РЕАКЦИИ БРОМИДОВ ОРГАНИЛТРИФЕНИЛФОСФОНИЯ С БРОМИДОМ СЕРЕБРА В ПРИСУТСТВИИ БРОМИСТОВОДОРОДНОЙ КИСЛОТЫ

В.В. Шарутин¹⊠, Д.П. Шевченко¹, О.К. Шарутина¹, Е.В. Баранов²

1 Южно-Уральский государственный университет, Челябинск, Россия

Аннотация. Взаимодействием бромидов 2-оксибензилтрифенилфосфония, пропаргилтрифенилфосфония, бензилтрифенилфосфония, бромпропилтрифенилфосфония с бромидом серебра получены ионные комплексы [Ph₃PCH₂C₆H₂(OH-2)Br₂-3,5][Br] (1) [C₂₅H₂₀OPBr₃, M = 607,11; моноклинная сингония, пр. гр. $P2_1/c$; параметры ячейки: a = 18,157(11) Å, b = 15,293(8) Å, c = 17,258(9) Å; $\beta = 90,27(3)^{\circ},\ V = 4792(5)\ \text{Å}^3,\ Z = 4;\ \rho_{\text{выч}} = 1,682\ \text{г/см}^3;\ \mu = 5,132\ \text{мм}^{-1};\ F(000) = 2380;\ \text{обл. сбора}$ по 2 θ : 5,72–52,2 θ °; всего отражений 83462; независимых отражений 9454 ($R_{int} = 0.0546$); GOOF = 1.015; R-фактор 0,0351]; [Ph₃PCHBr₂][Br] · DMSO (2) [C_{21,33}H₂₃O_{1,17}S_{1,17}PBr₃, M = 606,17; тригональная сингония, пр. гр. $R\overline{3}$; параметры ячейки: a = 33,379(18) Å, b = 33,379 Å, c = 11,145(6) Å; $\alpha = 90,00^\circ$, $\beta = 90.00^{\circ}, \ \gamma = 120,00^{\circ}, \ V = 10753(13) \ \text{Å}^3, \ Z = 18; \ \rho_{\text{выч}} = 1,685 \ \text{г/cm}^3; \ \mu = 5,244 \ \text{mm}^{-1}; \ F(000) = 5382;$ обл. сбора по 2θ : 6,26–61,2°; всего отражений 59595; независимых отражений 7328 ($R_{int} = 0,0600$); GOOF = 1,047; R-фактор 0,0411]; $[Ph_3PCH_2Ph]^+_2[Ag_2Br_4]^2$ (3) $[C_{25}H_{22}PBr_2Ag, M = 621,07;$ моноклинная сингония, пр. гр. C2/c; параметры ячейки: a = 24,825(14) Å, b = 10,215(7) Å, c = 19,910(11) Å; $\beta = 109,98(2)^{\circ},\ V = 4745(5)\ \text{Å}^3,\ Z = 8;\ \rho_{\text{выч}} = 1,739\ \text{г/см}^3;\ \mu = 4,294\ \text{мм}^{-1};\ F(000) = 2432;\ обл.\ сбора по 20:$ $6,34-67,60^{\circ}$; всего отражений 89682; независимых отражений 9477 ($R_{\text{int}}=0,0677$); GOOF=1,007; R-фактор 0,0452]; $[Ph_3P(CH_2)_3Br]^+_3[Ag_3Br_6]^{3-}$ (4) $[C_{63}H_{63}P_3Br_9Ag_3, M = 1955,75;$ моноклинная сингония, пр. гр. P2/c; параметры ячейки: a = 24,59(3) Å, b = 16,41(2) Å, c = 17,99(2) Å; $\beta = 108,25(4)^\circ$, $V = 6893(15) \text{ Å}^3$, Z = 4; $\rho_{\text{выч}} = 1,885 \text{ г/см}^3$; $\mu = 6,167 \text{ мм}^{-1}$; F(000) = 3768; обл. сбора по 20: 5,88–39,72°; всего отражений 35058; независимых отражений 6251, $R_{\text{int}} = 0.0555$, GOOF = 1.048; R-фактор 0,0672].

Ключевые слова: бромид серебра, бромиды 2-оксибензилтрифенилфосфония, пропаргилтрифенилфосфония, бензилтрифенилфосфония, бромпропилтрифенилфосфония, бромистоводородная кислота, диметилсульфоксид, реакции, синтез, строение, рентгеноструктурный анализ

Для цитирования: Реакции бромидов органилтрифенилфосфония с бромидом серебра в присутствии бромистоводородной кислоты / В.В. Шарутин, Д.П. Шевченко, О.К. Шарутина, Е.В. Баранов // Вестник ЮУрГУ. Серия «Химия». 2025. Т. 17, № 3. С. 97–105. DOI: 10.14529/chem250309

Original article

DOI: 10.14529/chem250309

REACTIONS OF ORGANYLTRIPHENYLPHOSPHONIUM BROMIDES WITH SILVER BROMIDE IN THE PRESENCE OF HYDROBROMIC ACID

V.V. Sharutin^{1™}, D.P. Shevchenko¹, O.K. Sharutina¹, E.V. Baranov²

Abstract. The interaction of 2-hydroxybenzyltriphenylphosphonium, propargyltriphenylphosphonium, benzyltriphenylphosphonium, and bromopropyltriphenylphosphonium bromides with silver bro-

² Институт металлоорганической химии им. Г.А. Разуваева РАН, Нижний Новгород, Россия

