УДК 548.3+548.314+348.314.5+536.75

ВЗАИМОСВЯЗЬ СТРУКТУРНЫХ И ЭНТАЛЬПИЙНЫХ ХАРАКТЕРИСТИК МЕТА- И ОРТОСИЛИКАТОВ ЩЕЛОЧНЫХ И ЩЕЛОЧНОЗЕМЕЛЬНЫХ МЕТАЛЛОВ

О.Н. Груба, Н.В. Германюк, А.Г. Рябухин

С использованием модели эффективных ионных радиусов, принципа метаморфозы кристаллических структур в квазикубические и авторской методики расчета энтальпии кристаллической решетки впервые рассчита-

на стандартная энтальпия образования газообразного аниона ${
m SiO}_3^{2-}$, составившая 715,648±0,067 кДж·моль⁻¹. В качестве исходных данных для расчетов использованы справочные сведения о рентгеновских и термодинамических (стандартные энтальпии образования) характеристиках метасиликатов щелочных Na, K и щелочноземельных Ca, Sr, Ba металлов, а также ортосиликатов Ca, Sr, Ba. Для метасиликатов Rb, Cs, Fr, Ra и ортосиликатов Ra сделаны предсказательные вычисления энтальпий межструктурных взаимодействий, энтальпий кристаллических решеток и стандартных энтальпий образования кристаллических соединений.

Ключевые слова: ортосиликаты, метасиликаты, силикат-ион, щелочные металлы, щелочноземельные металлы, стандартная энтальпия образования.

Введение

Мантия Земли основана на изверженных силикатных (базальты $\sim 50\%$ SiO₂) и алюмосиликатных (граниты $\sim 70\%$ SiO₂, $\sim 15\%$ Al₂O₃), породах, содержащих их различные минералы, продукты превращений, разрушений до осадочных пород. Это главные источники рудных масс.

Силикаты кристаллизуются во всех семи сингониях в разнообразных структурах. Поэтому возникла необходимость расчета минимального радиуса ${\rm SiO}_3^{2-}$ как основной анионной структурной единицы. Хотя газообразный силикат-ион – редкость в обычных условиях, но он и его свойства являются ключевым и связующим звеном в цепочке расчетов авторской модели: близкие значения $\Delta_f H^{\circ}({\rm SiO}_3^{2-}, \Gamma)$, полученные для однотипных силикатов щелочных и щелочнозе-

мельных металлов, кристаллизующихся в одинаковых структурах, подтверждают адекватность модели в целом. Проведение подобных расчетов стало возможным в результате использования моделей эффективных ионных радиусов [1] и метаморфозы кристаллических структур в квазикубическую [2], что показано в работе [3]. Полученные результаты открыли возможность решения интересной и актуальной задачи – расчетов ряда энтальпийных характеристик (энтальпии межструктурного электромагнитного взаимодействия, энтальпии кристаллической решетки, стандартных энтальпий образования (СЭО) веществ и их составляющих) экспериментальное определение которых или затруднено, или невозможно. В свое время это уже было показано на примерах вычислений СЭО 24 однозарядных простых и сложных анионов халькогенов, первого и второго сродства к электрону, уточнений третьего и четвертого потенциалов ионизации редкоземельных металлов и Th–Pu [1]. В соответствии с моделью [1] были выполнены расчеты энтальпии кристаллической решетки для веществ, кристаллизующихся в различных вариантах кубической сингонии. Следующая задача, которая может быть решена – установление взаимосвязи структурных и термических характеристик в веществах, кристаллизующихся в других сингониях.

Результаты расчетов и их обсуждение

По определению энтальпия (разрушения) кристаллической решетки

$$\Delta_{p}H(\mathbf{K}_{y}\mathbf{A}_{z}) = y\Delta_{f}H^{\circ}(\mathbf{K}^{z+},\mathbf{\Gamma}) + z\Delta_{f}H^{\circ}(\mathbf{A}^{y-},\mathbf{\Gamma}) - \Delta_{f}H^{\circ}(\mathbf{K}_{y}\mathbf{A}_{z},\mathbf{K}).$$
(1)

С другой стороны, в соответствии с моделью [1]

$$\Delta_p H \left(\mathbf{K}_y \mathbf{A}_z \right) = \Delta H_0 + \Delta H_{\rm B3} \,. \tag{2}$$

