Научная статья УДК 546.185 +547.53.024+547.21.024+ 547.831.5 DOI: 10.14529/chem240404

ИССЛЕДОВАНИЕ КРИСТАЛЛИЧЕСКИХ СТРУКТУР 2,4-ДИНИТРОБЕНЗОЛСУЛЬФОНАТОВ АЛКИЛТРИФЕНИЛФОСФОНИЯ [Ph₃PAlk][OSO₂C₆H₃(NO₂)₂-2,4], Alk = C₃H₅-*cyclo*, (CH₂)₂OH, CH₂OH, CH₂C(O)Me

В.В. Шарутин[⊠], Е.С. Механошина

Южно-Уральский государственный университет, г. Челябинск, Россия ^{III} sharutin50@mail.ru

Аннотация. Из бромидов алкилтрифенилфосфония и 2,4-динитробензолсульфоновой кислоты в воде получены и структурно охарактеризованы ионные 2,4-динитробензолсульфонаты алкилтрифенилфосфония [Ph₃PAlk][OSO₂C₆H₃(NO₂)₂-2,4] (Alk = C₃H₅-cyclo (1), (CH₂)₂OH (2), CH₂OH (3), CH₂C(O)Me (4)). Кристаллы 1 [C₂₇H₂₃N₂O₇PS, M 550,50; сингония моноклинная, группа симметрии P-1; параметры ячейки: a = 9,354(11), b = 9,764(10), c = 15,416(17) Å; $\alpha = 106,29(4)^{\circ}, \beta = 94,67(5)^{\circ}, \beta = 9$ $\gamma = 97,98)6)^{\circ}$; V = 1328(3) Å³, Z = 2; $\rho_{выч} = 1,377$ г/см³], **2** [C₂₆H₂₃N₂O₈PS, *M* 554,49; сингония моноклинная, группа симметрии $P2_1/c$; параметры ячейки: a = 13,049(7), b = 14,816(10), c = 13,261(7) Å; $\alpha = 90,00^{\circ}, \beta = 93,901(15), \gamma = 90,00^{\circ}, V = 2558(2) \text{ Å}^3, Z = 4; \rho_{\text{выч}} = 1,440 \text{ г/см}^3$, **3** [C₂₅H₂₁N₂O₈PS, M 540,47; сингония триклинная, группа симметрии P-1; параметры ячейки: a = 9,086(14), b = 10,95(2),c = 13,17(2) Å; $\alpha = 86,20(9)^{\circ}, \beta = 71,93(6)^{\circ}, \gamma = 89,51(11), V = 1243(4)$ Å³, $Z = 2; \rho_{\text{Bull}} = 1,444 \text{ r/cm}^3$], 4 [C₂₇H₂₃N₂O₈PS, *M* 566,50; сингония триклинная, группа симметрии *P*-1; параметры ячейки: $Z = 2; \rho_{\text{вычи}} = 1.405 \,\text{г/см}^3$]. По данным PCA, атомы фосфора в катионах 1–4 имеют искаженную тетраэдрическую координацию, сульфонатные анионы обладают обычной геометрией с тетраэдрическим атомом серы. Длины связей Р-С изменяются в интервале 1,768(3)-1,830(3) Å; валентные углы СРС принимают значения 105,54(9)-112,42(9)°. В аренсульфонатных анионах комплексов расстояния S-C близки между собой [1,794(2)-1,807(3) Å], связи S-O практически выровнены [1,363(4)-1,495(4) Å]. Структурная организация в комплексах 1-4, в основном, обусловлена слабыми межмолекулярными контактами типа О…Н 2,31-2,71 Å (1), 2,35-2,64 Å (2), 2,38-2,70 Å (3), 2,24-2,90 Å (4).

