) (2,132(7), 2,136(7), 2,108(7) Å). Расстояние Sb(1)–O(3) равно 2,256(5) Å.

Атомы Sb(2) имеют искаженную октаэдрическую координацию с окружением [C₄ON]. Повышение координационного числа обусловлено дополнительным взаимодействием Sb(2)…N(1), где N – атом азота пиридинового цикла, приводящим к формированию пятичленного металло-

Химия элементоорганических соединений Organometallic chemistry

цикла. В октаэдре *транс*-углы C(51)Sb(2)C(61), C(81)Sb(2)N(1) и C(71)Sb(2)O(1) равны 165,8(3)°, 164,0(2)° и 164,6(2)°. Сумма углов в плоскости [ONCC] равна 360°, атом сурьмы отклоняется от средней плоскости на 0,031 Å.

Длины связей Sb(2)–C лежит в диапазоне 2,165(7)–2,189(7) Å. Интересно отметить, что связи Sb(2)–C (среднее значение 2,174(7) Å) длиннее, чем Sb(1)–C (2,138(7) Å), а расстояние Sb(2)–O(1) (2,194(5) Å) существенно короче Sb(1)–O(3). Связи C(46)–O(1) и C(46)–O(2) (1,292(8) и 1,208(8) Å) соответствуют значениям одинарной и двойной связей. Расстояние Sb(2)—N равно 2,402(6) Å, что близко к аналогичному значению в молекуле 2,5-пиридиндикарбоксилата *бис*(тетрафенилсурьмы) (2,412(4) Å) [35], но значительно меньше аналогичных координационных связей в известных сурьмаорганичесих производных 2-пиридинкарбоновой кислоты (2,602(1) и 2,665(3) Å [36, 37]).

Рис. 2. Строение 5-тетрафенилстибокси-пиридин-2-карбоксилата тетрафенилсурьмы (II)

Установлено, что взаимодействие пента(*пара*-толил)сурьмы с 2,6-дигидроксибензойной кислотой протекает только по карбоксильной группе даже при избытке пента(*пара*-толил)сурьмы с образованием 2,6-дигидроксибензоата тетра(*пара*-толил)сурьмы (**III**) с выходом 81 % (схема 6).

Схема 6. Синтез 2,6-дигидроксибензоата тетра(*пара*-толил)сурьмы (III)

Тригонально-бипирамидальная координация атома сурьмы в **III** сильно искажена, о чем свидетельствуют значения валентных углов (рис. 3). Так, углы CSbC в экваториальной плоскости изменяются в интервале $112,17(9)^{\circ}-122,09(9)^{\circ}$, а их сумма (351,89°) значительно меньше 360°. Углы между аксиальными и экваториальными связями C(31)SbC(1,11,21) больше 90° (92,80(9)°, $106,39(10)^{\circ}$, 99,99(9)°, а углы O(1)SbC(1,11,21) меньше этого значения (77,54(8)°, 79,30(8)°, $84,70(7)^{\circ}$). Атом сурьмы выходит из экваториальной плоскости в сторону атома C(31) на 0,350 Å.

Особенностью структуры можно считать наличие необычно длинной связи Sb-C(21) в экваториальном положении (2,258(3) Å) по сравнению с двумя другими экваториальными связями Sb-C(1) и Sb-C(11) (2,066(2) и 2,031(2) Å), а также аксиальной связью Sb-C(31) (2,103(2) Å). Расстояние Sb-O(1) (2,5265(19) Å) значительно больше аналогичных связей в I и II. В карбоксильной группе связи C(47)–O(1) и C(47)–O(2) практически выровнены (1,282(3) и 1,225(3) Å), поскольку отличаются только на 0,057 Å, в то время как в I и II разница в значениях этих связей составляет 0,072 и 0,084 Å соответственно.

Рис. 3. Строение 2,6-дигидроксибензоата тетра(пара-толил)сурьмы (III)

Отметим, что расстояние Sb–O в 2,6-дигидрокисибензоате тетрафенилсурьмы равно 2,604(4) Å, а связи C–O в карбоксильной группе различаются только на 0,01 Å [38].

Учитывая сильное искажение координации атома сурьмы и большое расстояние Sb–O(1), структуру III можно рассматривать как тесную ионную пару катиона тетра(*пара*-толил)стибония и координированного через атом кислорода 2,6-дигидроксибензоат-аниона. Устойчивость 2,6-дигидроксибензоат-аниона обусловлена образованием двух внутримолекулярных водородных связей с участием гидроксильных групп (расстояния H(4)···O(1) 1,78 Å, O(4)···O(1) 2,463(3) Å, H(4)-O(4) 0,75 Å, угол O(4)-H(4)-O(1) 153(4)°; H(3)···O(2) 1,78 Å, O(2)···O(3) 2,492(3) Å, H(3)-O(3) 0,82 Å, угол O(3)-H(3)-O(2) 145(3)°), наличие которых способствует делокализации отрицательного заряда.

