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Аннотация. В данной работе представлен синтез и исследование электрохимических свойств 

микросферического фосфата титана (TiP) сложного состава и иерархической структуры. Материал 

представляет собой микросферы фосфата титана. Он был применен в качестве высокоэффективной 

электроактивной добавки к угольной пасте для создания модифицированного электрода. Ключевым 

результатом является демонстрация превосходных электрохимических характеристик микросфери-

ческого образца TiP 1/6 со средним размером ~8 мкм. Данный образец показал минимальное сопро-

тивление переносу заряда (Rct = 12 Ом) и максимальный ток отклика (I = 1,37 мА) по сравнению с 

микросферами иных размеров. Это превосходство объясняется достижением оптимального баланса 

между двумя критически важными параметрами: составом поверхности, обеспечивающим низкое 

сопротивление переносу заряда, и структурой агрегированных микрочешуек, способствующей эф-

фективной диффузии реагентов к активным центрам. Более мелкодисперсные сферы (~4 мкм), хотя 

и обладают минимальным диффузионным барьером (Rct = 41 Ом), уступают по сопротивлению пе-

реноса заряда. Крупные микросферы (~15 мкм, Rct = 15 Ом) имеют оптимальный состав поверхно-

сти, но их размер ограничивает диффузию. Сенсор на основе TiP 1/6 продемонстрировал выдаю-

щиеся аналитические параметры, включая низкий предел обнаружения широко применяемого анти-

биотика, широкий линейный рабочий диапазон и высокую селективность. Успешное тестирование 

сенсора на реальных образцах подтверждает его практическую применимость. Полученные резуль-

таты свидетельствуют о высоком потенциале синтезированного иерархического микросферического 

фосфата титана TiP 1/6 для разработки высокочувствительных и селективных электрохимических 

сенсоров, перспективных как для исследовательских задач, так и для коммерческого применения. 
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Abstract. This work presents the synthesis and investigation of electrochemical properties of micro-

spherical titanium phosphate (TiP) with complex composition and hierarchical structure. The material com-
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prises centrically aggregated micro-sized flakes, employed as a highly efficient electroactive modifier in 

carbon paste electrodes. The key finding is the superior electrochemical performance of the TiP 1/6 sample 

(average microsphere size: ~8 μm), which exhibited the lowest charge transfer resistance (Rct = 12 Ω) and 

highest response current (I = 1.37 mA) among all tested microspheres. This enhancement is attributed to an 

optimal balance between two critical parameters: (i) surface composition ensuring low charge-transfer resis-

tance, and (ii) hierarchical structure of aggregated micro-scales, facilitating efficient reagent diffusion to ac-

tive sites. Smaller microspheres (~4 μm, Rct = 41 Ω) demonstrated minimal diffusion barriers, while larger 

ones (~15 μm, Rct = 15 Ω) displayed favorable surface composition, making TiP 1/6 sample optimized with 

both characteristics. The TiP 1/6-based sensor has delivered exceptional analytical performance, including a 

low detection limit of a widespread antibiotic, wide linear working range, and high selectivity. Successful 

real-sample analysis confirms its practical utility. These results highlight the significant potential of hierar-

chical TiP 1/6 microspheres for developing highly sensitive and selective electrochemical sensors, suitable 

for both research and commercial applications. 

Keywords: furaltadone hydrochloride, electrochemical determination, hierarchically structured tita-

nium phosphate 
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Введение 
Фуралтодон (ФТД) – антипротозойное антисептическое средство, относится к классу нитро-

фуранов [1, 2]. Он обладает антимикробным действием широкого спектра, благодаря свойствам 
5-нитрофуранового кольца, используется, как кормовая добавка для стимуляции роста, а также 
для лечения протозойных и бактериальных инфекций [3]. Загрязнение пищевых продуктов ФТД 
приводит к его трансформации в химические соединения: 3-амино-5-морфолиноэтил-2-
оксазолидон (АМОЗ), семикарбазид или 1-аминогидантоин. Метаболизм этих соединений крайне 
вреден для здоровья человека [4]. 