Ключевые слова: 2,4-динитробензолсульфоновая кислота, бромид алкилтрифенилфосфония, 2,4-динитробензолсульфонат алкилтрифенилфосфония, синтез, молекулярная структура, рентгеноструктурный анализ

Для цитирования: Шарутин В.В., Механошина Е.С. Исследование кристаллических структур 2,4-динитробензолсульфонатов алкилтрифенилфосфония [Ph₃PAlk][OSO₂C₆H₃(NO₂)₂-2,4], Alk = C₃H₅-*cyclo*, (CH₂)₂OH, CH₂OH, CH₂C(O)Me // Вестник ЮУрГУ. Серия «Химия». 2024. Т. 16, № 4. С. 61–68. DOI: 10.14529/chem240404

Original article DOI: 10.14529/chem240404

STUDY OF CRYSTAL STRUCTURES OF ALKYLTRIPHENYLPHOSPHONIUM 2,4-DINITROBENZENESULFONATES [Ph₃PAlk][OSO₂C₆H₃(NO₂)₂-2,4], Alk = C₃H₅-*cyclo*, (CH₂)₂OH, CH₂OH, CH₂C(O)Me

V.V. Sharutin[™], E.C. Mekhanoshina

South Ural State University, Chelyabinsk, Russia [™] sharutin50@mail.ru

Abstract. Reactions of alkyltriphenylphosphonium bromides with 2,4-dinitrobenzenesulfonic acid in water lead to formation of ionic alkyltriphenylphosphonium 2,4-dinitrobenzenesulfonates $[Ph_3PAlk][OSO_2C_6H_3(NO_2)_2-2,4]$ (Alk = C_3H_5 -*cyclo* (1), (CH₂)₂OH (2), CH₂OH (3), CH₂C(O)Me (4)).

© Шарутин В.В., Механошина Е.С., 2024.

Crystals 1 [C₂₇H₂₃N₂O₇PS, M 550.50; monoclinic system, symmetry group P-1; cell parameters: a = 9.354(11) Å, b = 9.764(10) Å, c = 15.416(17) Å; $\alpha = 106.29(4)^{\circ}$, $\beta = 94.67(5)^{\circ}$, $\gamma = 97.98(6)^{\circ}$, V = 1328(3) Å³, Z = 2; $\rho_{calc} = 1.377$ g/cm³], **2** [C₂₆H₂₃N₂O₈PS, *M* 554.49; monoclinic system, symmetry group $P2_1/c$; cell parameters: a = 13.049(7) Å, b = 14.816(10) Å, c = 13.261(7) Å; $\alpha = 90.00^\circ$, $\beta = 93.901(15)^\circ$, $\gamma = 90.00^\circ$, V = 2558(2) Å³, Z = 4; $\rho_{calc} = 1.440$ g/cm³], **3** [C₂₅H₂₁N₂O₈PS, *M* 540.47; triclinic system, symmetry group P-1; cell parameters: a = 9.086(14) Å, b = 10.95(2) Å, c = 13.17(2) Å; $\alpha = 86.20(9)^{\circ}, \beta = 71.93(6)^{\circ}, \gamma = 89.51(11)^{\circ}, V = 1243(4) \text{ Å}^3, Z = 2; \rho_{calc} = 1.444 \text{ g/cm}^3], 4 [C_{27}H_{23}N_2O_8PS, N_2O_8PS]$ M 566.50; triclinic syngony, symmetry group P-1; cell parameters: a = 9.746(10) Å, b = 11.371(11) Å, c = 13.657(10) Å; $\alpha = 66.78(3)^{\circ}$, $\beta = 86.30(3)^{\circ}$, $\gamma = 74.46(5)^{\circ}$, V = 1339(2) Å³, Z = 2; $\rho_{calc} = 1.405$ g/cm³]. According to the X-ray diffraction data, the phosphorus atoms in cations 1-4 have a distorted tetrahedral coordination, while the sulfonate anions have a normal geometry with a tetrahedral sulfur atom. The P-C bond lengths vary in the range 1.768(3)-1.830(3) Å; the CPC bond angles take on values of $105.54(9)^{\circ}-112.42(9)^{\circ}$. In the arenesulfonate anions of the complexes, the S–C distances are close to each other [1.794(2)–1.807(3) Å], the S–O bonds are practically aligned [1.363(4)–1.495(4) Å]. The structural organization in complexes 1-4 is mainly due to weak intermolecular contacts of the O···H type: 2.31–2.71 Å (1), 2.35–2.64 Å (2), 2.38–2.70 Å (3), 2.24–2.90 Å (4).

