DOI: 10.14529/chem250304

СТРОЕНИЕ ЦИАНОАУРАТНОГО КОМПЛЕКСА [Ph₃PCH₂CN][Au{Cl₀,54(CN)₀,46}CN]

В.В. Шарутин[™], А.Н. Ефремов, Д.П. Шевченко

Южно-Уральский государственный университет, Челябинск, Россия
[™] sharutin50@mail.ru

Аннотация. По реакции дихлородицианоаурата калия с хлоридом цианометилтрифенилфосфония в качестве побочного продукта получен комплекс $[Ph_3PCH_2CN][Au\{Cl_{0.54}(CN)_{0.46}\}CN]$ (1). Строение соединения 1 установлено методом рентгеноструктурного анализа (РСА). Согласно данным PCA, цианоауратный комплекс 1 [$C_{21.46}H_{17}N_{2.46}Cl_{0.54}PAu$, M = 556,41; ромбическая сингония, пр. гр. $P2_12_12_1$; параметры ячейки: a = 8,420(4) Å, b = 13,638(6) Å, c = 18,053(9) Å; $\alpha = 90,00^\circ$, β = 90,00°, γ = 90,00°, V = 2073,1(16) ų, Z = 4; $\rho_{\text{выч}}$ = 1,783 г/см³; μ = 7,251 мм¹; F(000) = 1065,0; обл. сбора по 20: 5,686–55,93°; $-11 \le h \le 11$, $-17 \le k \le 17$, $-23 \le l \le 23$; всего отражений 32243; независимых отражений 4942 ($R_{\text{int}} = 0.0378$); GOOF = 1.055; R-фактор 4.99 %] имеет ионное строение и состоит из цианометилтрифенилфосфониевого катиона с практически неискаженной тетраэдрической геометрией атома фосфора и почти линейного аниона $[Au(CN)X]^-$, где X = Cl или CN (разупорядочены как $0.54_{\text{CI}}:0.46_{\text{CN}}$). В катионе углы СРС изменяются в интервале $106.1(2)-110.9(2)^{\circ}$; расстояния Р-С составляют 1,778(5)-1,813(5) Å. В анионе *транс*-углы близки к 180°; расстояния Au-Cl и Au-C равны 2,405(10) Å и 1,968(7), 2,049(19) Å соответственно. Кристаллическая организация соединения 1 обусловлена межионными водородными контактами C-H···N≡C (2,22-2,74 Å), C-H···Cl-Au (2,91 Å) и C-H·· π (2,80 Å). Полные таблицы координат атомов, длин связей и валентных углов нитрата 1 депонированы в Кембриджском банке структурных данных (СССС 2045164; deposit@ccdc.cam.ac.uk; http://www.ccdc.cam.ac.uk).

Ключевые слова: дихлородицианоаурат калия, хлорид цианометилтрифенилфосфония, синтез, строение, рентгеноструктурный анализ

Для цитирования: Шарутин В.В., Ефремов А.Н., Шевченко Д.П. Строение цианоауратного комплекса [Ph₃PCH₂CN][Au{Cl₀,54(CN)₀,46}CN] // Вестник ЮУрГУ. Серия «Химия». 2025. Т. 17, № 3. С. 57–63. DOI: 10.14529/chem250304

Original article

DOI: 10.14529/chem250304

STRUCTURE OF CYANOAURATE COMPLEX [Ph₃PCH₂CN][Au{Cl_{0.54}(CN)_{0.46}}CN]

V.V. Sharutin[™], A.N. Efremov, D.P. Shevchenko South Ural State University, Chelyabinsk, Russia [™] sharutin50@mail.ru

Abstract. The reaction of potassium dichlorodicyanoaurate with cyanomethyltriphenylphosphonium chloride has yielded the [Ph₃PCH₂CN][Au{Cl_{0.54}(CN)_{0.46}}CN] complex as a by-product. The crystal structure of compound **1** has been determined by X-ray diffraction analysis (XRD). According to the XRD data, cyanoaurate complex **1** [C_{21.46}H₁₇N_{2.46}Cl_{0.54}PAu, M = 556.41; orthorhombic crystal system, sp. gr. $P2_12_12_1$; cell parameters: a = 8.420(4) Å, b = 13.638(6) Å, c = 18.053(9) Å; $\alpha = 90.00^\circ$, $\beta = 90.00^\circ$, $\gamma = 90.00^\circ$, V = 2073.1(16) Å³, Z = 4; $\rho_{\text{calc}} = 1.783$ g/cm³; $\mu = 7.251$ mm⁻¹; F(000) = 1065.0; $2\theta_{\text{max}}$: 5.686–55.93°; $-11 \le h \le 11$, $-17 \le k \le 17$, $-23 \le l \le 23$; 32243 reflections collected; 4942 independent reflections ($R_{\text{int}} = 0.0378$); GOOF = 1.055; R-factor 4.99 %] has an ionic structure and consists of the cyanomethyltriphenylphosphonium cation with almost undistorted tetrahedral coordination of the phosphorus atom