ФТД производится и используется в нескольких странах благодаря своей эффективности и низ-
кой стоимости. Однако необходимость определения количества ФТД в пищевых продуктах на рынке 
крайне важна, поскольку его остатки в пище или воде обладают канцерогенными свойствами и вы-
зывают заболевания у людей [5]. Традиционные методы анализа ФТД, такие как высокоэффективная 
жидкостная хроматография (ВЭЖХ), жидкостная хроматография-масс-спектрометрия (ЖХ-МС) и 
иммуноферментный анализ (ИФА), обладают существенными недостатками. Для определения ФТД 
при помощи этих методов анализа требуется: дорогостоящее оборудование, сложная пробоподготов-
ка, высокая квалификация специалистов и значительные временные затраты. В связи с этим особый 
интерес представляют электрохимические методы анализа, сочетающие в себе: высокую чувстви-
тельность, скорость анализа, доступность и низкую стоимость [6, 7]. 

Электрохимические методы обладают рядом преимуществ: экономичность, стабильность, 
высокая чувствительность к аналитам, простота в использовании и универсальность. Поэтому 
электрохимические методы исследования обрели популярность в фармацевтической и экологи-
ческой сферах [8]. Ключевым компонентом электрохимической аналитической системы является 
электроактивная добавка, которая при наложении потенциала способна селективно и эффективно 
преобразовывать анализируемое вещество на поверхности с отъемом электрона (анодное окисле-
ние) или с передачей электрона (катодное восстановление). Основные требования к таким мате-
риалам включают химическую стабильность, кристалличность, разветвлѐнную поверхность и 
наличие электроактивных центров участвующих в редокс-процессах. 

В последнее время особый интерес вызывают так называемые иерарахически структуриро-
ванные материалы, которые демонстрируют более одного уровня структурной организации. Дан-
ные материалы в отличие от регулярно-структурированных демонстрируют более высокую 
удельную площадь поверхности и мультимодальную пористость и, часто анизотропию свойств: 
электропроводящих, сорбционных и механических. Более того, строго организованные или по-
вторяющиеся мотивы в иерархически структурированных материалах способствуют улучшению 
передачи электронов в продольном направлении [9, 10]. 
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Диоксид титана с иерархической структурой может быть адаптирован для создания нового 

электрохимически активного материала. Чтобы проверить эту гипотезу, мы провели гидротер-

мальную обработку прекурсоров оксида титана в присутствии различных анионов с целью ани-

онного темплатирования, ранее успешно примененного в синтезе иерархически структурирован-

ных материалов [11, 12]. В результате были получены новые иерархические структуры, на основе 

фосфата титана, демонстрирующие широкую вариативность морфологии. Ранее в нашей группе 

была показана принципиальная возможность использования иерархически структурированного 

фосфата титана для электрохимического определения сулькотриона [13]. Мы решили более под-

робно исследовать влияние размеров иерархически структурированных микросфер фосфата ти-

тана на их электроактивность. 

С целью разработки высокоэффективных сенсоров для мониторинга ФТД, исследование бы-

ло направлено на создание электрохимически активных материалов на основе фосфата титана 

(TiP). Решаемые задачи включали: (1) контроль морфологии формируемых материалов, (2) изу-

чение связи их морфологии синтезируемого с электрохимическими свойствами, и (3) их апроба-

цию в виде электроактивной добавки в составе угольно-пастового электрода (УПЭ) в электрохи-

мическом определении ФТД. 

 

Экспериментальная часть 

Реагенты 

DL-миндальная кислота (100 %, Bingospa), K3[Fe(CN)6] (НеваРеактив), K4[Fe(CN)6] (НеваРе-

актив), KCl (НеваРеактив), NH4OH (25 %, НеваРеактив), H2O2 (40 %, БиохимРеагент), порошок 

титана ПТМ–1, H3PO4 (98 %, Вектон), угольный порошок (< 45 µм) (Sigma Aldrich), парафиновое 

масло, (Sigma Aldrich), использовались без предварительной очистки. 