[™] sharutin50@mail.ru

¹ South Ural State University, Chelyabinsk, Russia

² Razuvaev Institute of Organometallic Chemistry, Russian Academy of Sciences, Nizhny Novgorod, Russia

[™] sharutin50@mail.ru

[©] Шарутин В.В., Шевченко Д.П., Шарутина О.К., Баранов Е.В., 2025.

mide produced ionic complexes $[Ph_3PCH_2C_6H_2(OH-2)Br_2-3,5][Br]$ (1) $[C_{25}H_{20}OPBr_3, M = 607.11;$ monoclinic system, sp. gr. $P2_1/c$; cell parameters: a = 18.157(11) Å, b = 15.293(8) Å, c = 17.258(9) Å; $\beta =$ 90.27(3)°, $V = 4792(5) \text{ Å}^3$, Z = 4; $\rho_{calc} = 1.682 \text{ g/cm}^3$; $\mu = 5.132 \text{ mm}^{-1}$; F(000) = 2380; collection range at 20: $5.72-52.26^{\circ}$; total reflections 83462; independent reflections 9454, $R_{\text{int}} = 0.0546$, GOOF = 1.015; $R_{\text{int}} = 0.0546$ factor 0.0351]; $[Ph_3PCHBr_2][Br] \cdot DMSO(2)[C_{21,33}H_{23}O_{1,17}S_{1,17}PBr_3, M = 606.17; trigonal system, sp. gr.$ $R\overline{3}$; cell parameters: a = 33.379(18) Å, b = 33.379 Å, c = 11.145(6) Å; $\alpha = 90.00^{\circ}$, $\beta = 90.00^{\circ}$, $\gamma = 90.00^{\circ}$ 120.00°, $V = 10753(13) \text{ Å}^3$, Z = 18; $\rho_{\text{calc}} = 1.685 \text{ g/cm}^3$; $\mu = 5.244 \text{ mm}^{-1}$; F(000) = 5382; collection range at 20: 6.26–61.20°; total reflections 59595; independent reflections 7328, $R_{\rm int} = 0.0600$, GOOF = 1.047; *R*-factor 0.0411]; $[Ph_3PCH_2Ph]^+_2[Ag_2Br_4]^{2-}$ (3) $[C_{25}H_{22}PBr_2Ag, M = 621.07;$ monoclinic system, sp. gr. C2/c; cell parameters: a = 24.825(14) Å, b = 10.215(7) Å, c = 19.910(11) Å; $\beta = 109.98(2)^{\circ}$, V = 4745(5)Å³, Z = 8; $\rho_{calc} = 1.739 \text{ g/cm}^3$; $\mu = 4.294 \text{ mm}^{-1}$; F(000) = 2432; collection range at 20: 6.34–67.60°; total reflections 89682; independent reflections 9477, $R_{\text{int}} = 0.0677$, GOOF = 1.007; R-factor 0.0452]; $[Ph_3P(CH_2)_3Br]^+_3[Ag_3Br_6]^{3-}$ (4) $[C_{63}H_{63}P_3Br_9Ag_3, M = 1955.75;$ monoclinic system, sp. gr. P2/c; cell parameters and P3/c cell parameters are specified by P3/c cell parameters and P3/c cell parameters are specified by P3/c cell parameters and P3/c cell parameters are specified by P3/c cell parameters are specified by P3/c cell parameters and P3/c cell parameters are specified by P3/c cell parameters ar rameters: a = 24.59(3) Å, b = 16.41(2) Å, c = 17.99(2) Å, $\beta = 108.25(4)^{\circ}$, V = 6893(15) Å³, Z = 4, $\rho_{\text{BbH}} = 1.885 \text{ g/cm}^3$; $\mu = 6.167 \text{ mm}^{-1}$; F(000) = 3768; collection range at 20: 5.88–39.72°; total reflections 35058; independent reflections 6251, $R_{\text{int}} = 0.0555$, GOOF = 1.048; R-factor 0.0672].

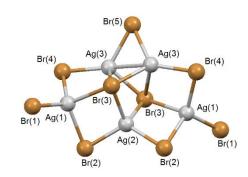
Keywords: silver bromide, 2-hydroxybenzyltriphenylphosphonium bromide, propargyltriphenylphosphonium bromide, benzyltriphenylphosphonium bromide, bromopropyltriphenylphosphonium bromide, hydrobromic acid, dimethyl sulfoxide, reactions, synthesis, structure, X-ray structural analysis

For citation: Sharutin V.V., Shevchenko D.P., Sharutina O.K., Baranov E.V. Reactions of organyl-triphenylphosphonium bromides with silver bromide in the presence of hydrobromic acid. *Bulletin of the South Ural State University*. *Ser. Chem.* 2025;17(3): 97–105. (In Russ.) DOI: 10.14529/chem250309

Введение

В литературе описан синтез галогенсодержащих комплексов переходных металлов из их галогенидов или комплексных кислот и галогенидов тетраорганилфосфония, тетраорганилстибония [1–21]. Например, галогенсодержащие комплексы серебра с моно-, би-, три-, олиго- и полиядерными анионами получали из галогенидов тетраорганилфосфония и галогенидов серебра в растворе диметилсульфоксида [1–7]. Установлено, что в зависимости от соотношения исходных реагентов продуктами реакций могут быть ионные комплексы серебра, содержащие производные с моноядерными анионами, такими как $[AgBr_3]^{2-}$ [1], полиядерными анионами $[Ag_2Br_3]^{n-}$ [1, 2], однако взаимодействие иодида метилтрифенилфосфония с иодидом серебра, независимо от мольного соотношения реагентов (1:1, 1:2, 1:3), протекает с образованием комплекса с анионом полимерного строения $[Ph_3PMe]^+_n[Ag_3I_4]^{n-}_n$ [3]. Также показано, что реакция иодида метилтрифенилфосфония с иодистым серебром в ацетонитриле при мольном соотношении 2:1 приводит к образованию комплекса $[Ph_3MeP]^+_2[AgI_3]^{2-}$ [4].