Здесь $\Delta H_0 = 114,174 z_K^2 z_A^2 f_1$ – энтальпия нуля отсчета, $\Delta H_{B3} = 103,7074 A_M z_K z_A K f_2 r_p^{-1}$ – энтальпия электромагнитного взаимодействия. Числовые коэффициенты (кДж·моль⁻¹) представляют собой комбинацию фундаментальных физических констант [1]; z_K , z_A – формальные заряды катиона и аниона соответственно (степень окисления с учетом числа частиц) ; A_M – число Маделунга конечной структуры (квазикубической); K – координационное число катиона; f_1 и f_2 – функции структуры, представляющие собой комбинацию структурных констант исходной ($f_{\mu cx}$, «память») и конечной ($f_{\kappa\kappa}$, квазикуба) структур; r_p – межструктурное расстояние в ячейке квазикуба. Математический аппарат модели, по сути, сводится к совместному решению уравнений (1) и (2). Проиллюстрируем применение модели.

Энтальпийные характеристики метасиликатов щелочных металлов Me_2SiO_3 . Силикаты щелочных металлов кристаллизуются в ромбической (Р) сингонии. Исходные данные:

$$\begin{aligned} z_{\rm K} &= z_{\rm Me^+} \cdot n_{\rm Me^+} - 1 \cdot 2 - 2, \ z_{\rm A} - z_{\rm SiO_3^{2-}} \cdot n_{\rm SiO_3^{2-}} - 2 \cdot 1 - 2, \\ A_M &= A_M \ ({\rm CaF_2}^*) = 1,259695; \ K = 6; \\ f_1 &= f_{\rm P} \ f_{\rm KK} = \sqrt{3} \frac{\sqrt{2}}{2} = 1,224745^{**}, \ f_2 &= f_{\rm прим} + f_{\rm KK} = 1 + \left(3\frac{\sqrt{2}}{2}\right)^2 = 2,5; \\ \Delta H_0 &= 114,174 \cdot (1^2 \cdot 2) \cdot (2^2 \cdot 1) \cdot 1,224745 = 1118,672; \\ \Delta H_{\rm B3} &= 103,7074 \cdot 1,259695 \cdot 2 \cdot 2 \cdot 6 \cdot 2,5 \ r_p^{-1} = 7838,3815 \ r_p^{-1}. \end{aligned}$$

Тогда окончательно уравнение (2) для соединений типа Me₂SiO₃ будет выглядеть следующим образом:

$$\Delta_p H = 1118,672 + 7838,3815 r_p^{-1}.$$
(3)

Для метасиликатов щелочных металлов уравнение (1) примет вид:

$$\Delta_p H \left(\text{Me}_2 \text{SiO}_3 \right) = 2 \Delta_f H^\circ \left(M e^+, r \right) + \Delta_f H^\circ \left(\text{SiO}_3^{2-}, r \right) - \Delta_f H^\circ \left(\text{Me}_2 \text{SiO}_3, \kappa \right).$$
(4)

Решим это уравнение относительно неизвестной величины $\Delta_f H^{\circ}(\text{SiO}_3^{2-}, \Gamma)$:

$$\Delta_{f}H^{\circ}\left(\operatorname{SiO}_{3}^{2-}, \mathbf{r}\right) = \Delta_{p}H\left(\operatorname{Me}_{2}\operatorname{SiO}_{3}\right) - 2\Delta_{f}H^{\circ}\left(\operatorname{Me}^{+}, \mathbf{r}\right) + \Delta_{f}H^{\circ}\left(\operatorname{Me}_{2}\operatorname{SiO}_{3}, \mathbf{\kappa}\right).$$

$$(5)$$

Тогда, для метасиликата калия K₂SiO₃

 $\Delta_{f} H^{\circ} \left(\text{SiO}_{3}^{2-}, \Gamma \right) = \Delta_{p} H \left(\text{K}_{2} \text{SiO}_{3} \right) - 2\Delta_{f} H^{\circ} \left(\text{K}^{+}, \Gamma \right) + \Delta_{f} H^{\circ} \left(\text{K}_{2} \text{SiO}_{3}, \kappa \right).$ Или, используя уравнение (3) $\Delta_{f} H^{\circ} \left(\text{SiO}_{3}^{2-}, \Gamma \right) = (1118,672 + 7838,3815 r_{p}^{-1}) - 2\Delta_{f} H^{\circ} \left(\text{K}^{+}, \Gamma \right) + \Delta_{f} H^{\circ} \left(\text{K}_{2} \text{SiO}_{3}, \kappa \right).$