[©] Шарутин В.В., Ефремов А.Н., Шевченко Д.П., 2025.

and of a nearly linear anion $[Au(CN)X]^-$, where X = Cl or CN (disordered as $0.54_{Cl}: 0.46_{CN}$). In the cation, the CPC angles vary from $106.1(2)^\circ$ to $110.9(2)^\circ$; the P–C distances are 1.778(5)-1.813(5) Å. In the anion, the *trans*-angles are close to 180° ; the Au–Cl and Au–C distances are equal to 2.405(10) Å and 1.968(7), 2.049(19) Å, respectively. Crystal organization of compound 1 is caused by the C–H···N \equiv C interionic contacts (2.22-2.74 Å), as well as the C–H···Cl–Au (2.91 Å) and C–H··· π (2.80 Å) hydrogen contacts. Complete tables of atomic coordinates, bond lengths, and bond angles for compound 1 have been deposited with the Cambridge Crystallographic Data Centre (CCDC 2045164) and are available, free of charge, at deposit@ccdc.cam.ac.uk and http://www.ccdc.cam.ac.uk.

Keywords: potassium dichlorodicyanoaurate, cyanomethyltriphenylphosphonium chloride, synthesis, structure, X-ray diffraction analysis

For citation: Sharutin V.V., Efremov A.N., Shevchenko D.P. Structure of cyanoaurate complex $[Ph_3PCH_2CN][Au\{Cl_{0,54}(CN)_{0,46}\}CN]$. Bulletin of the South Ural State University. Ser. Chem. 2025;17(3): 57–63. (In Russ.) DOI: 10.14529/chem250304

Введение

Ди- и тетрацианоауратные комплексы координационно-полимерного и ионного строения известны широким спектром потенциально применимых физико-химических свойств (люминесценцией [1–6], вапохромизмом [7–9], двулучепреломлением [1–13], высокими значениями теплового расширения [14, 15], магнитной [16–20] и противораковой активностью [21]), тонкая настройка которых возможна путем разнообразных структурных модификаций соответствующих золотосодержащих производных. Поэтому поиск эффективных путей и изучение особенностей получения новых цианоауратных комплексов являются актуальными задачами.

Ранее, в работе [22], нами были описаны некоторые нестандартные примеры взаимодействия K[Au(CN)₂Hal₂] и [Ph₃PR]Hal (Hal = Cl, Br, I). Реакция между ними является удобным и эффективным методом синтеза дигалогендицианоауратов органилтрифенилфосфония (а также комплексов с другими ониевыми катионами) и обычно протекает по ионно-обменному механизму [23–28], однако при определенных условиях может приводить к продуктам окислительновосстановительного процесса [22, 29, 30]. В настоящей работе описан еще один пример такого нетипичного хода реакции дихлородицианоаурата калия с хлоридом цианометилтрифенилфосфония.

Экспериментальная часть

В работе использовали дихлородицианоаурат калия, полученный согласно [31] из дицианоаурата калия («ч.д.а.», ДЦМ-Аналитика), и хлорид цианометилтрифенилфосфония (98 %, «Alfa Aesar»).

Синтез [**Ph₃PCH₂CN**][**Au**{**Cl**_{0,54}(**CN**)_{0,46}}**CN**] (1). К раствору 100 мг (0,28 ммоль) дихлородицианоаурата калия в 10 мл воды прибавляли при перемешивании раствор 94 мг (0,28 ммоль) хлорида цианометилтрифенилфосфония в 5 мл воды. Образовавшийся осадок фильтровали, сушили и перекристаллизовывали из ацетонитрила. Наряду с бледно-желтыми кристаллами [**Ph₃PCH₂CN**][**Au**(**CN**)₂**Cl**₂] получили 9 мг (6 %) бесцветных кристаллов комплекса **1** с т. пл. 174 °C. ИК-спектр (ν , см⁻¹): 3061, 2924, 2835, 2741, 2253, 2212, 2158, 2143, 1587, 1574, 1485, 1437, 1381, 1341, 1315, 1256, 1200, 1188, 1161, 1115, 1070, 1028, 997, 928, 839, 756, 745, 725, 689, 550, 505, 498, 463, 430.