В ИК-спектрах производных карбоновых кислот наиболее информативными являются полосы поглощения карбонильной группы с частотами 1675 (**I**), 1643 (**II**), 1616 (**III**) см⁻¹, при этом в спектрах **II** и **III** их положение смещено в область низкочастотных колебаний по сравнению со спектрами соответствующих кислот (1721, 1726 см⁻¹ соответственно), в то время как в спектре **I** положение полосы поглощения карбонильной группы практически не изменяется (в спектре 2,3дигидроксибензойной кислоты указанная полоса расположена при 1682 см⁻¹). Также в спектрах присутствуют полосы, характеризующие колебания связей Sb–C и Sb–O: 498 и 613 см⁻¹ (**I**), 461 и 536 см⁻¹ (**I**), 482 и 534 см⁻¹ (**3**), что соответствует литературным данным [39, 40].

Заключение

Таким образом, установлено, что в реакциях пентарильных соединений сурьмы дигидроксибензойные кислоты реагируют либо как моно-, либо как бифункциональные соединения в зависимости от расположения функциональных групп в исходной кислоте, при этом участие в реакции могут принимать: а) только карбоксильная группа; б) две гидроксильных группы; в) карбоксильная и гидроксильная группы. При взаимодействии пентафенилсурьмы с 5-гидроксипиридин-2-карбоновой кислотой активными являются и карбоксильная, и гидроксильная группы. В синтезированных арильных производных сурьмы с полифункциональными лигандами координационное число атома металла изменяется от 4 до 6. Список источников

1. Li J.-S., Ma Y.-Q., Cui J.-R. et al. // Appl. Organometal. Chem. 2001. V. 15. No. 7. P. 639. DOI: 10.1002/aoc.491.

2. *Ma Y., Li J., Xuan Z. et al.* // J. Organometal. Chem. 2001. V. 620. No. 2. P. 235. DOI: 10.1016/S0022-328X(00)00799-3.

3. *Liu R.-C., Ma Y.-Q., Yu L. et al.* // Appl. Organometal. Chem. 2003. V. 17. No. 9. P. 662. DOI: 10.1002/aoc.491.

4. Artem'eva E.V., Duffin R., Munuganti S. et al. // J. Inorgan. Biochem. 2022. V. 234. 111864. DOI:10.1016/j.jinorgbio.2022.111864.

5. Artem'eva E.V., Duffin R., Munuganti S. et al. // Polyhedron. 2022. V. 213. 115627. DOI:10.1016/j.poly.2021.115627.

6. Mushtaqa R., Raufa M.K., Bond M. et al. // Appl. Organometal. Chem. 2016. V. 30. P. 465. DOI:10.1002/aoc.3456.

7. Schmidbaur H., Mitschke K.H. // Angew. Chem. 1971. Bd. 83. P. 149. DOI: 10.1002/ange.19710830414.

8. *Sharutin V.V., Sharutina O.K., Gubanova Yu.O. et al.* // J. Organometal. Chem. 2015. V. 798. P. 41. DOI:10.1016/j.jorganchem.2015.09.002.

9. Галиуллина Д.Р., Ефремов А.Н. // Вестник ЮУрГУ. Сер. «Химия». 2022. Т. 14, № 3. С. 23. DOI: 10.14529/chem220303.

10. Ефремов А.Н., Шарутин В.В. // Вестник ЮУрГУ. Сер. «Химия». 2021. Т. 13, №. 1. С. 47. DOI: 10.14529/chem210105.

11. Шарутин В.В., Шарутина О.К., Панова Л.П. и др. // Коорд. химия. 1997. Т. 23, № 7. С. 513.

12. Sharutin V.V., Sharutina O.K., Pakusina A.P. et al. // Russ. J. General Chem. 1997. V. 67, No. 9. C. 1443. EDN: LELBCF.

13. Quan L., Yin H., Cui J. et al. // J. Organometal. Chem. 2009. V. 694. P. 3683. DOI: 10.1016/j.jorganchem.2009.07.041.

14. Шарутин В.В., Шарутина О.К., Губанова Ю.О. // Вестник ЮУрГУ. Серия «Химия». 2017. Т. 9, № 4. С. 56. DOI: 10.14529/chem170409.

15. Bruker, SMART and SAINT-plus. Versions 5.0. Data Collection and Processing Software for the SMART System, Bruker AXS Inc, Madison, Wisconsin, USA, 1998.

16. Bruker, SHELXTL/PC. Versions 5.10. An Integrated System for Solving, Refining and Displaying Crystal Structures from Diffraction Data, Bruker AXS Inc, Madison, Wisconsin, USA, 1998.

17. Dolomanov O.V., Bourhis L.J., Gildea R.J. et al. // J. Appl. Cryst. 2009. V. 42. P. 339. DOI:10.1107/S0021889808042726.

18. Anbalagan V., Srivastava T.S. // Polyhedron. 1994. V. 13. No. 13. P. 291. DOI: 10.1016/S0277-5387(00)86605-X.

19. Bell C.F., Gallagher B.C., Lott K.A.K. et al. // Polyhedron. 1991. V. 10, No. 6. P. 613. DOI: 10.1016/S0277-5387(00)83620-7.