Элементный анализ и морфология поверхности образцов изучались с помощью электрон-

ного микроскопа Jeol JSM 7001F. 

Фазовый состав и структура образцов изучались на порошковом дифрактометре Rigaku 

Optima IV. Съемка проводилась в диапазоне углов 2θ от 5 до 90° со скоростью съемки 5°/мин. 

В исследовании использовалось излучение медной трубки CuKα (λ = 1,541 Å) при ускоряющем 

напряжении 40 кВ. 

Регистрацию ИК-спектров пропускания проводили на ИК-Фурье-спектрометре Shimadzu 

IRAffinity S1 в диапазоне от 400 до 4000 см
–1

 с разрешением 4 см
–1

 и числом повторений 40.  

Элементный состав образцов анализировали методом оптико-эмиссионной спектроскопии с 

индуктивно-связанной плазмой (ИСП-ОЭС) с использованием спектрометра Perkin Elmer ORAS 

OPTIMA 7300 DV для определения концентрации титана и фосфора с использованием спек-

тральных линий 336,121 нм (Ti) и 213,617 нм (P). Калибровочные кривые для элементов показали 

большую линейность (R
2
 = 0,9999). Перед анализом твердые образцы растворяли в 5 мл 35 % пе-

рекиси водорода (H2O2) при постепенном нагревании от 100 до 180 °С, избегая бурного кипения. 

После полного растворения добавляли 5 мл концентрированной серной кислоты (H2SO4) и нагре-

вали смесь при 150–250 °С до обесцвечивания. Затем температуру повышали до 350 °C и раствор 

выпаривали до появления густых паров H2SO4. После охлаждения остаток растворяли и доводили 

объем до метки в мерной колбе емкостью 50 мл.  

Электрохимические исследования проводились на бипотенциостате CH Instruments (CHIn-

strumetns, Остин, Техас, США), модель 760 b. Программное обеспечение для вольтамперометрии 

CHI (версия 2.03, CHInstrumetns). Использовалась трехэлектродная ячейка (общий объем 10 мл), 

где в качестве рабочего электрода использовался немодифицированный или модифицированный 

УПЭ, Ag/AgCl в качестве электрода сравнения и платиновая проволока в качестве вспомогатель-

ного электрода. Для характеристики электрода в качестве тестового раствора использовалась 

5 ммоль/л смесь K3[Fe(CN)6]/K4[Fe(CN)6] (1:1) в 0,1 М KCl. В качестве фонового раствора ис-

пользовался универсальный буферный раствор Бриттона-Робинсона (БР). Электрохимическая 

импедансная спектроскопия (ЭИС) регистрировалась в диапазоне частот от 10 мГц до 10 кГц. 

Циклическая вольтамперометрия (ЦВА) регистрировалась в диапазоне потенциалов от −0,5 В 

до 1,0 В со скоростью развертки 50 мВ/с. Для разработки аналитических процедур использова-

лась квадратно-волновая вольтамперометрия [31]. 
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Немодифицированный угольно-пастовый электрод (УПЭ) готовили путем смешивания 

80 % по весу углеродного порошка и 20 % парафинового масла в растворе. Через 30 мин смеши-

вания образовывалась однородная углеродная паста (УП). Модифицированные электроды гото-

вили путем добавления определенного количества синтезированных материалов к немодифици-

рованной углеродной пасте. Проценты были рассчитаны как часть только графитового порошка, 

в то время как процент масла всегда был постоянным и составлял 20 %. После гомогенизации 

смеси тефлоновый корпус был заполнен углеродной пастой, а поверхность электрода была очи-

щена бумагой и использовалась без дополнительной очистки [31,32]. 

Раствор искусственной мочи для исследования реальных образцов был приготовлен из 

смеси мочевины 8 г/л, NaCl 7,5 г/л, KCl 4,5 г/л и Na3PO4 4,5 г/л. 