ИК-спектр соединения **1** записывали на ИК-Фурье спектрометре Shimadzu IRAffinity-1S; образцы готовили таблетированием с KBr (область поглощения $4000-400 \text{ cm}^{-1}$).

Рентгеноструктурный анализ соединения **1** проводили на автоматическом четырехкружном дифрактометре Bruker D8 QUEST (Мо K_{α} -излучение, $\lambda = 0,71073$ Å, графитовый монохроматор). Сбор, редактирование данных и уточнение параметров элементарной ячейки, а также учет поглощения проведены по программам *SMART* и *SAINT-Plus* [32]. Все расчеты по определению и уточнению структур выполнены по программам *SHELXL/PC* [33] и *OLEX2* [34]. Структуры определены прямым методом и уточнены методом наименьших квадратов в анизотропном приближении для неводородных атомов. Кристаллографические данные и результаты уточнения структуры приведены в табл. 1, длины связей и валентные углы – в табл. 2.

Таблица 1 Кристаллографические данные, параметры эксперимента и уточнения структуры 1

Параметр	1	
Формула	$C_{21,46}H_{17}N_{2,46}Cl_{0,54}PAu$	
M	556,41	
Сингония	Ромбическая	
Пространственная группа	P2 ₁ 2 ₁ 2 ₁	
a, Å	8,420(4)	
b, Å	13,638(6)	
<i>c</i> , Å	18,053(9)	
α, град.	90,00	
β, град.	90,00	
ү, град.	90,00	
γ, град. V, Å ³ Z	2073,1(16)	
Z	4	
$ ho_{ m выч}, \ ho/{ m cm}^3$	1,783	
μ , MM^{-1}	7,251	
F(000)	1065,0	
Форма кристалла (размер, мм)	$0,43 \times 0,26 \times 0,17$	
Область сбора данных по 20, град.	5,686 – 55,93	
Интервалы индексов отражений	$-11 \le h \le 11, -17 \le k \le 17, -23 \le l \le 23$	
Измерено отражений	32243	
Независимых отражений (R_{int})	4942 (0,0378)	
Переменных уточнения	256	
GOOF	1,055	
R -факторы по $F^2 > 2\sigma(F^2)$	$R_1 = 0.0243, wR_2 = 0.0499$	
R-факторы по всем отражениям	$R_1 = 0.0277, wR_2 = 0.0509$	
Остаточная электронная плотность (min/max), $e/Å^3$	0,85/-0,75	

Длины связей и валентные углы в структуре 1

Таблица 2

Связь d , Å		$У$ гол ω , град	
Au(1)–Cl(1)	2,405(10)	C(9)Au(1)Cl(1)	178,4(3)
Au(1)–C(9)	1,968(7)	C(9)Au(1)C(10)	178,1(16)
Au(1)–C(10)	2,049(19)	C(1)P(1)C(7)	110,4(2)
C(8)–N(1)	1,121(7)	C(1)P(1)C(11)	109,7(2)
C(9)–N(2)	1,132(8)	C(11)P(1)C(7)	109,4(2)
C(10)–N(3)	1,17(2)	C(21)P(1)C(1)	110,9(2)
P(1)–C(1)	1,786(4)	C(21)P(1)C(7)	106,1(2)
P(1)–C(7)	1,813(5)	C(21)P(1)C(11)	110,3(2)
P(1)–C(11)	1,794(5)	P(1)C(7)C(8)	113,7(4)
P(1)–C(21)	1,778(5)	_	

Полные таблицы координат атомов, длин связей и валентных углов соединения $\mathbf{1}$ депонированы в Кембриджском банке структурных данных (\mathbb{N} 2045164; deposit@ccdc.cam.ac.uk; http://www.ccdc.cam.ac.uk).