Keywords: 2,4-dinitrobenzenesulfonic acid, alkyltriphenylphosphonium bromide, alkyltriphenylphosphonium 2,4-dinitrobenzenesulfonate, synthesis, molecular structure, X-ray diffraction analysis

For citation: Sharutin V.V., Mekhanoshina E.S. Study of the crystal structures of alkyltriphenylphosphonium 2,4-dinitrobenzenesulfonates [Ph₃PAlk][OSO₂C₆H₃(NO₂)₂-2,4)], Alk = C₃H₅-*cyclo*, (CH₂)₂OH, CH₂OH, CH₂C(O)Me. *Bulletin of the South Ural State University. Ser. Chem.* 2024;16(4):61–68. (In Russ.) DOI: 10.14529/chem240404

Введение

Фосфорорганические соединения обладают уникальными свойствами и находят применение в различных сферах практической деятельности: в качестве пластификаторов, дефолиантов, фунгицидов, гербицидов, инсектицидов, антипиренов, присадок к бензинам и смазочным маслам [1]. Органические соединения фосфора также являются катализаторами гидрофункционализации непредельных субстратов [2], реагентами для *транс*-металлирования [3], метатезиса σ-связей [4], для получения элементоорганических соединений [5] и олефинов [6]. Четвертичные фосфониевые соли обладают высокой биологической активностью и применяются в качестве противоопухолевых и антимикробных соединений [7-9]. Простейшие производные тетраорганилфосфония можно синтезировать по реакции пентафенилфосфора с кислотами [10-13], окислительного присоединения из трифенилфосфина и органилгалогенида [14, 15] или ненасыщенных соединений с последующей обработкой HCl или HBr [16, 17]. В работах [18–22] обсуждались структурные характеристики ряда аренсульфонатов тетраорганилфосфония. Для синтеза данных комплексов смеси аренсульфоновой кислоты и галогенидов тетраорганилфосфония выдерживали при нагревании в различных растворителях (ДМФА, бензоле, метаноле, диэтиловом эфире, ацетоне, ТГФ, ацетонитриле); выходы продуктов при этом не превышали 78%. Разработка методов получения фосфониевых солей, содержащих в лигандах при атоме фосфора различные функциональные группы с анионами сложного строения, является на сегодняшний день одним из перспективных направлений в элементорганической химии.

В настоящей работе впервые синтезированы и структурно охарактеризованы 2,4-динитробензолсульфонаты алкилтрифенилфосфония [Ph₃PAlk][OSO₂C₆H₃(NO₂)₂-2,4] (Alk = C₃H₅-cyclo (1), (CH₂)₂OH (2), CH₂OH (3), CH₂C(O)Me (4).

Экспериментальная часть

ИК-спектры соединений 1–4 записывали на ИК-Фурье спектрометре Shimadzu IR Affinity-1S в таблетке KBr в области 4000–400 см⁻¹.

Элементный анализ выполнен на элементном анализаторе Carlo Erba CHNS-O EA 1108. Температуры плавления измерены на синхронном термоанализаторе Netzsch 449C Jupiter.

В работе использовали бромиды алкилтрифенилфосфония и 2,4-динитробензолсульфоновую кислоту производства фирмы Alfa Aesar.

Общая процедура синтеза

Для синтеза 2,4-динитробензолсульфонатов алкилтрифенилфосфония смешивали эквимолярные количества водных растворов бромида алкилтрифенилфосфония и 2,4-динитробензолсульфоновой кислоты. При медленном испарении растворителя выделялись бесцветные кристаллы, которые сушили на воздухе и взвешивали.

Выход соединения 1 составил 93 %, т. пл. 112 °С.

Для [Ph₃PC₃H₅-*cyclo*][OSO₂C₆H₃(NO₂)₂-2,4] (1) найдено (%): С 58,61; Н 4,64, для C₂₇H₂₃N₂O₇PS рассчитано (%): С 58,91; Н 4,18. ИК-спектр (*v*, см⁻¹): 3105 сл., 3001 ср., 1602 ср., 1587 сл., 1541 с., 1530 оч.с., 1485 ср., 1441 с., 1354 оч.с., 1233 оч.с., 1115 оч.с., 1026 с., 897 с., 835 ср., 775 ср., 746 с., 721 с., 692 с., 664 ср., 635 с., 557 ср., 527 с., 498 с., 489 ср., 418 ср.