Синтез Ti-комплекса с DL-миндальной кислотой  

Согласно ранее опубликованной методике [14]. 0,41 г (8,5 ммоль) порошка титана дисперги-

ровали в 5 мл NH4OH (25 %), затем добавляли 40 мл перекиси водорода (37 %) для растворения 

металла, контролируя температуру смеси в диапазоне 5–10 °C. Полученный светло-желтый рас-

твор пероксокомплекса затем смешивали с раствором DL-миндальной кислоты (2,6 г, 17 ммоль) 

в 5 мл воды. Полученный водный раствор затем выпаривали при пониженном давлении на ро-

торном испарителе при 30–40 °C, получая титановый комплекс в виде светло-желтого порошка. 

Синтез микроструктурированного фосфата титана гидротермальным методом 

Раствор комплекса титана с миндальной кислотой (0,69 г, 1,66 ммоль) в 20 мл воды помеща-

ли в тефлоновый вкладыш автоклава, затем добавляли фосфорную кислоту (98 %) в количестве, 

соответствующем исходному мольному соотношению элементов Ti:P, который варьировался 

от 1/8 до 1/4. Приготовленные водные растворы герметично закрывали в автоклаве из нержа-

веющей стали и нагревали. Полученные осадки декантировали и промывали дистиллированной 

водой с последующим центрифугированием. Наконец, осадки сушили в вакууме при 90 °C в те-

чение ночи. В табл. 1 приведены данные получения, состава, размера и шифры образцов, полу-

ченных при различных условиях. 
Таблица 1 

Характеристики полученных образцов 

№ T, °С Время, ч 

Начальное 

соотношение 

Ti:P 

Выход, мг 

Соотношение 

элементов Ti:P 

в осадке 

Шифр 

Размер 

микро-

сфер, µм 

1 140 24 1/4 262 0,86 TiP 1/4 15,2±1,6 

2 140 24 1/5 304 0,88 TiP 1/5 11,0±0,8 

3 140 24 1/6 262 0,85 TiP 1/6 7,2±1,2 

4 140 24 1/7 260 0,88 TiP 1/7 4,9±1,3 

5 140 24 1/8 281 0,85 TiP 1/8 3,6±0,4 

Тип I 120 4 1/5 105 0,85 – – 

Тип II 140 24 1/5 280 0,86 – – 

Тип III 120 72 1/4 258 0,86 – – 

 

Обсуждение результатов 

Продукты гидротермального синтеза фосфата титана как потенциального электрокатализа-

тора демонстрируют три типа морфологии в зависимости от продолжительности времени синте-

за, температуры и исходного соотношения реагентов: водорастворимого комплекса и фосфорной 

кислоты. При малом времени выдержки, относительно низком содержании фосфорной кислоты и 

низкой температуре формируется аморфный осадок (тип I). СЭМ-микрофотография продукта TiP 

не показала отчетливых структурных особенностей и представляет собой изображение набора 

бесформенных агрегатов (рис. 1а). Рентгенограмма продукта показывает аморфное гало, без ви-

димых рефлексов (рис. 1б). Важно отметить, что при более низких концентрациях фосфорной 

кислоты (ФК) осадка не образуется. 

Микросферический фосфат титана (тип II), который формируется в широком диапазоне па-

раметров, и при строгом контроле условий приобретают правильную форму с узким распределе-

нием по размерам. Их структура представляет собой сферически упорядоченные агрегаты мик-

рочешуек. Продолжительный синтез (≥ 48 ч) приводит к рекристаллизации микросфер в термо-

динамически стабильные гексагональные стержни тип III. 
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а) б) в) 
 

Рис. 1. а) СЭМ-изображения различных типов мифологий фосфата титана: тип I (без морфологии),  
тип II (микросферы), тип III (микростержни) и EDS-анализ микросфер; б) рентгенофазовый анализ  

различных типов фосфатов титана; в) ИК-спектры различных типов мифологий фосфата титана тип I–III 

 

EDS-анализ образца тип II подтверждает равномерное распределение элементов Ti, P и O 

(рис. 1а). Рентгенофазовый анализ (рис. 1б) выявил эволюцию состава от аморфного TiP (4 ч) через 

двухфазную систему Ti(HPO4)2·0.5H2O/Ti6O3(H2O)3(PO4)7·(H3O)3·H2O (12 ч) до монокристаллической 

фазы Ti6O3(H2O)3(PO4)7·(H3O)3·H2O (≥ 48 ч) (рис. 1а) [15–17]. Очевидно также нарастание степени 

кристалличности фосфата титана при более длительном времени гидротермального синтеза. 