20. Gerega K., Kozłowski H., Kiss T. et al. // Inorganica Chimica Acta. 1987. V. 138, No. 1 P. 31. DOI:10.1016/S0020-1693(00)81177-9.

21. *Griffith W.P.*, *Nogueira H.1.S.*, *Parkin B.C. et al.* // J. Chem. Soc., Dalton Trans. 1995. No. 1. P. 1775. DOI: 10.1039/DT9950001775.

22. Monteiro B., Gago S., Paz F.A.A. et al. // Inorgan. Chem. 2008. V. 47, No. 19. P. 8674. DOI: 10.1021/ic800420a.

23. *Marinescu M.* // Int. J. Pharm. and Bio Sci. 2017. V. 8, No. 2. P. 338. DOI: 10.22376/ijpbs.2017.8.2.p338-355.

24. Cai Z.W., Wei D., Schroeder G.M. et al. // Bioorg. Med. Chem. Lett. 2008. V. 18, No. 11. P. 3224. DOI:10.1016/j.bmcl.2008.04.047.

25. Hranjec M., Sovic I., Ratkaj I. et al. // Eur. J. Med. Chem. 2013. V. 59. P. 111. DOI: 10.1016/j.ejmech.2012.11.009.

26. *Hu Y.-G., Zheng A.-H., Li G.-J. et al.* // J. Heterocyclic Comp. 2014. V. 51, No. S1. P. E84. DOI:10.1002/chin.201509222.

27. *Shyyka O., Pokhodylo N., Finiuk N. et al.* // Sci. Pharm. 2018. V. 86, No. 3. P. 28. DOI: 10.3390/scipharm86030028.

28. Becan L., Wagner E. // Med Chem Res. 2013. V. 22. No. 5. P. 2376. DOI: 10.1007/s00044-012-0231-7.

29. Shawali A.S., Sherif S.M., Darwish M.A.A. et al. // Arch. Pharm. Res. 2010. V. 33, No. 1. P. 55. DOI: 10.1007/s12272-010-2224-8.

30. Ma C., Zhang Q., Sun J. et al. // J. Organomet. Chem. 2006. V. 691, No. 11. P. 2567. DOI: 10.1016/j.jorganchem.2006.01.049.

31. Wang G., Lu Y., Yu L. // Acta Crystallogr. 2005. V. 61E, No. 4. P. m649. DOI: 10.1107/S1600536805006446.

32. Шарутин В.В., Шарутина О.К., Губанова Ю.О. // Вестник ЮУрГУ. Серия «Химия». 2017. Т. 9, № 4. С. 56. DOI: 10.14529/chem170409.

33. Шарутин В.В., Молокова О.В., Шарутина О.К. и др. // Коорд. химия. 2005. Т. 31, № 3. С. 172. EDN: HRZYND.

34. *Poddeltskii A.I., Ilyakina E.V., Smolyaninov I.V. et al.* // Russ. Chem. Bull. 2014. V. 63, No. 4. P. 923. DOI: 10.1007/s11172-014-0529-3.

35. *Pupkova Yu.O., Sharutin V.V., Sharutina O.K. et al.* // Mendeleev Communications. 2022. V. 32, No. 3. P. 377. DOI: 10.1016/j.mencom.2022.05.028.

36. Губанова Ю.О., Шарутин В.В., Шарутина О.К. и др. // Журн. общ. химии. 2020. Т. 90, № 9. С. 1407. DOI: 10.31857/S0044460X20090127.

37. *Domagala M., Huber F., Preut H.* // Ztschr. Anorg. und Allg. Chem. 1990. V. 582, No. 1. P. 37. DOI:10.1002/zaac.19905820107.

38. *Chaudhari K.R., Jain V.K, Sagoria V.S. et al.* // J. Organomet. Chem. 2007. V. 692, No. 15. P. 4928. DOI:10.1016/j.jorganchem.2007.07.033.

39. Sharutin V.V., Sharutina O.K., Gubanova Yu.O. et al. // Inorg. Chim. Acta. 2019. V. 494. P. 211. DOI: 10.1016/j.ica.2019.05.029.

40. *Sharma P.K., Sharma R.K., Rai A.K. et al.* // Main Group Metal Chemistry. 2011. V. 27, No. 1. P. 51. DOI: 10.1515/MGMC.2004.27.1.51.

41. Singal K.S. // Heteroatom Chemistry. 2008. V. 19, No. 7. P. 688. DOI: 10.1002/hc/20498.

Пупкова Юлия Олеговна – кандидат химических наук, научный сотрудник кафедры теоретической и прикладной химии, Южно-Уральский государственный университет, Челябинск, Россия. E-mail: ulchik_7757@mail.ru

Шарутина Ольга Константиновна – доктор химических наук, профессор, заведующий кафедрой теоретической и прикладной химии, Южно-Уральский государственный университет, Челябинск, Россия. E-mail: sharutinaok@mail.ru

Шарутин Владимир Викторович – доктор химических наук, профессор, главный научный сотрудник Управления научной и инновационной деятельности, Южно-Уральский государственный университет, Челябинск, Россия. E-mail: sharutinvv@mail.ru

Статья поступила в редакцию 30 января 2024 г. The article was submitted 30 January 2024.