Ряд ионных комплексов серебра с биядерными галогенсодержащими анионами $[Ag_2Hal_4]^{2-}$ (Hal = Cl, Br, I) получен в результате взаимодействия галогенидов серебра с фосфониевыми солями в растворе диметилсульфоксида [2, 3, 5].


$$2 \; [Ph_3PR]Hal \; + \; 2 \; AgHal \quad \xrightarrow{DMSO} \; [Ph_3PR]^+_2[Ag_2Hal_4]^{2-}$$

Помимо моно-, би-, и полиядерных анионов в растворе диметилсульфоксида (ДМСО) возможно формирование анионов иного структурного типа. Так, продуктом реакции эквимольных количеств иодида тетра-p-толилфосфония и иодида серебра является комплекс с трехъядерным анионом [Ag_3I_6]³⁻ [6].

$$3 p\text{-Tol}_4\text{PI} + 3 \text{ AgI} \xrightarrow{\text{DMSO}} [p\text{-Tol}_4\text{P}]^+_3[\text{Ag}_3\text{I}_6]^{3-}$$

В реакции дибромида триметилен-*бис*(трифенилфосфония) с бромидом серебра в ДМСО, независимо от мольного соотношения реагентов, образуется сольват $[Ph_3P(CH_2)_3PPh_3]^{2+}_2[Ag_5Br_9]^{4-}$ · DMSO [5]:

$$2 \left[Ph_3P(CH_2)_3PPh_3\right]Br_2 + 5 AgBr \xrightarrow{DMSO} \left[Ph_3P(CH_2)_3PPh_3\right]^{2+}_2 \left[Ag_5Br_9\right]^{4-} \cdot DMSO$$

Центральной частью аниона является группа атомов Ag_3Br_3 , слева и справа от которой расположены фрагменты $AgBr_3$, в которых присутствуют как мостиковые атомы Br(2,4) (расстояния $Ag-Br-\mu_2$ 2,5462(13)–2,7474(13) Å), так и терминальные Br(1) (Ag-Br 2,5894(14) Å) атомы. Длины связей Ag-Br с четырехкоординированным μ_4 -Br(3) атомом брома имеют максимальные значения и варьируются в интервале 2,6980(13)–2,9355(13) Å.

Фосфониевые комплексы серебра с полимерными анионами $[Ag_2Br_3]_n^{n-}$, $[Ag_5Br_6]_n^{n-}$ были получены взаимодействием бромидов органилтрифенилфосфония с бромидом серебра в диметил-сульфоксиде [7].

Таким образом, дизайн Ag,Hal-содержащего аниона определяется как природой исходной фосфониевой соли, так и мольным соотношением реагентов, при этом чаще всего наблюдается образование комплексных соединений с анионами $[Ag_2Hal_4]^{2-}$.

Экспериментальная часть

Синтез соединения [Ph₃PCH₂C₆H₂(OH-2)Br₂-3,5][Br] (1). К раствору 40 мг (0,21 ммоль) бромида серебра в 3 мл ДМСО и 0,1 мл НВг (40 %) прибавляли при перемешивании 95 мг (0,21 ммоль) бромида 2-оксибензилтрифенилфосфония. После испарения растворителя получили 90 мг (71%) бесцветных кристаллов 1 с $T_{\text{разл}} = 253$ °C. Найдено (%): С 48,95; Н 3,42. Для $C_{50}H_{39}O_2P_2Br_6$ рассчитано (%): С 49,46; Н 3,21. ИК спектр (ν , см⁻¹): 3057, 3040, 3009, 2992, 2895, 2860, 2799, 1587, 1545, 1483, 1464, 1435, 1425, 1395, 1335, 1312, 1281, 1254, 1242, 1204, 1167, 1111, 1105, 1028, 997, 893, 883, 866, 822, 773, 746, 725, 719, 689, 608, 590, 557, 511, 501, 494, 478, 459, 451, 434, 420.

Соединения [Ph₃PCHBr₂][Br] · DMSO (2), [Ph₃PCH₂Ph]⁺₂[Ag₂Br₄]²⁻ (3) и [Ph₃P(CH₂)₃Br]⁺₃[Ag₃Br₆]³⁻ (4) синтезировали аналогичным путем из [Ph₃PCH₂C \equiv CH][Br], [Ph₃PCH₂Ph][Br] и [Ph₃P(CH₂)₃Br][Br] соответственно. Для комплекса 4 вместо системы DMSO-HBr использовали ДМФА.