Обсуждение результатов

Ранее нами было продемонстрировано, что длительное стояние в водном растворе (несколько суток при стандартных условиях) и последующая перекристаллизация из ацетонитрила осажденных продуктов взаимодействия $K[Au(CN)_2Hal_2]$ с солями $[Ph_3PR]Cl$ ($Hal=Cl, R=Ph; Hal=Br, R=CH_2CN, CH_2OMe$) может сопровождаться восстановлением анионов $[Au(CN)_2Hal_2]^-$ до $[Au(CN)_2]^-$ за счет элиминирования молекул соответствующего галогена [22]. В результате нового эксперимента с дихлородицианоауратом калия и хлоридом цианометилтрифенилфосфония, проведенного в идентичных условиях, но без удерживания осадка в воде, нами в небольшом

количестве были выделены и структурно охарактеризованы кристаллы состава $[Ph_3PCH_2CN][Au\{Cl_{0.54}(CN)_{0.46}\}CN]$ (1).

В литературе подобный случай был описан в работе [30]. Проведя направленный гидротермальный синтез с участием нитрата цинка, 4,4'-бипиридина (4,4'-bipy) и дибромодицианоаурата калия, авторы выделили продукт восстановительного элиминирования — $Zn(4,4'-bipy)[Au(CN)_2][Au\{Br_{0.68}(CN)_{0.32}\}CN]$.

Точный механизм образования данных комплексов пока что неизвестен, однако предположительно может включать стадию элиминирования галогенциана из соответствующего дигалогенодицианоауратного производного:

$$[Au(CN)_2Hal_2]^- \xrightarrow{-xHalCN} x[Au(CN)Hal]^- + y[Au(CN)_2]^-$$
- $yHal_2$

Hal = Cl:
$$x = 0.54$$
, $y = 0.46$ (1); Hal = Br: $x = 0.68$, $y = 0.32$ [30].

Поскольку в нашем случае каких-либо вышеописанных условий для стимулирования окислительно-восстановительного процесса (длительное стояние осадка в воде, нагревание) не создавалось, для объяснения состава продукта 1 можно также предположить наличие примесных количеств анионов $[\mathrm{Au}(\mathrm{CN})\mathrm{Hal}]^-$ и $y[\mathrm{Au}(\mathrm{CN})_2]^-$ в исходном дихлородицианоаурате калия, получаемого хлорированием коммерческого $K[\mathrm{Au}(\mathrm{CN})_2]$ [31].

ИК-спектр комплекса **1** содержит несколько полос поглощения валентных колебаний связей С \equiv N в интервале 2253–2143 см $^{-1}$, крайние значения которого соответствуют цианогруппам катиона [Ph₃PCH₂CN] $^+$ (2253 см $^{-1}$, сл.) и аниона [Au(CN) $_2$] $^-$ (2143 см $^{-1}$, с.). Промежуточные полосы при 2158 (с.) и 2212 см $^{-1}$ (оч. сл.) можно отнести к колебаниям С \equiv N в анионах [Au(CN)Cl] $^-$ и примесного [Au(CN) $_2$ Cl $_2$] $^-$. В ИК-спектре также присутствуют полосы поглощения при 1437 и 997 см $^{-1}$, характерные колебаниям связей Р $^-$ СР $_2$, а также несколько полос валентных колебаний связей С $^-$ НР $_2$ Р $_3$ Р $_4$ В интервале 3061–2741 см $^{-1}$ [35, 36].

По данным PCA, комплекс **1** состоит из цианометилтрифенилфосфониевых катионов и линейных анионов [Au(CN)X] $^-$, разупорядоченных как X = Cl или CN в соотношении 54:46 соответственно (рис. 1).

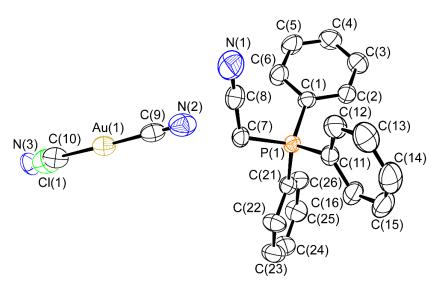


Рис. 1. Строение комплекса [Ph₃PCH₂CN][Au{Cl_{0,54}(CN)_{0,46}}CN] (1) (атомы водорода не показаны)

Геометрия атомов фосфора в катионах $[Ph_3PCH_2CN]^+$ практически не искажена: углы CPC варьируются в пределах $106,1(2)-110,9(2)^\circ$; расстояния $P-C_{Ph}$ и $P-C_{Alk}$ составляют 1,778(5)-1,794(5) и 1,813(5) Å соответственно и не превышают суммы ковалентных радиусов атомов фосфора и углерода соответствующей гибридизации $(P-C(sp^2)=1,80 \text{ Å}; P-C(sp^3)=1,83 \text{ Å}; [37])$.