Выход соединения 2 составил 85 %, т. разл. 143 °С.

Для [Ph₃P(CH₂)₂OH][OSO₂C₆H₃(NO₂)₂-2,4] (**2**) найдено (%): С 56,01; Н 4,26; для С₂₆H₂₃N₂O₈PS рассчитано (%): С 56,32; Н 4,15. ИК-спектр (*v*, см⁻¹): 3100 ср., 1600 с., 1590 ср., 1534 с., 1437 с., 1356 с., 1261 с., 1115 с., 1056 ср., 1022 с., 997 ср., 897 ср., 855 ср., 833 ср., 739 с., 723 ср., 691 с., 563 ср., 530 ср., 495 ср., 488 ср., 435 сл., 416 сл.

Выход соединения 3 составил 84 %, т. пл. 163 °С.

Для [Ph₃PCH₂OH][OSO₂C₆H₃(NO₂)₂-2,4] (**3**) найдено (%): С 55,37; Н 4,10; для C₂₅H₂₁N₂O₈PS рассчитано (%): С 55,56; Н 3,89. ИК-спектр (*v*, см⁻¹): 3101 ср., 1601 ср., 1589 ср., 1545 ср., 1531 с., 1481 ср., 1437 с., 1356 с., 1261 с., 1115 с., 1056 ср., 1022 с., 997 ср., 920 сл., 897 ср., 855 ср., 833 ср., 739 с., 723 ср., 691 с., 660 сл., 590 сл., 563 ср., 548 сл., 530 ср., 495 ср., 488 ср., 455 сл., 426 сл.

Выход соединения 4 составил 90 %, т. пл. 173 °С.

Для [Ph₃PCH₂C(O)Me][OSO₂C₆H₃(NO₂)₂-2,4] (4) найдено (%): С 57,04; H 4,13; для C₂₇H₂₃N₂O₈PS рассчитано (%): С 57,24; H 4,06. ИК-спектр (ν , см⁻¹): 3103 сл., 3086 сл., 2905 ср., 2884 ср., 1717 с., 1601 ср., 1587 ср., 1485 ср., 1437 с., 1368 с., 1362 с., 1289 с., 1156 сл., 1111 с., 1083 ср., 1026 с., 997 ср., 903 ср., 861 ср., 833 ср., 791 ср., 746 оч.с., 719 ср., 691 ср., 665 ср., 635 ср., 557 ср., 513 ср., 494 ср., 467 ср., 442 сл., 415 ср.

РСА проводили на автоматическом четырехкружном дифрактометре D8 QUEST фирмы Вruker (Мо К_α-излучение, $\lambda = 0,71073$ Å, графитовый монохроматор) при 293(2) К. Сбор, редактирование данных и уточнение параметров элементарной ячейки, а также учет поглощения проведены с помощью программ SMART и SAINT-Plus. Все расчеты по определению и уточнению структур выполнены с помощью программ SHELXL/PC и OLEX2 [23–25]. Структуры определены прямым методом и уточнены методом наименьших квадратов в анизотропном приближении для неводородных атомов. Положение атомов водорода уточняли по модели наездника ($U_{\rm H30}(H) = 1,2U_{\rm 3KB}(C)$). Полные таблицы координат атомов, длин связей и валентных углов депонированы в Кембриджском банке структурных данных (№ 2175820 (1), № 2181163 (2), № 2153959 (3), № 2158374 (4); deposit@ccdc.cam.ac.uk; http://www.ccdc.cam.ac.uk). Основные кристаллографические данные и результаты уточнения структур 1–4 приведены в табл. 1, длины связей и валентные углы – в табл. 2.