После подставки в уравнение известных справочных данных по K₂SiO₃ ($r_p = 3,53796$ Å [1]; $\Delta_f H^{\circ}(K^+, \Gamma) = 514,007 \, \text{Дж/моль} \cdot \text{K}$ [4]; $\Delta_f H^{\circ}(\text{K}_2 \text{SiO}_3, \kappa) = 1590,338 \, \text{Дж/моль} \cdot \text{K}$ [5]) получим $\Delta_f H^{\circ}(\text{SiO}_3^{2^-}, \Gamma) = 715,831 \, \text{Дж/моль} \cdot \text{K}$. Аналогичные вычисления по данным для метасиликата натрия Na₂SiO₃ дают значение $\Delta_f H^{\circ}(\text{SiO}_3^{2^-}, \Gamma) = 715,619 \, \text{Дж/моль} \cdot \text{K}$. Средняя величина стандартной энтальпии образования газообразного силикат-иона по результатам двух расчетов составляет 715,725 ± 0,106 $\, \text{Дж/моль} \cdot \text{K}$.

^{*} Аналогия строится на принципе пространственного подобия: молекулы типа AB₂ (A = Ca, SiO₃²⁻).

^{**} Методика и результаты расчетов структурных характеристик рассмотрены ранее в работе [3].

Хорошая согласованность величины $\Delta_f H^{\circ}(\text{SiO}_3^{2-}, \Gamma)$ позволяет использовать ее для других расчетов. В справочной литературе не найдены значения $\Delta_f H^{\circ}(\text{Me}_2\text{SiO}_3, \kappa)$ для метасиликатов рубидия, цезия и франция. Поэтому уравнение (4) для этих соединений решается относительно $\Delta_f H^{\circ}(\text{Me}_2\text{SiO}_3, \kappa)$:

$$\Delta_f H^{\circ} (\operatorname{Me}_2 \operatorname{SiO}_3, \kappa) = 2 \Delta_f H^{\circ} (\operatorname{Me}^+, \Gamma) + \Delta_f H^{\circ} (\operatorname{SiO}_3^{2-}, \Gamma) - \Delta_p H (\operatorname{Me}_2 \operatorname{SiO}_3)$$

с использованием полученного ранее среднего значения $\Delta_f H^{\circ}(\mathrm{SiO}_3^{2-}, r)$.

Исходные данные и результаты некоторых расчетов представлены в табл. 1.

Таблица 1

Me	r_p ,	$\Delta_{f}H^{\circ}(\mathrm{Me}^{+}, \Gamma),$	$-\Delta_{f}H^{\circ}(\text{Me}_{2}\text{SiO}_{3,\kappa}), [5]$	$\Delta_p H$,	$\Delta_f H^{\circ}(\mathrm{SiO}_{3}^{2-}, \Gamma),$
$r(Me^+), [1]$	[1]	[4]	$-\Delta_f H^{\circ}(\text{Me}_2\text{SiO}_{3,\kappa}), \text{yp. (4)}$	yp. (3)	yp. (5)
1	2	3	4	5	6
Na 0,94880	3,29400	609,542	1563,561±5,021 1563,453	3498,264	715,619
K 1,33053	3,53796	514,007	1590,338±5,021 1590,444	333,183	715,831
Rb 1,48148	3,65655	490,129	- 1566,345	3262,328	(715,725±0,106)
Cs 1,68161	3,82375	458,402	1535,060	3168,589	(715,725±0,106)
Fr 1,71438	3,85194	455,235	1527,395	3153,590	(715,725±0,106)

Энтальпийные характеристики метасиликатов щелочных металлов Me₂SiO₃

Таким образом, с использованием модели расчета энтальпии кристаллической решетки [1] впервые определена стандартная энтальпия образования частицы $SiO_3^{2^-}$ в газообразном состоянии. Вычислены энтальпии электромагнитного взаимодействия $\Delta H_{\rm B3}$ и энтальпии кристаллических решеток $\Delta_p H$ метасиликатов щелочных металлов. Для соединений Me₂SiO₃, где Me – это Rb, Cs и Fr, полученные значения $\Delta H_{\rm B3}$, $\Delta_p H$ и $\Delta_f H^{\circ}$ (Me₂SiO₃, к) имеют предсказательный характер.