- **2** (69 %), бесцветные кристаллы, $T_{\rm pa3Л}=152\,^{\circ}{\rm C}$. Найдено (%): С 41,37; Н 3,86. Для ${\rm C_{21}H_{23}OSPBr_3}$ рассчитано (%): С 41,57; Н 3,79. ИК-спектр (ν , см $^{-1}$): 3051, 3032, 3015, 3003, 2990, 2909, 2799, 2359, 2330, 2291, 1584, 1487, 1437, 1418, 1402, 1339, 1321, 1169, 1099,1040, 1024, 995, 951, 928, 791, 758, 748, 723, 687, 590, 511, 496, 440.
- **3** (65 %), бесцветные кристаллы, $T_{\text{пл}} = 226$ °C. Найдено (%): С 48,11; Н 3,64. Для $C_{25}H_{22}PBr_2Ag$ рассчитано (%): С 48,30; Н 3,54. ИК-спектр (ν , см⁻¹): 3080, 3053, 2909, 2870, 2799, 1597, 1587, 1485, 1450, 1435, 1408, 1387, 1329, 1306, 1186, 1161, 1148, 1113, 1070, 1028, 995, 972, 924, 862, 851, 812, 787, 758, 748, 743, 719, 704, 696, 687, 619, 583, 509, 494, 444, 434.
- **4** (70 %), бесцветные кристаллы, $T_{\text{пл}} = 81^{\circ}\text{C}$. Найдено (%): С 38,40; Н 3,47. Для С₆₃Н₆₃Р₃Вг₉Аg₃ рассчитано (%): С 38,65; Н 3,22. ИК-спектр (ν , см⁻¹): 3090, 3076, 3051, 3040, 3007, 2990, 2941, 2914, 2889, 2880, 2860, 2793, 1587, 1485, 1462, 1437, 1406, 1387, 1368, 1342, 1319, 1240, 1209, 1194, 1167, 1159, 1113, 1072, 1053, 1045, 1022, 997, 988, 899, 876, 854, 791, 766, 743, 721, 710, 692, 919, 596, 563, 534, 503, 494, 469, 455, 436.

ИК-спектры комплексов **1–4** записывали на ИК-спектрометре Shimadzu IR Affinity-1S в таблетках KBr в области 4000-400 см⁻¹.

PCA кристаллов **1–4** проведен на дифрактометре D8 Quest фирмы Bruker (Мо $K\alpha$ -излучение, $\lambda = 0,71073$ Å, графитовый монохроматор) при 296(2) К. Сбор, редактирование данных и уточнение параметров элементарной ячейки, а также учет поглощения проведены по программам SMART и SAINT-*Plus* [22]. Все расчеты по определению и уточнению структур выполнены по программам SHELXL/PC [23] и OLEX2 [24]. Структуры определены прямым методом и уточнены методом наименьших квадратов в анизотропном приближении для неводородных атомов.

Таблица 1 Кристаллографические данные, параметры эксперимента и уточнения структур комплексов 1–4

Параметр	1	2	3	4
Стехиометрическая формула	$C_{25}H_{20}OPBr_3$	$C_{21,33}H_{23}O_{1,17}S_{1,17}PBr_{3}$	$C_{25}H_{22}PBr_2Ag$	$C_{63}H_{63}P_3Br_9Ag_3$
M	607,11	606,17	621,07	1955,75
Сингония	Моноклинная	Тригональная	Моноклинная	Моноклинная
Пространственная группа	P2 ₁ /c	R3	C2/c	P2 ₁ /c
a, Å	18,157(11)	33,379(18)	24,825(14)	24,59(3)
b, Å	15,293(8)	33,379	10,215(7)	16,41(2)
c, Å	17,258(9)	11,145(6)	19,910(11)	17,99(2)
α, град.	90,00	90,00	90,00	90,00
β, град.	90,27(3)	90,00	109,98(2)	108,25(4)
ү, град.	90,00	120,00	90,00	90,00
<i>V</i> , Å ³	4792(5)	10753(13)	4745(5)	6893(15)
Z	4	18	8	4
$\rho_{\text{выч}}, \Gamma/\text{см}^3$	1,682	1,685	1,739	1,885
μ , MM^{-1}	5,132	5,244	4,294	6,167
F(000)	2380	5382	2432	3768
Размер кристалла, мм	$0.33 \times 0.18 \times 0.13$	$0.31 \times 0.30 \times 0.20$	$0.5 \times 0.15 \times 0.12$	$0.33 \times 0.16 \times 0.16$
Диапазон сбора данных по 20, град.	5,72–52,26	6,26–61,20	6,34–67,60	5,88–39,72
Диапазон индексов	$-22 \le h \le 22$	$-47 \le h \le 43$	$-38 \le h \le 36$	$-23 \le h \le 23$
	$-18 \le k \le 18$	$-40 \le k \le 47$	$-15 \le k \le 15$	$-15 \le k \le 15$
	$-21 \le l \le 21$	$-15 \le l \le 15$	$-31 \le l \le 30$	$-17 \le l \le 17$
Число измеренных рефлексов	83462	59595	89682	35058
Чисто независимых рефлексов	9454	7328	9477	6251
R_{int}	0,0546	0,0600	0,0677	0,0555
GOOF	1,015	1,047	1,007	1,048
Число параметров	427	360	262	722
R -факторы по $I > 2\sigma(I)$	$R_1 = 0.0351$ $wR_2 = 0.0863$	$R_1 = 0.0411$ $wR_2 = 0.0778$	$R_1 = 0.0452,$ $wR_2 = 0.0857$	$R_1 = 0.0672,$ $wR_2 = 0.1770$
<i>R</i> -факторы по всем	$R_1 = 0.0569$,	$R_1 = 0.0905,$	$R_1 = 0,1051,$	$R_1 = 0.0827$,
рефлексам	$wR_2 = 0.0972$	$wR_2 = 0.0950$	$wR_2 = 0.1033$	$wR_2 = 0.1877$
Остаточная электронная плотность (max/min), e/A ³	0,44/ -1,08	0,57/ -0,76	0,66/ -1,14	1,85/ -2,60