Анализируя ИК-спектры на рис. 1в, можно сказать следующее: наличие широкой полосы погло-

щения в районе 3462–3139 см
–1

 указывает на валентные колебания связей O-H в гидроксильных 

группах (-Ti-OH, -P-OH) и/или молекулах адсорбированной воды [18–20]. Различия в форме и интен-

сивности этой полосы между типами говорят о разной степени гидратации или количестве поверхно-

стных OH-групп. Полосы при ~1165 см
–1

 (валентные колебания P-O в P-O-P или связи P=O) и осо-

бенно интенсивный пик при ~983 см
–1

 (характерное валентное колебание связи P=O в фосфатных 

группах) однозначно подтверждают доминирующее присутствие фосфатных анионов (PO4
3–

 или их 

конденсированных форм). Полосы в области 635–464 см
–1

 (валентные колебания Ti-O-Ti в оксидной 

сетке TiO6 и/или Ti-O-P связей, а также деформационные колебания O-P-O) характерны для структур, 

содержащих титан-кислородные октаэдры, связанные с фосфатными тетраэдрами [21–23]. 

 

а) 

 
б) 

Рис. 2. а) СЭМ-микрофотографии образцов TiP, синтези-
рованных при различных начальных соотношениях Ti:P, 
б) соответствующий средний размер и выход TiP образ-

цов (24 ч, 140 °C)  
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Исследования показали выраженную зависимость размера микросферических частиц от кон-

центрации фосфорной кислоты (ФК) (рис. 2а, б). При изменении начального соотношения Ti:P 

от 1/8 до 1/4 наблюдалось значительное увеличение их среднего размера с ~3–4 мкм до ~15 мкм 

(рис. 2б). Данный эффект объясняется тем, что более высокие концентрации ФК приводят к уве-

личению числа центров кристаллизации, что способствует образованию более мелких микро-

сфер. С другой стороны, высокие концентрации фосфат-анионов препятствуют механизму пере-

растворения-осаждения, блокируя рост микросфер по механизму Оствальдовского созревания. 

 

Электрокаталитические свойства материалов 

Электрохимическое исследование материалов с различной морфологией (типы I–III) метода-

ми циклической вольт-амперометрии (ЦВА) и электрохимической импедансной спектроскопии 

(ЭИС) в системе [Fe(CN)6]
3–/4–

 показало, что микросферические структуры (тип II) демонстриру-

ют наилучшие характеристики: минимальное сопротивление переносу заряда (Rct = 17 Ом про-

тив 21 Ом для типа I) (рис. 3б) и повышенную эффективность, обусловленную их иерархической 

чешуйчатой структурой (рис. 3а). Подобная структура, во-первых, создаѐт предпосылки для бо-

лее высокой площади поверхности, а, во-вторых, разветвлѐнная структура пор улучшает массо-

перенос. Это в совокупности делает микросферические микросферы (тип II) перспективными 

кандидатами для электрохимического анализа. 

 

  
а) б) 

  
в) г) 

 
Рис. 3. а) ЦВА окислительно-восстановительной пары Fe

2+/3+ 
для УПЭ модифи-

цированных TiP образцами с морфологиями типов I–III; б) ЭИС для УПЭ моди-
фицированных TiP образцами с морфологиями типов I–III; в) ЦВА окислитель-
но-восстановительной пары Fe

2+/3+ + 
для УПЭ модифицированных TiP 1/8–1/4; 

г) ЭИС для УПЭ модифицированных TiP 1/8–1/4 
 

Электрохимическое исследование микросфер с размером микросфер от 4 до 15 мкм (табл. 1, 

№ 1–5) методами ЦВА и ЭИС в системе [Fe(CN)6]
3–/4–

, представленное на рис. 3в, г, выявило не-

тривиальную зависимость функциональных характеристик от размера сферических частиц. Мик-

росферы с наибольшим средним размером демонстрируют наименьшее сопротивление переносу 

заряда. Скорее всего, высокоразвитая структура упорядоченных чешуек обеспечивает состав по-

верхности с лучшей адгезией ионов. Для мелких микросфер (~4 мкм) характерны редкие и изо-

лированные чешуйки, с меньшей площадью контакта с электролитом.   