Энтальпийные характеристики метасиликатов щелочноземельных металлов MeSiO₃. Метасиликаты щелочноземельных металлов кристаллизуются в различных сингониях. Для исследования выбрана одна из структур моноклинной сингонии, для которой в справочной литературе приведены наиболее полные данные. Методика расчетов необходимых структурных характеристик силикатов подробно изложена в [3]. В расчетах были использованы следующие константы: структурная постоянная $\alpha = \frac{3}{8} \cdot \frac{3\sqrt{3}}{4} = 0,487139$; за базовую структуру при определении дебаевского радиуса экранирования принята структура сфалерита $r_D^\circ = r_D^\circ$ (ZnS) = 17,418081 [1], тогда окончательно дебаевский радиус экранирования $r_D = 19,051525$; функция заряда $f(z) = (1 + \sqrt{2 \cdot 2 - 1}) = 2,732051$; структурная функция $f(c) = (1 + \frac{\sqrt{2}}{3\sqrt{3}})^{-1} \cdot 2(\sqrt{2} - 1) = 0,396631$. Результаты вычислений межструктурных расстояний r_D этих силикатов представлены в табл. 2

Результаты вычислений межструктурных расстояний *r_p* этих силикатов представлены в табл. 2 (колонка 2).

Таблица 2

Me	r _p ,	$\Delta_f H^{\circ}(\mathrm{Me}^{2+}, \Gamma),$	$-\Delta_f H^{\circ}(\text{MeSiO}_{3,\kappa}), [6]$	$\Delta_{\rm p}{ m H}$,	$\Delta_f H^{\circ}(SiO_3^{2-}, \Gamma),$
$r(Me^{2^+}), [1]$	[3]	[6]	$-\Delta_{f}H^{\circ}(\text{MeSiO}_{3,\kappa}), \text{yp.} (7)$	yp. (6)	yp. (7)
1	2	3	4	5	6
Ca	3 39721	1919,167±	1633,559±1,674	4268 282	715 556
1,01202	5,57721	$\pm 0,837$	1633,512	1200,202	/15,550
Sr	2 17251	$1780,677\pm$	1666,613±2,052	4162 040	715 650
1,15779	5,47551	$\pm 2,092$	1666,660	4102,940	/15,050
Ba	2 61074	1653,140±	1615,948±2,636	2094 601	715 602
1,36361	5,010/4	±1,255	1615,948	3984,091	/13,005
Ra	2 62467	1521,023±	_	2067 241	(715,602+0,020)
1.38269	3,02407	± 8.368	1630.715	3907,341	$(/13,003\pm0,030)$

Энтальпийные характеристики метасиликатов шелочноземельных металлов М	leSiO ₂

Для метасиликатов щелочноземельных металлов характерны следующие исходные данные. $z_{V} = z_{A} = 2$:

$$A_{M} = A_{M} (CaF_{2}) = 1,259695; K = 6;$$

$$f_{1} = f_{M} f_{KK} = \frac{\sqrt{3}}{3} \cdot \frac{1}{2} = 0,288675, f_{2} = f'_{M} f'_{KK} = 3\sqrt{3} \cdot 1 = 5,196152.$$

Слагаемые уравнения (2) после подстановки:

 $\Delta H_0 = -114,174 \cdot (2^2 \cdot 1) \cdot (2^2 \cdot 1) \cdot 0,288675 = -527,347;$

 $\Delta H_{\rm B3} = 103,7074 \cdot 1,259695 \cdot 2 \cdot 2 \cdot 6 \cdot 5,196152 r_p^{-1} = 16291,770 r_p^{-1}.$

Окончательно уравнение (2) для MeSiO₃ (Me – щелочноземельные металлы) выглядит: $\Delta_n H = -527,347 + 16291,770 r_n^{-1}$.