Анионы [Au(CN)X] также не содержат существенных геометрических искажений: *транс*-углы CAuC/Cl близки к 180 , длины связей Au–Cl (2,405(10) Å), Au–C(9) (1,968(7) Å) и Au–C(10) (2,049(19) Å) близки к значениям суммы ковалентных радиусов атомов золота и хлора (2,38 Å [37]) и золота и sp-углерода (2,05 Å [37]) соответственно. Связь C(8)=N(1) в катионе (1,121(7) Å) несколько короче связей C(9)=N(2) (1,132(8) Å) и C(10)=N(3) (1,17(2) Å) в анионе.

Пространственная организация в кристалле 1 обусловлена водородными связями C–H····N≡C (2,22–2,74 Å) и C–H····CI–Au (2,91 Å) (рис. 2), длины которых близки к суммам ван-дерваальсовых радиусов соответствующих атомов или меньше таковых (H····N 2,65 Å, H····CI 2,85 Å [38]). Дополнительные сведения по водородным взаимодействиям представлены в табл. 3. В кристалле также присутствуют дополнительные слабые C–H··· π -контакты между атомами H(2) катионов и электронной плотностью связей C(9) $\equiv N$ (2) анионов, с расстояниями от атомов водорода до центра указанных связей равными 2,80 Å [39].

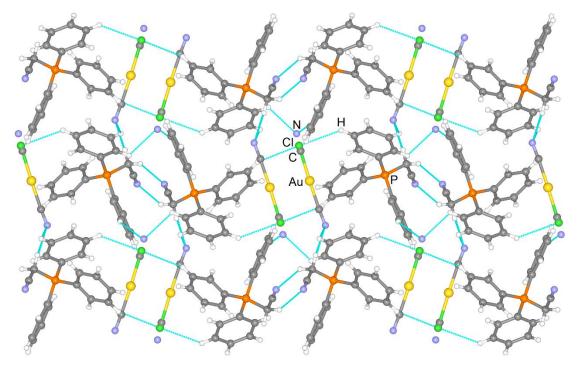


Рис. 2. Пространственная организация кристалла 1 (проекция вдоль кристаллографической оси а)

Таблица 3 Геометрические параметры водородных контактов в кристалле 1

D–H···A	H…A, Å	D···A, Å	<i>D</i> –H···A, град
$C(7)-H(7A)\cdots N(2)$	2,22	3,18	169,1
C(7)–H(7B)···N(1)	2,53	3,38	146,4
C(15)–H(15)···N(3)	2,59	3,31	134,5
C(22)–H(23)···N(3)	2,69	3,22	117,0
C(23)-H(23)···N(2)	2,74	3,38	127,3
C(3)–H(3)···Cl(1)	2,91	3,74	148,0
C(25)–H(25)···Cl(1)	2,91	3,66	138,2

Стоит отметить, что несмотря на склонность производных золота(I) линейного строения к ди- и олигомеризации через аурофильные взаимодействия [40] в структуре $\mathbf{1}$ подобного поведения у анионов [Au(CN)X] $^-$ не наблюдается: кратчайшие расстояния Au····Au составляют \sim 5 Å, что существенно превышает удвоенный ван-дер-ваальсовый радиус золота (3,32 Å [41]).

Выводы

Установлено, что побочным продуктом реакции хлорида цианометилтрифенилфосфония с дихлородицианоауратом калия является комплекс $[Ph_3PCH_2CN][Au\{Cl_{0,54}(CN)_{0,46}\}CN]$ с разупорядоченным характером одного из двух лигандов у Au^I -ядра в анионе $(CI^-$ и CN^- занимают 0,54 и 0,46 вакансии соответственно). Комплекс имеет ионное строение без значимых геометрических искажений в катионе и анионе. Его кристаллическая организация обуславливается только межионными контактами $H\cdots N$, $H\cdots CI$ и $H\cdots \pi(CN)$ и не содержит аурофильных взаимодействий.