Основные длины связей и валентные углы в комплексах 1–4

Связь	d, Å	Угол	ω , град.			
1						
Br(3)–C(33)	1,897(4)	C(1)P(1)C(37)	108,65(17)			
Br(4)–C(35)	1,910(4)	C(21)P(1)C(37)	111,27(17)			

Таблица 2

Окончание табл. 2

Связь	d, Å	Угол	ω , град.
Br(6)–C(75)	1,900(4)	C(21)P(1)C(1)	110,62(17)
Br(5)–C(73)	1,890(4)	C(21)P(1)C(11)	108,44(18)
P(1)-C(37)	1,812(4)	C(11)P(1)C(37)	108,64(16)
P(1)-C(1)	1,804(4)	C(11)P(1)C (1)	109,18(16)
P(1)–C(21)	1,788(4)	C(41)P(2)C(77)	108,73(16)
P(1)–C(11)	1,797(3)	C(61)P(2)C(41)	108,58(18)
P(2)–C(41)	1,805(3)	C(61)P(2)C(77)	111,24(17)
P(2)-C(77)	1,813(4)	C(61)P(2)C(51)	110,35(17)
P(2)-C(61)	1,788(4)	C(51)P(2)C(41)	109,45(16)
P(2)–C(51)	1,797(3)	C(51)P(2)C(77)	108,46(16)
1(2) 8(81)	1,777(3)	2	100,10(10)
Br(1)–C(19)	1,948(3)	C(1)P(1)C(7)	109,17(15)
Br(2)–C(19)	1,944(3)	C(1)P(1)C(13)	110,04(15)
P(1)–C(1)	1,786(3)	C(1)P(1)C(19)	109,58(14)
P(1)–C(7)	1,794(3)	C(7)P(1)C(19)	109,38(14)
		` ' ` ' ` '	
P(1)-C(13)	1,791(3)	C(13)P(1)C(7)	109,22(14)
P(1)–C(19)	1,815(3)	C(13)P(1)C(19)	109,54(14)
4 (4) 4 (4)	0.1007(15)	3	7.1.00(0)
$Ag(1)-Ag(1^1)$	3,1305(17)	$Br(1^1)Ag(1)Ag(1^1)$	54,03(2)
Ag(1)–Br(1)	2,6662(12)	$Br(1)Ag(1)Ag(1^1)$	54,12(3)
$Ag(1)-Br(1^1)$	2,6693(12)	$Br(1)Ag(1)Br(1^1)$	108,15(4)
Ag(1)–Br(2)	2,5522(14)	$Br(2)Ag(1)Ag(1^1)$	173,12(2)
$Br(1)$ – $Ag(1^1)$	2,6693(12)	Br(2)Ag(1)Br(1)	126,80(4)
P(1)–C(37)	1,813(3)	$Br(2)Ag(1)Br(1^1)$	124,47(2)
P(1)–C(11)	1,794(3)	$Ag(1)Br(1)Ag(1^{1})$	71,85(4)
P(1)-C(1)	1,797(3)	C(11)P(1)C(1)	108,46(13)
P(1)–C(21)	1,793(3)	C(1)P(1)C(37)	110,46(13)
Преобразования симметр	ии: ¹ 1-х, -у, 1-z		
	, ,,	4	
Ag(1)-Ag(2)	2,974(4)	Br(1)Ag(1)Ag(2)	165,02(15)
Ag(1)-Ag(3)	3,191(4)	Br(1)Ag(1)Ag(3)	136,55(15)
Ag(1)-Br(1)	2,477(4)	Br(1)Ag(1)Br(3)	121,63(14)
$\frac{Ag(1)-Br(3)}{Ag(1)-Br(3)}$	2,618(4)	Br(1)Ag(1)Br(4)	122,00(13)
$\frac{Ag(1)-Br(3)}{Ag(1)-Br(4)}$	2,717(4)	Br(3)Ag(1)Br(4)	110,11(12)
$\frac{Ag(1)-BI(4)}{Ag(2)-Ag(3)}$	3,012(3)	Br(2)Ag(2)Ag(1)	121,86(11)
	2,633(3)		90,37(11)
Ag(2)-Br(2)		Br(2)Ag(2)Br(3)	
Ag(2)-Br(3)	3,009(4) 2,919(4)	Br(2)Ag(2)Br(4)	95,12(10)
Ag(2)-Br(4)	, , ,	Br(3)Ag(2)Ag(3)	56,27(8)
Ag(2)-Br(5)	2,474(3)	Br(4)Ag(2)Br(3)	95,05(8)
Ag(3)–Br(2)	2,740(3)	Br(5)Ag(2)Br(2)	114,97(13)
Ag(3)–Br(3)	2,839(3)	Br(5)Ag(2)Br(3)	111,07(13)
Ag(3)–Br(4)	2,874(4)	Br(5)Ag(2)Br(4)	109,52(12)
Ag(3)–Br(6)	2,552(3)	Ag(2)Ag(3)Ag(1)	57,22(9)
P(1A)–C(1A)	1,811(15)	Br(2)Ag(3)Ag(1)	111,32(11)
P(1A)–C(7A)	1,779(14)	Br(2)Ag(3)Br(4)	93,86(9)
P(1A)-C(13A)	1,791(15)	Br(3)Ag(3)Br(4)	99,89(7)
P(1A)-C(19A)	1,788(15)	Br(6)Ag(3)Br(2)	127,91(8)
P(1B)-C(1B)	1,812(15)	Br(6)Ag(3)Br(3)	119,90(10)
P(1B)–C(7B)	1,783(15)	Br(6)Ag(3)Br(4)	116,86(10)
P(1B)–C(13B)	1,795(15)	C(1A)P(1A)C(19A)	110.1(7)
P(1B)–C(19B)	1,792(15)	C(7A)P(1A)C(13A)	109.1(7)
P(1C)–C(1C)	1.788(15)	C(1B)P(1B)C(7B)	109.2(7)
P(1C)-C(7C)	1.780(19)	C(13B)P(1B)C(19B)	109.2(7)
P(1C)-C(13C)	1.793(16)	C(1SB)F(1B)C(13B) C(1C)P(1C)C(13C)	109.5(7)
P(1C)-C(19C)	1.805(15)	C(7C)P(1C)C(19C)	110.5(8)
			1.10.3001