Уравнение (1) применительно к метасиликатам щелочноземельных металлов примет вид:

$$\Delta_{p}H(\text{MeSiO}_{3}) = \Delta_{f}H^{\circ}(\text{Me}^{2+}, \Gamma) + \Delta_{f}H^{\circ}(\text{SiO}_{3}^{2-}, \Gamma) - \Delta_{f}H^{\circ}(\text{MeSiO}_{3}, \kappa).$$
(7)

С помощью уравнений (6) и (7), используя справочные данные, может быть рассчитана стандартная энтальпия образования СЭО газообразного силикат-иона $\Delta_f H^{\circ}(\text{SiO}_3^{2-}, \Gamma)$.

Необходимые исходные данные и результаты расчетов по метасиликатам кальция, стронция и бария помещены в табл. 2. По результатам трех вычислении среднее значение $\Delta_f H^{\circ}(\text{SiO}_3^{2-}, \Gamma)$ составило 715,603±0,030, что хорошо согласуется с величиной, полученной ранее для метасиликатов целочных металлов (см. табл. 1). Обратным ходом расчета с использованием среднего значения $\Delta_f H^{\circ}(\text{SiO}_3^{2-}, \Gamma)$ получены предсказательные значения СЭО кристаллического метасиликата радия.

Энтальпийные характеристики ортосиликатов щелочноземельных металлов Me_2SiO_4 (2MeO·SiO₂). Ортосиликаты щелочноземельных металлов кристаллизуются в ромбической сингонии (структура K₂SO₄, Pnam – 4). Структурные характеристики, необходимые при определении термических констант, получены по методике, изложенной в работе [3]. При проведении расчетов использованы следующие константы. Структурная постоянная $\alpha = \alpha_p \alpha_{\rm kk} = \frac{3}{8} \cdot \frac{3\sqrt{3}}{4} = 0,487139$. Дебаевский радиус экранирования $r_D = r_D^\circ f(z) f(c) = 14,892723$. При этом в качестве базовой принята структура флюорита $r_D^\circ = r_D^\circ ({\rm CaF}_2) = 15,418081$, что следует из общей формулы K₂A. Функция заряда $f(z) = (1 + \sqrt{z_{\rm K} z_{\rm A} - 1}) = (1 + \sqrt{2 \cdot 2 - 1}) = 2,732051$. Структурная функция

 $f(c) = f_p f_{\kappa\kappa} = \frac{3}{8} \cdot \frac{2\sqrt{2}}{3} = 0,3535534$. Результаты вычислений межструктурных расстояний r_p ортосиликатов щелочноземельных металлов представлены в табл. 3 (колонка 2).

(6)

Me	r [3]	$\Delta_{f}H^{\circ}(\mathrm{Me}^{2+}, \Gamma),$	$-\Delta_f H^{\circ}(\text{Me}_2\text{SiO}_{4, \kappa}), [6]$	$\Delta_{\mathrm{p}}\mathrm{H}$,	$\Delta_f H^{\circ}(SiO_3^{2-}, \Gamma),$
$r(Me^{2+}), [1]$	<i>'p</i> ,[5]	[6]	$-\Delta_f H^{\circ}(\text{Me}_2\text{SiO}_{4,\kappa}), \text{yp.} (9)$	yp. (8)	yp. (9)
1	2	3	4	5	6
Ca	3 56726	1919,167±	2316,681±4,184	7939 979	715 836
1,01202	5,50720	±0,837	2316,917	1939,919	715,050
Sr	3 61209	$1780,677 \pm$	2421,156±2,510	7767 242	715 479
1,15779	5,01207	$\pm 2,092$	2421,143	7707,242	/15,4/)
Ba	3 72040	$1653,140\pm$	2275,678±4,602	7367 054	715 968
1,36361	5,72040	±1,255	2276,042	7507,054	/15,908
Ra	3 73223	1521,023±	_	7324 752	(715.617 ± 0.236)
1,38269	5,15225	$\pm 8,368$	2297,974	1524,152	(713,017±0,230)

Таблица 3 Энтальпийные характеристики ортосиликатов щелочноземельных металлов Me₂SiO₄

Исходные данные для ортосиликатов щелочноземельных металлов:

$$z_{\rm K} = z_{\rm A} = 2;$$

$$A_M = A_M (CaF_2) = 1,259695; K = 6;$$

$$f_1 = f_p f_{\kappa\kappa} = \left[1 + \left(\frac{\sqrt{2}}{3}\right)^2 \right]^{-1} \cdot 2 = 1,636364, \quad f_2 = f'_p f'_{\kappa\kappa} = f'_p f'_{rerp} = \left(1 + \frac{5}{9}\right)^{-1} \cdot \frac{8}{3\sqrt{3}} = 7,917947.$$