Вместе с тем, развитая система пор в больших микросферах неизбежно повышает диффузи-

онный барьер для ионов, в отличие от микросфер малого размера. Таким образом, оптимальная 

комбинация диффузионного и поверхностного факторов в микросферах TiP 1/6 предопределило 
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оптимальный ток для микросфер, находящихся посредине размерного диапазона. Данный ком-

промисс между поверхностной доступностью и иерархический сложностью делает материалы со 

средним размером микросфер наиболее перспективными для практического применения в элек-

трохимических сенсорах.  

Для оптимизации количества модификатора в угольной пасте мы использовали дополни-

тельные измерения ЭИС в паре [Fe(CN)6]
3–/4–

 для УПЭ с различным содержанием TiP 1/6: 5, 10, 

15, 20 и 25 %. Из результатов, представленных на рис. 4а–в, электрод УПЭ с 20 % TiP 1/6 показал 

наименьшее значение Rct = 5 Ом, что означает, что это количество является наиболее подходя-

щим для приготовления УПЭ модифицированного TiP 1/6. 

Электрод с оптимальным содержанием электроактивной добавки был испытан при различ-

ных скоростях развертки (от 10 до 200 мВ/с) в растворе [Fe(CN)6]
3–/4–

 (рис. 4г). Увеличение лога-

рифма скорости сканирования сопровождается линейным увеличением значений логарифма то-

ков окисления в окислительно-восстановительной системе, с коэффициентом линейной регрес-

сии ≈ 0,5 (рис. 4д). Это характерное поведение процессов с диффузионным контролем, что явля-

ется дополнительным подтверждением ранее высказанной гипотезы о влиянии на процесс раз-

ветвленной иерархии пор. Диффузионный контроль процесса подтверждается линейной зависи-

мостью катодного тока от квадратного корня скорости сканирования (рис. 4е). Таким образом, 

образец фосфата титана с морфологией II типа, полученного при исходном соотношении Ti:P 

равном 1/6, был выбран для применения в электрохимической сенсорике и дальнейшего анализа 

реальных образцов. 

 

   
а) б) в) 

   
г) д) е) 

 
Рис. 4. а) ЦВА-кривые в окислительно-восстановительной паре Fe

2+/3+
 для УПЭ с различным содержанием TiP 1/6: 

5, 10, 15, 20 и 25 %; б) спектры ЭИС для УПЭ с различным содержания TiP 1/6 (5, 7, 10 и 15 %); в) токи окисления-
восстановления для УПЭ с различным содержания TiP 1/6; г) ЦВА в окислительно-восстановительной паре Fe

2+/3+ 

для УПЭ с 20 % TiP 1/6 при различных скоростях сканирования (10–200 мВ/с); д) зависимость log(Ia) от log(v) 
для УПЭ с 20 % TiP 1/6; е) зависимость от Ia для УПЭ с 20 % TiP 1/6 от v

1/2
 

 

Для оценки электроаналитических свойств синтезированных материалов проведено исследо-

вание их активности в отношении восстановления ФТД методом циклической вольтамперомет-

рии. На рис. 5а представлены вольтамперограммы электродов 20 % TiP/УПЭ в 1 ммоль/л раство-

ре ФТД (БР, pH = 2) при скорости сканирования 50 мВ/с и 20 % содержания катализатора. Элек-

трод демонстрируют четко выраженный пик восстановления при –0,2 В, отсутствующий при об-

ратном сканировании, что свидетельствует о необратимом характере электрохимического про-

цесса. 
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а) б) в) 