Список источников

- 1. Belyaev A., Eskelinen T., Dau T.M. et al. // Chem. Eur. J. 2017. V. 24, No. 6. P. 1404. DOI: 10.1002/chem.201704642
- 2. Ovens J.S., Christensen P.R., Leznoff D.B. // Chem. Eur. J. 2016. V. 22, No. 24. P. 8234. DOI: 10.1002/chem.201505075
- 3. *Yamagishi A., Kawasaki T., Hiruma K. et al.* // Dalton Trans. 2016. V. 45, No. 18. P. 7823. DOI: 10.1039/C6DT00537C
- 4. *Kumar K., Stefańczyk O., Chorazy S. et al.* // Inorg. Chem. 2019. V. 58, No. 9. P. 5677. DOI: 10.1021/acs.inorgchem.8b03634
- 5. *Nicholas A.D.*, *Bullard R.M.*, *Pike R.D. et al.* // Eur. J. Inorg. Chem. 2019. V. 2019, No. 7. P. 956. DOI: 10.1002/ejic.201801407
- 6. *Kisel K.S.*, *Melnikov A.S.*, *Grachova E.V. et al.* // Inorg. Chem. 2019. V. 58, No. 3. P. 1988. DOI: 10.1021/acs.inorgchem.8b02974
- 7. Varju B.R., Ovens J.S., Leznoff D.B. // Chem. Commun. 2017. V. 53, No. 48. P. 6500. DOI: 10.1039/C7CC03428H
 - 8. Ovens J.S., Leznoff D.B. // Chem. Mater. 2015. V. 27, No. 5. P. 1465. DOI: 10.1021/cm502998w
- 9. Lefebvre J., Korčok J.L., Katz M.J. et al. // Sensors. 2012. V. 12, No. 3. P. 3669. DOI: 10.3390/s120303669
- 10. *Katz M.J.*, *Leznoff D.B.* // J. Am. Chem. Soc. 2009. V. 131, No. 51. P. 18435. DOI: 10.1021/ja907519c
- 11. Ovens J.S., Geisheimer A.R., Bokov A.A. et al. // Inorg. Chem. 2010. V. 49, No. 20. P. 9609. DOI: 10.1021/ic101357y
- 12. *Thompson J.R.*, *Katz M.J.*, *Williams V.E. et al.* // Inorg. Chem. 2015. V. 54, No. 13. P. 6462. DOI: 10.1021/acs.inorgchem.5b00749
- 13. *Thompson J.R., Goodman-Rendall K.A.S., Leznoff D.B.* // Polyhedron. 2016. V. 108. P. 93. DOI: 10.1016/j.poly.2015.12.026
- 14. Ovens J.S., Leznoff D.B. // Inorg. Chem. 2017. V. 56, No. 13. P. 7332. DOI: 10.1021/acs.inorgchem.6b03153
- 15. Ovens J.S., Leznoff D.B. // CrystEngComm. 2018. V. 20, No. 13. P. 1769. DOI: 10.1039/C7CE02167D
- 16. Geisheimer A.R., Huang W., Pacradouni V. et al. // Dalton Trans. 2011. V. 40, No. 29. P. 7505. DOI: 10.1039/C0DT01546F
- 17. *Palacios M.A., Díaz-Ortega I.F., Nojiri H. et al.* // Inorg. Chem. Front. 2020. V. 7, No. 23. P. 4611. DOI: 10.1039/D0QI00996B
- 18. *Lefebvre J., Callaghan F., Katz M.J. et al.* // Chem. Eur. J. 2006. V. 12, No. 26. P. 6748. DOI: 10.1002/chem.200600303
- 19. *Kumar K., Stefańczyk O., Chorazy S. et al.* // Inorg. Chem. 2019. V. 58, No. 9. P. 5677. DOI: 10.1021/acs.inorgchem.8b03634
- 20. Wu S.-G., Wang L.-F., Ruan Z.-Y. et al. // J. Am. Chem. Soc. 2022. V. 144, No. 32. P. 14888. DOI: 10.1021/jacs.2c06313
- 21. Johnson A., Marzo I., Gimeno M.C. // Chem. Eur. J. 2018. V. 24, No. 45. P. 11693. DOI: 10.1002/chem.201801600
- 22. *Шевченко Д.П., Шарутин В.В.* // Вестник ЮУрГУ. Серия «Химия». 2022. Т. 14, № 2. С. 62. DOI: 10.14529/chem220207
 - 23. Mason W.R. III // Inorg. Chem. 1970. V. 9, No. 12. P. 2688. DOI: 10.1021/ic50094a013