Слагаемые уравнения (2) после подстановки исходных данных:

$$\Delta H_0 = -114,174 \cdot (2^2 \cdot 2) \cdot (2^2 \cdot 1) \cdot 1,636364 = -5978,567;$$

$$\Delta H_{\rm B3} = 103,7074 \cdot 1,259695 \cdot 2 \cdot 2 \cdot 2 \cdot 1 \cdot 6 \cdot 7,917947 r_p^{-1} = 49651,106 r_p^{-1}.$$

Окончательно уравнение (2) для Me₂SiO₄ (Me – щелочноземельные металлы):

$$\Delta_p H = -5978,567 + 49651,106 r_p^{-1}.$$

Уравнение (1) для ортосиликатов щелочноземельных металлов примет вид:

 $\Delta_{p}H(\text{Me}_{2}\text{SiO}_{4}) = 2\Delta_{f}H^{\circ}(\text{Me}^{2+}, \Gamma) + \Delta_{f}H^{\circ}(\text{SiO}_{3}^{2-}, \Gamma) + \Delta_{f}H^{\circ}(\text{O}^{2-}, \Gamma) - \Delta_{f}H^{\circ}(\text{Me}_{2}\text{SiO}_{4}, \kappa). (9)$ Порядок расчетов рассмотрим на примере Ca₂SiO₄. Для него $r_{p} = 3,56726;$ $\Delta_{f}H^{\circ}(\text{Ca}^{2+}, \Gamma) = 1919,167 \ [6]; \ \Delta_{f}H^{\circ}(\text{Ca}_{2}\text{SiO}_{4}, \kappa) = -2316,681 \ [6]; \ \Delta_{f}H^{\circ}(\text{O}^{2-}, \Gamma) = 1069,128 \ [1].$ По уравнению (8) вычислим энтальпию кристаллической решетки:

о уравнению (8) вычислим энтальпию кристаллической решет A_{1}

 $\Delta_p H = -5978,567 + 49651,106 \cdot 3,56726 = 7939,979.$

Решим уравнение (9) относительно $\Delta_f H^{\circ} (SiO_3^{2-}, r)$:

$$\Delta_{f}H^{\circ}(\mathrm{SiO}_{3}^{2-},\Gamma) = \Delta_{p}H(\mathrm{Ca}_{2}\mathrm{SiO}_{4}) - 2\Delta_{f}H^{\circ}(\mathrm{Ca}^{2+},\Gamma) - \Delta_{f}H^{\circ}(\mathrm{O}^{2-},\Gamma) + \Delta_{f}H^{\circ}(\mathrm{Ca}_{2}\mathrm{SiO}_{4},\kappa) =$$

= 7939 979 - 2:1919 167 - 1069 128 - 2316 681 = 715 836

 $= 7939,979 - 2 \cdot 1919,167 - 1069,128 - 2316,681 = 715,836.$

Аналогичные расчеты проведены для ортосиликатов стронция и бария. Справочные данные и результаты расчетов приведены в табл. 3. По данным колонки 6 получено среднее значение стандартной энтальпии газообразного силикат-иона $\Delta_f H^{\circ}(\text{SiO}_3^{2-}, \Gamma) = 715,617\pm0,236.$

Таким образом, результаты расчетов энтальпийных характеристик ортосиликатов щелочноземельных металлов (см. табл. 3) обнаруживают хорошее согласие величины СЭО силикат-иона в газообразном состоянии с данными, полученными для метасиликатов щелочных и щелочноземельных металлов (см. табл. 1, 2).

Заключение

1. Использование уравнений трех моделей: эффективных ионных радиусов, метаморфозы кристаллических структур в квазикубическую и энтальпии кристаллической решетки – позволило впервые рассчитать энтальпийные характеристики метасиликатов щелочных и щелочнозе-

(8)

мельных металлов, ортосиликатов щелочноземельных металлов. Расчеты проведены, опираясь на сведения справочных (академических) изданий по термодинамическим константам и рентгеновским данным по сингониям и структурам веществ.

2. По данным для восьми рассмотренных соединений вычислена стандартная энтальпия образования газообразного силикат-иона $\Delta_f H^{\circ}(\text{SiO}_3^{2-}, \Gamma)$, составившая 715,648±0,067 кДж/моль·К.