Полные таблицы координат атомов, длин связей и валентных углов в комплексах **1–4** депонированы в Кембриджском банке структурных данных (CCDC 2419202 (**1**), 2419841 (**2**), 2417932 (**3**), 2421508 (**4**); deposit@ccdc.cam.ac.uk; http://www.ccdc.cam.ac.uk).

Обсуждение результатов

Известно, что продуктами реакций бромида органилтрифенилфосфония с бромидом серебра в диметилсульфоксиде являются соли органилтрифенилфосфония с Ag,Br-содержащими анионами [1, 2–5, 7].

С целью изучения влияния природы катиона и мольного соотношения реагентов на строение Ag, Br-содержащих анионов было изучено взаимодействие бромида серебра с солями $[Ph_3PR]Br$ в растворе ДМСО ($R = CH_2C_6H_4(OH-2)$, $CH_2C\equiv CH$, CH_2Ph) или ДМФА ($R = (CH_2)_3Br$). Реакции с бромидами 2-оксибензил-, пропаргил- и бензилтрифенилфосфония осуществлялось в присутствии бромистоводородной кислоты, которую добавляли в реакционную смесь для улучшения растворимости исходных компонентов. Медленное удаление растворителя из образующегося гомогенного раствора приводило к образованию кристаллов, строение которых анализировали методом ИК- и рентгеноструктурного анализа.

Мы нашли, что из реакционной смеси, содержащей эквимолярные количества бромида серебра, бромида 2-оксибензилтрифенилфосфония и бромистоводородной кислоты в растворе диметилсульфоксида были выделены кристаллы бромида (2-окси)(3,5-дибром)бензилтрифенилфосфония, т. е. имело место бромирование фенильного фрагмента 2-оксибензилтрифенилфосфония, т. е. при действии бромистоводородной кислоты имело место электрофильное замещение атомов водорода в бензольном кольце бензильного фрагмента исходного фосфорсодержащего соединения:

$$[Ph_3PCH_2C_6H_4(OH-2)][Br] + 2 HBr \xrightarrow{DMSO, AgBr} [Ph_3PCH_2C_6H_2(OH-2)Br_2-3,5][Br]$$

$$(1)$$

В аналогичных условиях при введении в исходный бромид тетраорганилфосфония органического заместителя, содержащего тройную связь, основным продуктом реакции являлся сольват бромида дибромметилтрифенилфосфония с диметилсульфоксидом:

$$[Ph_3PCH_2C \equiv CH][Br] + 2 HBr \xrightarrow{DMSO, AgBr} [Ph_3PCHBr_2][Br] \cdot DMSO$$
(2)

Очевидно, что преобразование пропаргилового заместителя в дибромметильный происходило при действии бромистоводородной кислоты на исходный бромид тетраорганилфосфония, а бромистое серебро, как и в предыдущей реакции, не было задействовано в образовании конечного продукта.

Однако отсутствие гидроксильной группы в бензильном заместителе приводило к иным результатам. В этом случае с высоким выходом получали продукт ионного строения с биядерным анионом $[Ag_2Br_4]^{2-}$:

$$2 [Ph_3PCH_2Ph][Br] + 2 AgBr \xrightarrow{DMSO, HBr} [Ph_3PCH_2Ph]^+_2[Ag_2Br_4]^{2-}$$
(3)

В случае замены бензильной группы у атома фосфора на 3-бромпропильный заместитель имело место образование трехъядерного аниона $[Ag_3Br_6]^{3-}$:

$$3 \left[Ph_3P(CH_2)_3Br\right][Br] + 3 AgBr \xrightarrow{\text{DMF}} \left[Ph_3P(CH_2)_3Br\right]^+_3[Ag_3Br_6]^{3-}$$

$$(4)$$

В ИК-спектрах соединений **1–4** ожидаемо присутствуют полосы поглощения колебаний связей С–H в интервалах 3057–2799, 3051–2799, 3080–2799 и 3090–2793 см⁻¹, а также P–С_{Ph}-связей

при 1435 (**1**, **3**), 1437 (**2**, **4**) см $^{-1}$. Полосу при 1024 см $^{-1}$ в ИК-спектре комплекса **2** можно отнести к валентным колебаниям связи S=O. Колебаниям связей C_{Ar} -Br и C_{Alk} -Br, вероятно, соответствуют полосы при 1105 см $^{-1}$ (**1**) и 511 (**2**), 534 (**4**) см $^{-1}$ соответственно [25,26].