Параметр	1	2	3	4
Стехиометрическая формула	$C_{27}H_{23}N_2O_7PS$	$C_{26}H_{23}N_2O_8PS$	$C_{25}H_{21}N_2O_8PS$	$C_{27}H_{23}N_2O_8PS$
М	550,50	554,49	540,47	566,50
Сингония	Триклинная	Моноклинная	Триклинная	Триклинная
Пространственная группа	<i>P</i> –1	$P2_{1}/c$	<i>P</i> -1	<i>P</i> -1
a, Å	9,354(11),	13,049(7),	9,086(14),	9,746(10),
$b, \mathrm{\AA}$	9,764(10),	14,816(10),	10,95(2),	11,371(11),
<i>c</i> , Å	15,416(17)	13,261(7)	13,17(2)	13,657(10)
α, град.	106,29(4),	90,00,	86,20(9),	66,78(3),
β, град.	94,67(5),	93,901(15),	71,93(6),	86,30(3),
ү, град.	97,98(6)	90,00	89,51(11)	74,46(5)

Кристаллографические данные, параметры эксперимента и уточнения структур 1-4

Таблица 1

Параметр	1	2	3	4
$V, Å^3$	1328(3)	2558(2)	1243(4)	1339(2)
Z	2	4	2	2
$ ho_{выч}$, г/см ³	1,377	1,440	1,444	1,405
μ, мм ⁻¹	0,231	0,243	0,248	0,234
F(000)	572,0	1152,0	560,0	588,0
Размер кристалла, мм	0,45×0,3×0,09	0,42×0,19×0,17	0,47×0,22×0,17	0,47×0,13×0,13
Диапазон сбора данных по 20, град.	5,86–59,48	6,16–56,82	6,04–56,66	6,1–56,8
Диапазон индексов	$-13 \le h \le 13,$ $-13 \le k \le 13,$ $-21 \le l \le 21$	$-17 \le h \le 17,$ $-19 \le k \le 19,$ $-15 \le l \le 17$	$-12 \le h \le 12,$ $-14 \le k \le 14,$ $-17 \le l \le 17$	$-12 \le h \le 12,$ $-15 \le k \le 15,$ $-18 \le l \le 18$
Число измеренных рефлексов	92232	63127	43680	47110
Чисто независимых рефлексов	7492	6406	6134	6638
R_{int}	0,0903	0,0502	0,0350	0,0656
GOOF	1,031	1,028	1,039	1,016
Число параметров	343	344	337	353
<i>R</i> -факторы	$R_1 = 0,0794,$	$R_1 = 0,0516,$	$R_1 = 0,0366,$	$R_1 = 0,0481,$
по $I > 2\sigma(I)$	$wR_2 = 0,2208$	$wR_2 = 0,1290$	$wR_2 = 0,0960$	$wR_2 = 0,1144$
<i>R</i> -факторы по всем	$R_1 = 0,1051,$	$R_1 = 0,0713,$	$R_1 = 0,0463,$	$R_1 = 0,0836,$
рефлексам	$wR_2 = 0,2423$	$wR_2 = 0,1432$	$wR_2 = 0,1030$	$wR_2 = 0,1320$
Остаточная электронная плотность (max/min), e/A ³	1,54/-0,86	0,58/0,54	0,46/0,52	0,33/0,41

Окончание табл. 1

Таблица 2

Длины связей и валентные углы в структурах 1-4

Связь *d*, Å Угол ω, град. 1 S1-01 1,495(4) O1-S1-O2 110,7(4) S1-O2 O1-S1-C31 102,0(2) 1,363(4) S1-O3 1,399(3) O2-S1-O3 119,9(3) S1-C31 1,802(3) O2-S1-C31 107,99(19) P1-C1 1,785(3) O3-S1-O1 108,3(2) P1-C21 1,791(3) O3-S1-C31 106,33(17) P1-C11 1,788(3) C1-P1-C21 107,20(14) P1-C7 C1-P1-C11 1,768(3) 110,78(15) C11-P1-C21 O6-N2 1,210(4) 108,76(15) C7-P1-C1 O5-N1 1,152(5) 110,50(15) O7-N2 1,209(3) C7-P1-C21 110,21(15) N2-C34 1,469(4) C7-P1-C11 109,36(15) 2 S1-O2 1,4325(18) O2-S1-O3 113,47(13) O2-S1-C31 S1-O3 1,4333(19) 104,27(10) S1-01 O3-S1-C31 104,22(11) 1,431(2) 1,794(2)O1-S1-O2 113,31(12) S1-C31 P1-C11 1,794(2)O1-S1-O3 115,34(14) P1-C21 1,788(2) O1-S1-C31 104,67(10) C11-P1-C1 P1--C1 1,798(2) 109,67(9) P1-C7 1,794(2) C21-P1-C11 108,02(9) O8-C8 1,393(3) C21-P1-C1 108,88(9) N2-06 1,208(4) C7-P1-C21 112,16(9)

Исследование кристаллических структур 2,4-динитробензолсульфонатов алкилтрифенилфосфония...