Это подтверждает предположение о том, что основная анионная составляющая в силикатах находится в форме SiO_3^{2-} .

3. Комплексная модель обладает предсказательностью, что позволило вычислить энтальпийные характеристики (энтальпии электромагнитного взаимодействия и энтальпии разрушения кристаллической решетки) и стандартные энтальпии образования метасиликатов рубидия, цезия, франция и радия, а так же ортосиликата радия.

Литература

1. Рябухин, А.Г. Эффективные ионные радиусы. Энтальпия кристаллической решетки. Энтальпия гидратации ионов: моногр. / А.Г. Рябухин. – Челябинск: Изд-во ЮУрГУ, 2000. – 115 с.

2. Рябухин, А.Г. Математическая модель метаморфизма кристаллических структур в кубическую / А.Г. Рябухин // Вестник ЮУрГУ. Серия «Металлургия». – 2007. – Вып. 9. – № 21(93) – С. 3–6.

3. Груба, О.Н. Структурные фрагменты силикатов на основе sp-элементов / О.Н. Груба, Н.В. Германюк, А.Г. Рябухин // Вестник ЮУрГУ. Серия «Химия». – 2010. – Вып. 4. – № 31(207). – С. 90–96.

4. Термодинамические свойства индивидуальных веществ: справ. изд. в 4 т. / под ред. В.П. Глушко. – М.: Наука, 1982. – Т. IV, кн. 2. – 559 с.

5. Термические константы веществ: справ: в 10 вып. / под ред. В.П. Глушко. – М.: ВИНИТИ АН СССР, 1978. – Вып. 8. – Ч. І. – 527 с.

6. Термические константы веществ: спр. в 10 вып. / под ред. В.П. Глушко. – М.: ВИНИТИ АН СССР, 1979. – Вып. 9. – Ч. I. – 574 с.

7. Справочник химика / под ред. Б.П. Никольского. – Л.: Химия. – 1971. – Т. 1. – 1071 с.

Поступила в редакцию 10 января 2012 г.

CORRELATION BETWEEN STRUCTURE AND ENTHALPY PROPERTIES OF ALKALINE AND ALKALI-EARTH METALS META- AND ORTHOSILICATES

Using equations of model of effective ionic radii, metamorphosis of crystalline structures into cubic ones and enthalpies of a crystal lattice on the basis of X-ray and thermodynamic data of alkaline (Na, K), alkaline-earth (Ca, Sr, Ba) metasilicates and alkaline-earth (Ca, Sr, Ba) orthosilicates for the first time calculated standart energy of formation $(SiO_3^{2^-},g)$, namely 715,65±0,07 kJ·mole⁻¹. For Rb, Cs, Fr, Ra metasilicates and Ra orthosilicates it is estimated their enthalpies of interstructural interactions, enthalpies of crystal lattices and standart energy of formation.

Keywords: orthosilicates, metasilicates, silicate-ion, alkaline metals, alkaline-earth metals, standart energy of formation.

Gruba Oksana Nikolaevna – PhD (Chemistry), Associate Professor, Inorganic Chemistry Subdepatment. South Ural State University. 76, Lenin avenue, Chelyabinsk, 454080.

Груба Оксана Николаевна – кандидат химических наук, доцент, кафедра неорганической химии, Южно-Уральский государственный университет. 454080, г. Челябинск, пр. им. В.И. Ленина, 76.

E-mail: grox73@mail.ru

Germanyuk Nina Vasilievna – PhD (Chemistry), Associate Professor, Physical Chemistry Subdepatment. South Ural State University. 76, Lenin avenue, Chelyabinsk, 454080.

Германюк Нина Васильевна – кандидат химических наук, доцент, кафедра физической химии, Южно-Уральский государственный университет. 454080, г. Челябинск, пр. им. В.И. Ленина, 76.

Ryabukhin AleksandrGrigorevich – Dr. Sc. (Chemistry), Professor, Physical Chemistry Subdepatment, South Ural State University. 76, Lenin avenue, Chelyabinsk, 454080.

Рябухин Александр Григорьевич – доктор химических наук, профессор, кафедра физической химии, Южно-Уральский государственный университет. 454080, г. Челябинск, пр. им. В.И. Ленина, 76.

E-mail: ryabukhin@inbox.ru