ВЫБОР ДАННЫХ ИЗ ICSD ДЛЯ СРАВНИТЕЛЬНОГО АНАЛИЗА ПОЛИМОРФНЫХ МОДИФИКАЦИЙ СИЛИКАТА КАЛЬЦИЯ

Е.А. Шманина, Е.В. Барташевич, Г.Г. Михайлов

На основе выполненного анализа систематических изменений межьядерных расстояний Si–O и Ca–O в структурах двухкальциевых силикатов β - и γ -модификаций из базы данных ICSD выбраны записи, которые рекомендованы к дальнейшему использованию в задачах поиска взаимосвязи «структура – свойство».

Ключевые слова: силикаты кальция, полиморфизм, координационные многогранники.

Ввеление

Накопленный опыт [1–3] в изучении кристаллических структур показывает, что для силиката кальция характерен сложный полиморфизм [4, 5]. Наряду с этим интересен тот факт, что необратимой сорбционной активностью обладают только материалы на основе γ-модификации двух-кальциевого силиката [6]. Возникает проблема оценки влияния особенностей строения устойчивых полиморфных модификаций на физико-химические свойства материалов на их основе. Устойчивыми при нормальных условиях являются γ- и β-полиморфные модификации. α-Модификация силиката кальция неустойчива при комнатной температуре, по этой причине она часто исключается из общего рассмотрения.

В результате того, что в базах данных, как правило, присутствуют данные об одной и той же структуре, предоставленные разными источниками, координаты атомов отличаются вследствие точности эксперимента, как на стадии подготовки образцов, так и на стадии разрешения структуры с помощью методов рентгеновской дифракции. Для того чтобы проанализировать интересующие нас структурные особенности, необходимо исключить или учесть значимые отклонения данных от систематически наблюдаемых, прежде всего на уровне оценки межъядерных расстояний.

В связи с этим нашей задачей стал анализ диапазонов изменений межъядерных расстояний Ca–O, Si–O, а также искажений форм координационных многогранников кальция и кремния в двухкальциевых силикатах γ - и β -Ca₂SiO₄ из базы данных кристаллических неорганических соединений ICSD (Inorganic Crystal Structure Database). Выбор таких оптимальных данных необходим для последующего их включения в выборки в задачах поиска количественных взаимосвязей структура – свойство и моделирования эффектов сорбции.

Описание объектов исследования

Геометрические параметры β - и γ -модификаций Ca₂SiO₄ взяты из базы данных кристаллических структур неорганических соединений: ICSD #963, ICSD #9095, ICSD #16 616, ICSD #18 179, ICSD 24 640, ICSD #39 005, ICSD #39 006, ICSD #68 753, ICSD #79 550–79 555, ICSD #81 096, ICSD #81 095, ICSD #82 994 (см. таблицу).

Для γ -Ca₂SiO₄ характерно нахождение в ближайшем окружении атома кальция шести атомов кислорода, образующих в первом случае симметричный октаэдр CaO₆ (в основании лежит четырехугольник, на пересечении диагоналей которого находится ион кальция), во втором – искаженный (в основании – трапеция, но связи Ca–O не лежат на его диагоналях, а ион кальция смещен относительно центра).

На рис. 1 выделены два типа координации атома кальция для каждой из модификаций, обозначенные Ca_I и Ca_{II} . Для β - Ca_2SiO_4 характерно наличие шести- и вкоординированных ионов Ca^{2+} (рис. 2).

Информация из базы данных кристаллических структур неорганических соединений (точность приведенных данных соответствует значениям из базы данных)

№ п/п	Номер струк- туры	Авторы	Параметры ячейки		№ п/п	Номер структуры в ISCD	Авторы	Параметры ячейки
	в ISCD							
β-модификация, пространственная группа Р2 ₁ /п					γ -модификация, пространственная группа Pbnm (α =90, β =90, γ =90)			
1	963	K.H. Jost, B. Ziemer, R. Seydel	a=5,502(1) b=6,745(1) c=9,297(1)	α=90 β=94,59(2) γ=90	7	18 179	D.K. Smith, A. Majumdar, F.Ordway	a=5,091(10) b=11,371(20) c=6,782(10)
2	24 640	C.M. Midg- ley	a=5,48(2) b=6,76(2) c=9,28(2)	α=90 β=85,45 γ=90	8	9 095	R. Czaya	a=5,078(2) b=11,225(3) c=6,760(2)
3	39 006	S. Udagawa, K. Urabe	a=5,51 b=6,76 c=9,32	α=90 β=94,5 γ=90	9	39 005	S. Udagawa, K. Urabe	a=5,08(0) b=11,22(1) c=6,78(4)
4	79 550	T. Tsurumi, Y. Hirano, H. Kato, T. Kamiya, M. Daimon	a=5,5041(1) b=6,7622(2) c=9,3281(3)	$ \begin{array}{c c} \alpha = 90 \\ \beta = 94,172 \\ \gamma = 90 \\ \alpha = 90 \\ \beta = 94,59(1) \\ \gamma = 90 \\ \end{array} $	68 754	A. Della Giusta, G. Ottonello, L. Secco	a=5,084(0) b=11,294(2) c=6,774(1)	
5	79 552		a=5,5075(1) b=6,7509(1) c=9,3055(1)		11	81 095	W.G. Mumme, R.J. Hill,	a=5,0821(1) b=11,2237(1)
6	245 074	W. Mumme, R.J. Hill, E.R. Segnit	a=5,5161(0) b=6,7620(3) c=9,3292(3)	α=90 β=94,31 γ=90	12	82 994	E.R. Segnit W. Mumme, L. Cranswick	c=6,7638(1) a=5,0762(3) b=11,2136(6) c=6,7583(4)