Связь	d. Å	Угол	0 . град.			
N1-05	1,177(3)	C7–P1–C11	105,54(9)			
O7-N2	1,214(4)	C7–P1–C1	112,42(9)			
3						
S1-O1	1,437(3)	O1–S1–O3	114,22(13)			
S1-O3	1,441(2)	O1–S1–O2	113,52(16)			
S1-O2	1,460(2)	O1–S1–C31	104,13(15)			
S1-C31	1,807(3)	O3–S1–O2	113,52(15)			
P1-C1	1,791(3)	O3–S1–C31	105,51(14)			
P1C11	1,800(4)	O2–S1–C31	104,61(15)			
P1-C21	1,796(3)	C11–P1–C1	110,03(12)			
P1-C7	1,830(3)	C1-P1-C21	109,07(13)			
O8–C7	1,404(3)	C1-P1-C7	108,94(11)			
O6–N2	1,222(3)	C11–P1–C7	110,04(14)			
O4-N1	1,220(3)	C21–P1–C11	110,24(15)			
O5-N1	1,221(3)	C21–P1–C7	108,48(13)			
	2	1				
S1-O2	1,429(2)	O2–S1–O3	114,49(16)			
S1-O3	1,452(3)	O2-S1-O4	114,49(15)			
S1-O4	1,429(2)	O2-S1-C31	103,93(13)			
S1-C31	1,807(3)	O3–S1–C31	104,22(14)			
P1-C1	1,789(2)	O4–S1–O3	112,02(15)			
P1C11	1,800(3)	O4–S1–C31	106,42(13)			
P1-C21	1,792(2)	C1-P1-C11	109,66(11)			
P1-C7	1,805(2)	C1-P1-C21	108,95(10)			
01–C8	1,208(3)	C1–P1–C7	111,59(11)			
O7–N2	1,202(5)	C11–P1–C7	106,04(10)			
06-N1	1,219(4)	C21–P1–C11	108,32(9)			
08–N2	1,233(5)	C21–P1–C7	112,19(11)			

Окончание табл. 2

Обсуждение результатов

Целевые 2,4-динитробензолсульфонаты алкилтрифенилфосфония были получены из бромидов алкилтрифенилфосфония и 2,4-динитробензолсульфоновой кислоты в воде.

 $[Ph_{3}PAlk]Br + HOSO_{2}C_{6}H_{3}[(NO_{2})_{2}-2,4] \xrightarrow[-HBr]{} [Ph_{3}PAlk][OSO_{2}C_{6}H_{3}[(NO_{2})_{2}-2,4]$ Alk = C_{3}H_{5}-cyclo (1), (CH_{2})_{2}OH (2), CH_{2}OH (3), CH_{2}C(O)Me (4)

Медленное испарение воды приводило к образованию прозрачных кристаллов, хорошо растворимых в аренах, этаноле, хлороформе, четыреххлористом углероде и плохо – в воде при комнатной температуре.

В ИК-спектрах комплексов 1–4 присутствуют характерные полосы поглощения высокой интенсивности при 1223–1192 см⁻¹ и средней интенсивности при 1049–1032 см⁻¹, которые отвечают асимметричным и симметричным валентным колебаниям сульфонатной группы SO₃. Интенсивные полосы поглощения в области 696–689 см⁻¹ соответствуют валентным колебаниям связи S–O. Также содержатся характерные полосы валентных колебаний углеродного скелета ароматических фрагментов при 1603–1483 см⁻¹. Валентным колебаниям связей С_{Ar}–S и C_{Ar}–P отвечают интенсивные полосы в области 600–597 см⁻¹ и 760–716 см⁻¹ соответственно [26]. Спектры соединения 1–4 содержат по две интенсивных полосы валентных колебаний группы NO₂ при ~1500 и ~1350 см⁻¹.

По данным рентгеноструктурного анализа, кристаллы соединений 1–4 образованы катионами алкилтрифенилфосфония и 2,4-динитробензолсульфонатными анионами (рис. 1–4).