- 24. Ovens J.S., Truong K.M., Leznoff D.B. // Inorganica Chim. Acta. 2013. V. 403. P. 127. DOI: 10.1016/j.ica.2013.02.011
- 25. *Шарутин В.В., Шарутина О.К., Тарасова Н.М. и др.* // Изв АН. Сер. хим. 2020. Т. 69, № 10. С. 1892. EDN: QOVSFF
- 26. *Шарутин В.В., Шарутина О.К., Тарасова Н.М. и др.* // Журн. общ. химии. 2021. Т. 91, № 11. С. 1716. DOI: 10.31857/S0044460X21110081
- 27. *Шарутин В.В., Шарутина О.К., Ефремов А.Н. и др.* // Коорд. химия. 2020. Т. 46, № 9. С. 554. DOI: 10.31857/S0132344X20090030
- 28. *Шарутин В.В.* // Вестник ЮУрГУ. Серия «Химия». 2020. Т. 12, № 2. С. 74. DOI: 10.14529/chem200208
- 29. Ericson A., Elding L.I., Elmroth S.K.C. // J. Chem. Soc., Dalton Trans. 1997. No. 7. P. 1159. DOI: 10.1039/A608001D
- 30. Ovens, J.S., Leznoff D.B. // Dalton Trans. 2011. V. 40, No. 16. P. 4140. DOI: 10.1039/C0DT01772H
- 31. Ovens J.S., Truong K.M., Leznoff D.B. // Dalton Trans. 2012. V. 41, No. 4. P. 1345. DOI: 10.1039/C1DT11741F
- 32. Bruker. SMART and SAINT-Plus. Versions 5.0. Data Collection and Processing Software for the SMART System. Bruker AXS Inc., Madison, Wisconsin, USA, 1998.
- 33. Bruker. SHELXTL/PC. Versions 5.10. An Integrated System for Solving, Refining and Displaying Crystal Structures From Diffraction Data. Bruker AXS Inc., Madison, Wisconsin, USA, 1998.
- 34. *Dolomanov O.V.*, *Bourhis L.J.*, *Gildea R.J. et al.* // J. Appl. Cryst. 2009. V. 42. P. 339. DOI: 10.1107/S0021889808042726
- 35. *Преч Э., Бюльманн Ф., Аффольтер К.* Определение строения органических соединений. Таблицы спектральных данных: пер. с англ. Б.Н. Тарасевича. М.: Мир, 2006. 440 с.
- 36. *Тарасевич Б.Н.* ИК-спектры основных классов органических соединений. М.: МГУ, 2012. 54 с.
- 37. Cordero B., Gómez V., Platero-Prats A.E. et al. // Dalton Trans. 2008. No. 21. P. 2832. DOI: 10.1039/B801115J
- 38. Mantina M., Chamberlin A.C., Valero R. et al. // J. Phys. Chem. A. 2009. V. 113, No. 19. P. 5806. DOI: 10.1021/jp8111556
- 39. *Nishio M.* // Phys. Chem. Chem. Phys. 2011. V. 13, No. 31. P. 13873. DOI: https://doi.org/10.1039/C1CP20404A
- 40. Schmidbaur H., Schier A. // Chem. Soc. Rev. 2008. V. 37, No. 9. P. 1931. DOI: 10.1039/B708845K
 - 41. Bondi A. // J. Phys. Chem. 1964. V. 68, No. 3. P. 441. DOI: 10.1021/j100785a001

Шарутин Владимир Викторович – доктор химических наук, профессор, главный научный сотрудник управления научной и инновационной деятельности, Южно-Уральский государственный университет, Челябинск, Россия. E-mail: sharutin50@mail.ru

Ефремов Андрей Николаевич – кандидат химических наук, доцент, кафедра теоретической и прикладной химии, Южно-Уральский государственный университет, Челябинск, Россия. E-mail: efremov_an94@ mail.ru

Шевченко Дмитрий Павлович – аспирант, химический факультет, институт естественных и точных наук, Южно-Уральский государственный университет, Челябинск, Россия. E-mail: Shepher56@gmail.com.

Статья поступила в редакцию 3 декабря 2024 г. The article was submitted 3 December 2024.