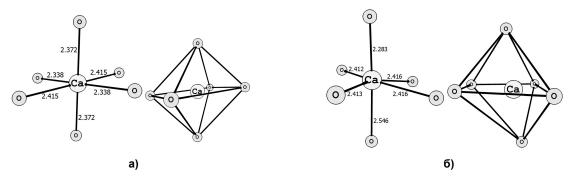


Рис. 1. Кальцийкислородные октаэдры и межъядерные расстояния Са–О, характерные для координации кальция первого Са_I (а) и второго Са_{II} (б) типа γ-модификации

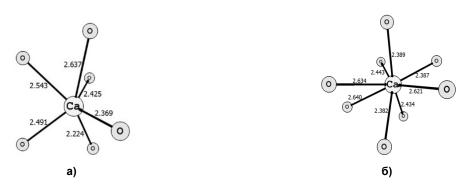


Рис. 2. Межъядерные расстояния Са–О, характерные для координации кальция первого (а) и второго (б) типа β-модификации

Диапазоны изменений межъядерных расстояний Са-О и Si-О

Характерными для связи типа Si–O являются межьядерные расстояния от 1,61 Å (в кварце) до 1,65 Å (в алюмосиликатах) [1–4]. В базе данных для структуры ICSD #18 179 длины связей Si–O в кремнийкислородных тетраэдрах лежат в диапазоне от 1,59 Å до 1,72 Å, вследствие чего тетраэд-

Краткие сообщения

ры SiO_4 «вытянуты» вдоль одной из осей. Для β -модификации межъядерные расстояния кремний – кислород для структур 2 (ICSD #24 640) и 4 (ICSD #79 550), напротив, сокращены (рис. 3, a).

Для остальных объектов, выбранных из базы данных, представляющих собой координаты атомов β - и γ -Ca₂SiO₄, полученные из различных источников, характерен узкий диапазон от 1,61 до 1,65 Å. Следовательно, необходим учёт выпадающих данных и последующее исключение структур с такими параметрами из выборок в задачах моделирования и поиска взаимосвязи структура – свойство.

При сравнении различных типов кальция для γ -модификации можно отметить, что разброс расстояний Ca_I —О меньше, чем Ca_{II} —О, несмотря на это при расчёте среднего арифметического значения расстояния, получены близкие значения величин, равные соответственно 2,39 и 2,41Å (рис. 3, б). При сопоставлении типов кальция в β - Ca_2SiO_4 , зафиксированы более длинные диапазоны расстояний Ca—О по сравнению с γ - Ca_2SiO_4 , а также большее количество различных значений межъядерных расстояний, так как в нём нет двух одинаковых атомов кислорода, входящих в координационное окружение кальция и отстоящих от центрального атома на одинаковое расстояние. Меньший разброс межъядерных расстояний в кристалле γ -модификации по сравнению с β -модификацией силиката кальция характерен не только для межъядерных расстояний Ca—О, но и для Si—О в рассматриваемых кристаллических структурах (рис. 3).

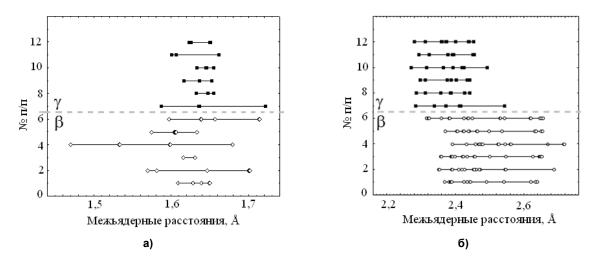


Рис. 3. Диапазоны расстояний кремний – кислород (а) и кальций – кислород (б) в β- и γ-Са₂SiO₄

Таким образом, анализ полученных данных о межъядерных расстояниях показывает, что их диапазон варьируется в определённых пределах, что, безусловно, зависит не только от условий получения сведений о структуре каждого соединения из исследуемой группы полиморфных модификаций двухкальциевого силиката, но напрямую определяется особенностями кристаллической структуры, отличающей модификации между собой.