Химия элементоорганических соединений Organometallic chemistry

Рис. 1. Общий вид комплекса 1

Рис. 4. Общий вид комплекса 4

Катионы алкилтрифенилфосфония в 1-4 имеют незначительно искаженную тетраэдрическую конфигурацию. Длины связей Р-С принимают значения 1,768(3)-1.815(2) Å [1,768(3)-1,791(3) Å (1); 1,788(2)-1,798(2) Å (2); 1,791(3)-1,830(3) Å (3); 1,789(2)-1,805(3) Å (4)], что меньше суммы ковалентных радиусов атомов-партнеров (1,83 Å) [28]. Валентные углы СРС изменяются в интервалах: 107,20(14)-110,78(15)° (1); $105,54(9)-112,42(9)^{\circ}$ (2); 108,48(13)-110,24(15)° (3): 106,04(10)-112,19(11)° (4). В 2,4-динитробензолсульфонатных анионах расстояния S-C близки между собой и принимают значения 1,794(2)-1,807(3) Å. Связи S-O в 1 (1,363(4)-1,495(4) Å), **2** (1,431(2)–1,4333(19) Å), **3** (1,437(3)–1,460(2) Å) и **4** (1,429(2)–1,452(3) Å) практически выровнены, что указывает на равномерное распределение электронной плотности в SO_3^- группах. Валентные углы OSC (102,29(10)°-107,99(19)°) меньше, чем углы OSO (110,7(4)°-119,9(3)°), что соответствует теории отталкивания электронных пар валентных оболочек [29]. Кристаллы 1-4 отличаются упаковкой анионов. В кристаллах катионы и анионы связаны между собой межмолекулярными водородными связями О…Н, образованными атомами кислорода нитро-, сульфогрупп и атомами водорода Ph₃PR-групп (2,3-2,7 Å для 1; 2,3-2,6 Å для 2; 2,4-2,7 Å для 3 и 2,2-2,9 Å для 4).

Выводы

Установлено, что реакции бромидов алкилтрифенилфосфония с 2,4-динитробензолсульфоновой кислотой в воде приводят к образованию 2,4-динитробензолсульфонатов алкилтрифенилфосфония, состоящих из тетраэдрических алкилтрифенилфосфониевых катионов и 2,4-динитробензолсульфонатных анионов.

Список источников

1. *Hartley F.R.* The Chemistry of Organophosphorus Compounds: Phosphonium Salts, Ylides and Phosphoranes, Volume 3. John Wiley & Sons, Ltd., 1993.

2. Wang D., Astruc D. // Chem. Rev. 2015. V. 115. P. 6621. DOI: 10.1021/acs.chemrev.5b00203.

3. Cordovilla C., Bartolome C., Martinez-Ilarduya J.M., Espinet P. // ACS Catal. 2015. V. 5. P. 3040. DOI: 10.1021/acscatal.5b00448.

4. Chong C.C., Hirao H., Kinjo R. // Angew. Chem. Int. Ed. 2015. V. 127. P. 192. DOI: 10.1002/ange.201408760.

5. *Razuvaev G.A., Osanova N.A., Brilkina T.G., Zinovjeva T.I., Sharutin V.V. //* J. Organomet. Chem. 1975. V. 99. P. 93. DOI: 10.1016/S0022-328X(00)86365-2.

6. Barton D., Ollis W.D. Comprehensive Organic Chemistry. V. 2 Phosphorus Compounds. Oxford, UK: Pergamon, 1979.

7. *Milenkovic M., Warzajtis B., Rychlewska U. et al.* // Molecules. 2012. V. 17. P. 2567. DOI: 10.3390/molecules17032567.

8. Pavlova J.A., Khairullina Z.Z., Tereshchenkov A.G. et al. // Antibiotics. 2021. V. 10. P. 489. DOI: 10.3390/antibiotics10050489.

9. Tsepaeva O.V., Salikhova T.I., Grigor'eva L.R. et al. // Med. Chem. Res. 2021. V. 30. P. 925. DOI: 10.1007/s00044-020-02674-6.

10. Sharutin V.V., Senchurin V.S., Sharutina O.K., Boyarkina E.A. // Russ. J. Gen. Chem. 2009. V. 79. P. 78. DOI: 10.1134/S1070363209010125.