 
Рис. 5. а) Электрохимический профиль 1 ммоль/л ФТД для 20 % TiP/УПЭ при скорости сканирования 50 мВ/с, 

поддерживающий электролит БР pH=2; б) ЦВА при 50 мВ/с для 1 ммоль/л ФТД при 20 % TiP/УПЭ в диапазоне 2-6; 
в) зависимость I и E от pH  

 

Для оптимизации условий электрохимического определения ФТД методом ЦВА исследовали 

влияние pH (2–6) в 1 ммоль/л растворе аналита при скорости сканирования 50 мВ/с. Результаты 

представлены на рис. 5б, в. Наблюдалось уменьшение тока восстановления при повышении pH 

от 2 до 4 с одновременным смещением потенциала в менее положительную область. Максималь-

ный отклик получен при pH = 2, тогда как при pH < 2 наблюдалось снижение сигнала и деграда-

ция аналитического пика. Данное значение определяется специфическими электрохимическими 

свойствами нитрофурановых производных, определенными ранее, согласно которым нитрогруп-

па претерпевает анодное восстановление с активным участием протонов среды [24]. 

Для разработки электроаналитической методики определения ФТД проведено сравнительное 

исследование импульсных методов: дифференциальной импульсной вольтамперометрии (ДИВА) 

и квадратно-волновой вольтамперометрии (КВВА). Из опробованных методов только КВВА 

продемонстрировало восстановление аналита на 20 % TiP/УПЭ в БР при pH=2 (рис. 6a, б), что 

обусловило его выбор для дальнейших исследований. 

  

   

а) б) в) 

  

г) д) 
 

Рис. 6. а) Значения силы тока для 20 % TiP/УПЭ с использованием КВВА и б) ДИВА в 1 ммоль/л ФТД, БР pH = 2; в) 
вольтамперограммы КВВА, полученные для различных концентраций ФТД в оптимизированных эксперимен-

тальных условиях; г) калибровочный график ФТД; д) значения отклика 20 % TiP/УПЭ в 1 ммоль/л ФТД  
с учетом и без учета мешающих агентов 
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Последовательно были оптимизированы амплитуда импульса (в диапазоне от 10 до 100 мВ), 

частота (в диапазоне от 10 до 100 Гц) и приращение потенциала (в диапазоне от 2 до 16 мВ). 

Во время оптимизации одного параметра другие оставались постоянными. В результате, мы получи-

ли следующие оптимальные значения: амплитуда импульса – 10 мВ, приращение импульса – 10 мВ и 

частота – 10 Гц, которые были использованы для разработки электроаналитического метода. 

Исследование электрохимического отклика электрода 20 % TiP/УПЭ на различные концен-

трации ФТД методом КВВА в оптимизированных условиях выявило линейную зависимость тока 

восстановления от концентрации: I(µА) = 1,975Е
–3

+2,844Е
–5

×С(мкМ) (R²=0,99) (рис. 6в, г). Пара-

метры калибровочной кривой δ – стандартное отклонение и b – угловой коэффициент, были ис-

пользованы для расчета нижнего предела обнаружения (НПО, 3δ/b), и предела количественного 

определения (ПКО, 10δ/b). Рассчитанные НПО 0,035 мкМ и ПКО 0,105 мкМ, сопоставимы с ана-

литическими характеристиками ранее опубликованных электрохимических методов определения 

ФТД [25, 26]. 

Селективность разработанного сенсора 20 % TiP/УПЭ была тщательно исследована путем 

тестирования потенциальных мешающих агентов, включая распространенные ионы и органиче-

ские соединения (рис. 6д). Результаты демонстрируют отличную избирательность датчика: все 

протестированные вещества (включая обычные ионы) не оказывают значительного влияния. По-

лученные данные подтверждают, что разработанный электрохимический сенсор обладает доста-

точной селективностью для практического применения в мониторинге ФТД в водных системах.  