Строение солей органилтрифенилфосфония **1** (рис. 1) и **2** (рис. 2), в которых присутствовали тетраэдрические катионы фосфония и противоионы [Br]⁻, сравнимо со структурами подобных бромидов тетраорганилфосфония [27,28], а дизайн анионов $[Ag_2Br_4]^{2-}$ в **3** подобен наблюдаемому в работах [2, 5]. Так, в центросимметричных биядерных анионах **3** (рис. 3) длины связей Ag-Br_{терм} (2,5522(14) Å) и Ag-Br_{мост} (2,6662(12), 2,6693(12) Å) значительно отличаются между собой, как и углы BrAgBr (108,15(4)°, 126,80(4)°), и приближаются по своему значению к наблюдаемым в подобных анионах [2, 5].

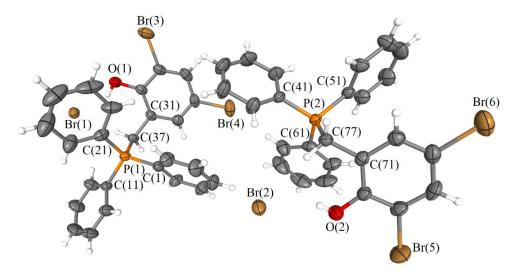


Рис. 1. Строение комплекса 1

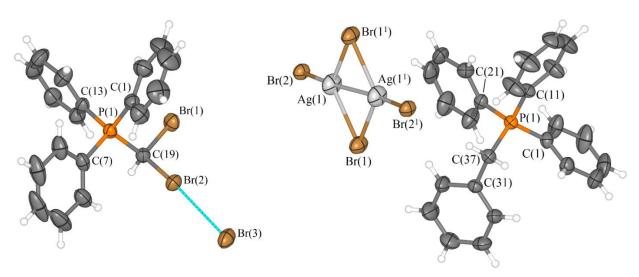


Рис. 2. Строение комплекса 2 (сольватные молекулы диметилсульфоксида не показаны)

Рис. 3. Строение комплекса 3

Если в кристалле (2-окси)(3,5-дибром)бензилтрифенилфосфония (1) присутствуют два кристаллографически независимых органилтрифенилфосфониевых катиона, то в кристалл 4 содержит три кристаллографически независимых бромпропилтрифенилфосфониевых катионов и трехзарядных трехъядерных анионов $[Ag_3Br_6]^{3-}$ (рис. 4).

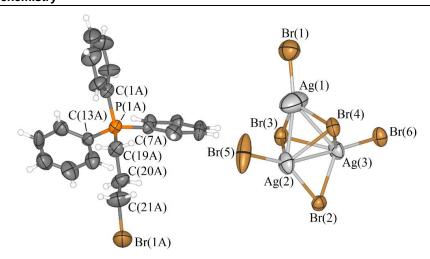


Рис. 4. Строение комплекса 4 (показан один из трех катионов)

Связи Ag—Br в анионе комплекса **4** различаются между собой: три терминальные связи Ag—Br_{терм} (2,474(3), 2,477(4), 2,552(3) Å) значительно короче мостиковых связей Ag—Br_{мост} (2,633(3), 2,740(3) Å) для двухкоординированного атома брома Br(2). Расстояния Ag—Br_{мост} для двух трехкоординированных атомов брома Br(3) и Br(4) варьируют в широком интервале значений (2,618(4)—3,009(4) Å). Длины связей Ag(1)—Br(3,4) (2,618(4), 2,717(4) Å)) близки к аналогичным расстояниям мостикового двухкоординированного атома Br(2), а связи Ag(2)—Br(3,4) и Ag(3)—Br(3,4) (2,839(3)—3,009(4) Å)) являются наиболее длинными Ag—Br связями в анионе комплекса **4**.

Выводы

Реакции в ДМСО бромида серебра с бромидами 2-оксибензилтрифенилфосфония и пропаргилтрифенилфосфония в присутствии бромистоводородной кислоты приводят к модифицированию катионов исходных ониевых солей и кристаллизации [$Ph_3PCH_2C_6H_2(OH-2)Br_2-3,5$][Br] и [Ph_3PCHBr_2][Br]·DMSO соответственно. Реакция с бромидом бензилтрифенилфосфония в тех же условиях приводит к образованию комплекса [Ph_3PCH_2Ph]₂[Ag_2Br_4] с типичным димерным анионом. В свою очередь, продуктом взаимодействия бромида серебра и бромида 3-бромпропилтрифенилфосфония в ДМСО является комплекс [$Ph_3P(CH_2)_3Br$]₃[Ag_3Br_6] с олигомерным анионом.

Список источников

- 1. *Шарутин В.В., Шарутина О.К., Сенчурин В.С. и др.* // Коорд. химия. 2016. Т. 42, № 2. С. 110. DOI: 10.7868/S0132344X16020079
- 2. *Шарутин В.В., Шарутина О.К., Сенчурин В.С. и др.* // Журн. неорган. химии. 2016. Т. 61, № 4. С. 472. DOI: 10.7868/S0044457X16040176
- 3. *Шарутин В.В., Шарутина О.К., Сенчурин В.С., Неудачина А.Н.* // Журн. общ. химии. 2016. Т. 86, № 7. С. 1177. EDN: WHFJVZ
- 4. Bowmaker G.A., Clark G.R., Rogers D.A. et al. // J. Chem. Soc., Dalton Trans. 1984. P. 37. DOI: 10.1039/DT9840000037
- 5. *Шарутин В.В., Шарутина О.К., Сенчурин В.С. и др.* // Бутлеровские сообщения. 2014. Т. 39, № 10. С. 54. EDN: TPFWHV
- 6. *Шарутин В.В., Сенчурин В.С., Неудачина А.Н. и др.* // Бутлеровские сообщения. 2014. Т. 39, № 8. С. 97. EDN: TOTZMF
- 7. *Shevchenko D.P.*, *Zhizhina A.I.*, *Efremov A.N. et al.* // Russ. J. Inorg. Chem. 2024. V. 69, No. 6. P. 830. DOI: 10.1134/S0036023624600710
- 8. *Шарутин В.В.*, *Сенчурин В.С.*, *Пакусина А.П. и др.* // Журн. неорган. химии. 2010. Т. 55, № 9. С. 1499. EDN: MVNWFB
- 9. *Шарутин В.В., Сенчурин В.С., Шарутина О.К. и др.* // Бутлеровские сообщения. 2011. Т. 27, № 16. С. 68. EDN: OWHRTZ