11. Sharutin V.V., Sharutina O.K., Rybakova A.V., Gubanova Yu.O. // Russ. J. Gen. Chem. 2018. V. 88. P. 1629. DOI: 10.1134/S1070363218080133.

12. Sharutin V.V., Mukusheva N., Urzhumova A.V. // Bull. South Ural State Univ., Ser. Chem. 2018. V. 10, No. 2. P. 48. (In Russ.). DOI: 10.14529/chem180206.

13. Sharutin V.V., Sharutina O.K., Gubanova Yu.O. // Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol. 2019. V. 62. P. 4. DOI: 10.6060/ivkkt.20196202.5823.

14. Sodano F., Rolando B., Spyrakis F. et al. // ChemMedChem. 2018. V. 13. P. 1238. DOI: 10.1002/cmdc.201800088

15. Mironov V.F., Nemtarev A.V., Tsepaeva O.V. et al. // Molecules. 2021. V. 26. P. 6350. DOI: 10.3390/molecules2621635.

16. *Khasiyatullina N.R., Gubaidullin A.T., Shinkareva A.M. et al.* // Russ. Chem. Bull., Int. Ed., 2020. V. 69. P. 2140. DOI: 10.1007/s11172-020-3012-3.

17. *Romanov S., Aksunova A., Bakhtiyarova Y. et al.* // J. Organomet. Chem. 2020. V. 910. P. 121130. DOI: 10.1016/j.jorganchem.2020.121130.

18. Шарутин В.В., Шарутина О.К., Механошина Е.С. // Вестник ЮУрГУ. Серия «Химия». 2022. Т. 14. № 2. С. 41. DOI: 10.14529/chem220205

19. Шарутин В.В., Шарутина О.К., Механошина Е.С. // Журн. общ. химии. 2022. Т. 92, № 6. С. 885. DOI: 10.31857/S0044460X22060087.

20. Шарутин В.В., Шарутина О.К., Механошина Е.С. // Журн. структ. химии. 2022. Т. 63, № 10. С. 99532. DOI: 10.26902/JSC_id99532.

21. *Механошина Е.С.* // Вестник ЮУрГУ. Серия «Химия». 2023. Т. 15, № 1. С. 31. DOI: 10.14529/chem230103.

22. *Механошина Е.С.* // Вестник ЮУрГУ. Серия «Химия». 2023. Т. 15, № 2. С. 55. DOI: 10.14529/chem230204

23. Bruker. SMART and SAINT-Plus. Versions 5.0. Data Collection and Processing Software for the SMART System. Madison, Wisconsin, USA: Bruker AXS Inc., 1998.

24. Bruker. SHELXTL/PC. Versions 5.10. An Integrated System for Solving, Refining and Displaying Crystal Structures from Diffraction Data. Madison, Wisconsin, USA: Bruker AXS Inc., 1998.

25. Dolomanov O.V., Bourhis L.J., Gildea R.J. et al. // J. Appl. Cryst. 2009. V. 42. P. 339. DOI: 10.1107/S0021889808042726

26. *Тарасевич Б.Н.* ИК-спектры основных классов органических соединений. М.: МГУ, 2012. 54 с.

27. Васильев А.В., Гриненко Е.В., Щукин А.О. и др. Инфракрасная спектроскопия органических и природных соединений. СПб: СПбФТУ, 2007. 54 с.

28. Cordero B., Gómez V., Platero-Prats A.E. et al. // Dalton Trans. 2008. V. 21. P. 2832. DOI: 10.1039/B801115J.

29. Гиллеспи Р., Харгиттаи И. Модель отталкивания электронных пар валентной оболочки и строение молекул. М.: Мир. 1992. С.75.

Шарутин Владимир Викторович – доктор химических наук, главный научный сотрудник управления научной и инновационной деятельности, Южно-Уральский государственный университет, Челябинск, Россия. E-mail: sharutin50@mail.ru

Механошина Евгения Сергеевна – магистрант, институт естественных и точных наук, кафедра теоретической и прикладной химии, Южно-Уральский государственный университет, Челябинск, Россия. E-mail: mexev@mail.ru

Статья поступила в редакцию 21 февраля 2024 г. The article was submitted 21 February 2024.