Проверка воспроизводимости для трех последовательных измерений для концентрации 

60 мкМ показала стандартное отклонение (СО) = 7,7 % (рис. 7а), а исследования стабильности в 

течение недели (1 день, 3 день и 7 день) для 60 мкМ раствора подтвердили сохранение отклика 

электрода (СО = 10,1 %) (рис. 7б). Полученные результаты свидетельствуют о надежности разра-

ботанного метода для количественного определения ФТД, что обусловлено оптимальной струк-

турой материала и его электрокаталитическими свойствами. 

 

  
а) б) 

  
в) г) 

 
Рис. 7. а) Исследования повторяемости; б) исследования стабильности; обнаружения 
и степени извлечения ФТД в пробах в) искусственной мочи и г) водопроводной воды 

 

Практическая применимость была проверена с использованием датчика на основе 

20 % TiP/УПЭ для определения концентрации ФТД. Было выбрано два типа проб: водопроводная 

вода и раствор искусственной мочи. Образцы были проанализированы в соответствии с разрабо-

танной нами методикой электрохимического анализа. Образцы разбавлялись буфером БР при 

pH = 2 в соотношении 1:1 и тестировались напрямую. Важнейшей характеристикой аналитиче-

ского метода является также степень извлечения, которая для исследуемого электрода проводи-
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лась добавлением стандартного раствора ФТД до концентраций 60, 80 и 100 мкМ. Полученные 

вольтамперограммы приведены на рис. 7в, г, а результаты измерения реальных образцов приве-

дены в табл. 2. Степени извлечения реальных образцов были сопоставимы с добавленным коли-

чеством ФТД, при этом результаты колебались от 97 до 109 %, и эти результаты доказывают, что 

предлагаемый датчик может успешно применяться для мониторинга ФТД. 
Таблица 2 

Результаты определения ФТД и исследования степени его извлечения в образцах 
в режиме реального времени 

Реальный образец 60 мкМ 

Степень 

извлечения, 

% 

80 мкМ 

Степень 

извлечения, 

% 

100 мкМ 
Степень 

 извлечения, % 

Калибровочная 

кривая 
–0,0074 – –0,0132 – –0,0144 – 

Водопроводная 

вода 
–0,0075 101 –0,0136 103 –0,0140 97 

Искусственная 

моча 
–0,0076 103 –0,0131 99 –0,0157 109 

 

Заключение 

В этой работе был синтезирован микросферический фосфат титана сложного состава и ие-

рархической структуры, представляющий собой центрически агрегированные микрочешуйки. 

Данный материал служит превосходной электроактивной добавкой для электрода из угольной 

пасты. Наилучшие электрохимические характеристики продемонстрировал образец TiP 1/6 со 

средним размером микросфер (~8 мкм), обладающий минимальным сопротивлением переносу 

заряда (Rct = 12 Ом) и максимальным током окисления (I = 1,37 мА) в растворе [Fe(CN)6]
3–/4–

. 

Этот результат объясняется оптимальным сочетанием состава поверхности, обеспечивающим 

низкое сопротивление переноса заряда и эффективную диффузию реагентов к поверхности. Для 

мелкодисперсных микросфер (~4 мкм, Rct = 41 Ом), характерны редкие чешуйки малого размера, 

в то время как для крупных микросфер (~15 мкм, Rct = 15 Ом), характерна разветвленная  струк-

тура чешуек. Малые размеры снижают контакт поверхности с электролитом, а развитая иерархи-

ческая структура больших микросфер увеличивает диффузионный барьер аналита к поверхности. 

Срединный размер TiP 1/6 достигает баланса между этими двумя тенденциями, обеспечивая мак-

симальный ток и минимальное сопротивление переносу заряда. Это делает его наиболее перспек-

тивным материалом для разработки высокочувствительных электрохимических сенсоров. Был 

предложен аналитический метод определения фуралтодона с превосходными аналитическими 

параметрами: НПО = 0,035 мкМ, линейным рабочим диапазоном 12–800 мкМ и высокой селек-

тивностью. Измерения реальных образцов показали, что этот материал обладает большим потен-

циалом применения как электрохимический сенсор в исследовательских, так и в коммерческих 

целях. 
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