- 10. *Шарутин В.В., Шарутина О.К., Сенчурин В.С.* // Бутлеровские сообщения. 2014. Т. 38, № 5. С. 151. EDN: TAMHJH
- 11. *Шарутин В.В., Шарутина О.К., Сенчурин В.С.* // Журн. неорган. химии. 2015. Т. 60, № 8. С. 1040. DOI: 10.7868/S0044457X15080188
- 12. *Шарутин В.В., Сенчурин В.С., Фастовец О.А. и др. //* Коорд. химия. 2008. Т. 34, № 5. С. 373. EDN: IJUXPJ
- 13. Sharutin V.V., Sharutina O.K., Senchurin V.S. // Вестник ЮУрГУ. Серия «Химия». 2015. Т. 7, № 4. С. 98. DOI: 10.14529/chem150413
- 14. *Шарутин В.В., Сенчурин В.С., Шарутина О.К.* // Вестник ЮУрГУ. Серия «Химия». 2011. № 33 (250). С. 37. EDN: OJSELN
- 15. *Шарутин В.В., Сенчурин В.С., Шарутина О.К.* // Бутлеровские сообщения. 2012. Т. 30, № 6. С. 50. EDN: PCFIWR
- 16. *Шарутин В.В., Сенчурин В.С., Шарутина О.К. и др.* // Журн. неорган. химии. 2013. Т. 58, № 1. С. 36. DOI: 10.7868/S0044457X13010194
- 17. *Шарутин В.В., В.С. Сенчурин, А.П. Пакусина и др.* // Журн. неорган. химии. 2010. Т. 55, № 1. С. 64. EDN: KZLWQZ
- 18. *Шарутин В.В., Сенчурин В.С., Шарутина О.К.* // Бутлеровские сообщения. 2011. Т. 28, № 17. С. 67. EDN: OWTYKP
- 19. *Шарутин В.В., Сенчурин В.С., Шарутина О.К.* // Бутлеровские сообщения. 2011. Т. 28, № 20. С. 35. EDN: OWFPNZ
- 20. *Шарутин В.В., Сенчурин В.С., Шарутина О.К. и др.* // Бутлеровские сообщения. 2012. Т. 30, № 4. С. 55. EDN: PCFIHR
- 21. *Шарутин В.В., Сенчурин В.С., Шарутина О.К. и др.* // Коорд. химия. 2011. Т. 37, № 11. С. 857. EDN: OJHATF
- 22. Bruker. SMART and SAINT-Plus. Versions 5.0. Data Collection and processing software for the SMART system. Bruker AXS Inc., Madison, Wisconsin, USA, 1998.
- 23. Bruker. SHELXTL/PC. Versions 5.10. An integrated system for solving, refining and displaying crystal structures from diffraction data. Bruker AXS Inc., Madison, Wisconsin, USA, 1998.
- 24. *Dolomanov O.V., Bourhis L.J., Gildea R.J. et al.* // J. Appl. Cryst. 2009. V. 42. P. 339. DOI: 10.1107/S0021889808042726
- 25. *Тарасевич Б.Н*. ИК-спектры основных классов органических соединений. М.: МГУ, 2012. $54 \, \mathrm{c}$.
- 26. *Беллами Л.* Инфракрасные спектры сложных молекул / пер. с англ. В.М. Акимова, Ю.А. Пентина, Э.Г. Тетерина. М.: Изд-во иностранной литературы, 1963. 590 с.
- 27. Cambridge Crystallographic Database. Release 2022. Cambridge. deposit@ccdc.cam.ac.uk; http://www.ccdc.cam.ac.uk
- 28. *Marrett J.M.*, *Titi H.M.*, *Teoh Y. et al.* // Chem. Sci. 2024. V. 15. P. 298. DOI: 10.1039/d2sc04615f

Шарутин Владимир Викторович – доктор химических наук, профессор, главный научный сотрудник управления научной и инновационной деятельности, Южно-Уральский государственный университет, Челябинск, Россия. E-mail: sharutin50@mail.ru

Шевченко Дмитрий Павлович – аспирант, Южно-Уральский государственный университет, Челябинск, Россия. E-mail: Shepher56@gmail.com

Шарутина Ольга Константиновна – доктор химических наук, профессор, заведующий кафедрой теоретической и прикладной химии, Южно-Уральский государственный университет, Челябинск, Россия. E-mail: sharutinaok@susu.ru

Баранов Евгений Владимирович — кандидат химических наук, научный сотрудник сектора рентгенодифракционных исследований, Институт металлоорганической химии им. Г.А. Разуваева РАН, Нижний Новгород, Россия. E-mail: bar@iomc.ras.ru

Cmamья поступила в редакцию 27 февраля 2025 г. The article was submitted 27 February 2025.