Для изучения структурных особенностей различных модификаций и последующего исследования процессов сорбции, рекомендуемыми к включению в выборку оказываются структуры 1, 3, 5, 8, 9, 12 (см. таблицу). Для Si—О диапазон межъядерных расстояний в выбранных структурах двухкальциевого силиката сузился до диапазона 1,61–1,64 Å, для Ca—О до 2,28–2,64 Å. Причём, для разных типов координации кальция в многогранниках их диапазоны значимо варьируются.

При сравнении различных типов координации кальция установлено, что для γ -модификации систематический разброс расстояний Ca_{II} —О меньше (от 2,32 до 2,39 Å), чем Ca_{I} —О (от 2,31 до 2,40 Å). Для β - Ca_2SiO_4 аналогичный разброс более существен: от 2,24 до 2,64 Å для первого и от 2,40 до 2,64 Å для второго типа координации кальция.

Выводы

Проведён анализ геометрических характеристик в структурах β - и γ -полиморфных модификаций силиката кальция из базы ICSD. Составлена выборка структур для моделирования физикохимических свойств сорбентов на основе Ca_2SiO_4 . Показано, что для β - Ca_2SiO_4 характерны более широкие диапазоны изменений межъядерных расстояний по сравнению с γ -модификацией.

Литература

- 1. Урусов, В.С. Кристаллохимия / В.С. Урусов, Н.Н. Еремин. М.: Изд-во МГУ, 2004. 123 с.
- 2. Charge states of Ca atoms in β -dicalciumsilicate / Kazuhiro Moria, Ryoji Kiyanagib, Masao Yonemura et al. // Journal of Solid State Chemistry, 2006. Vol. 179. P. 3286–3294.
- 3. Новые данные о полиморфных модификациях безводного двухкальциевого силиката / Н.А. Ямнова, Ю.К. Егоров-Тисменко, Е.Р. Гобечия и др. – М.: Альтум, 2008. – С. 54–71.
- 4. Remy, C. High pressure polymorphism of dicalcium silicate Ca₂SiO₄. A transmission electron microscopy study / C. Remy, F. Guyot // Phys. Chem. Minerals, 1995. Vol. 22. P. 419–427.
- 5. Зуев, В. В. Кристаллоэнергетика как основа оценки свойств твердотельных материалов / В.В. Зуев, Л.Н. Поцелуева, Ю.Д. Гончаров / Санкт-Петербург, 2006. http://alfapol.ru/publikacii/book1/
- 6. Особенности необратимой сорбции катионов тяжелых металлов гранулированным сорбентом на основе силикатов и алюмосиликатов кальция / Г.Г. Михайлов, А.Г. Морозова, Т.М. Лозингер и др. // Вестник ЮУрГУ. Серия «Химия», 2011. Вып. 5. № 12. С. 46–53.

Поступила в редакцию 27 августа 2012 г.

SELECTION OF DATA FROM ICSD FOR THE COMPARATIVE ANALYSIS OF CALCIUM SILICATE POLYMORPHS

The analysis of interatomic distances Si–O and Ca–O in the structures of β -dicalcium silicate and the γ -modification of the database ICSD was performed. Some of selected data are recommended for further search of structure – property relationship.

Keywords: calcium silicates, polymorphism, coordination polyhedron.

Shmanina Elena Alexandrovna – Posrgraduate Student, Physical Chemistry Subdepartment, South Ural State University. 76, Lenin Avenue, Chelyabinsk, Russia, 454080.

Шманина Елена Александровна – аспирант, кафедра физической химии, Южно-Уральский государственный университет. Россия, 454080, Челябинск, пр. им. В.И. Ленина, 76.

E-mail: elenashmanina@gmail.ru

Bartashevich Ekaterina Vladimirovna – PhD (Chemistry), Associate professor, Organic Chemistry Subdepartment, South Ural State University, 76, Lenin Avenue, Chelyabinsk, Russia, 454080.

Барташевич Екатерина Владимировна – кандидат химических наук, доцент, кафедра органической химии, Южно-Уральский государственный университет. Россия, 454080, Челябинск, пр. Ленина, 76.

Mikhailov Gennadiy Georgievich – Dr. Sc. (Engineering), Professor, Head of Physical Chemistry Subdepartment, South Ural State University. 76, Lenin Avenue, Chelyabinsk, Russia, 454080.

Михайлов Геннадий Георгиевич – доктор технических наук, профессор, заведующий кафедрой физической химии, Южно-Уральский государственный университет. Россия, 454080, Челябинск, пр. Ленина, 76.