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A new peroxo-method for Mg—Zr mixed oxide preparation has been applied. It has
been established that this precursor after being heated up to 700 °C is in the form of poorly
crystalline Mg—Zr oxide. Thermal and X-ray diffractional analyses have shown that the
oxide phase is formed directly from amorphous peroxocomplex, avoiding formation of in-
termediate Mg(OH), phase. The peroxocomplex-mediated route allows achieving high
degree of molecular homogeneity in the mixed oxide and high distribution of the active
sites due to its low crystallinity. The prepared material is a potential catalyst for aldol
condensation reaction.
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Introduction

Mixed zirconia-magnesia oxides are known for their unique properties and high activity as catalysts
for aldol condensation reaction [1]. The presence of acid and basic sites, acid-base pairs and their distri-
bution on the surface of the mixed oxides determine activity and selectivity of Mg—Zr catalysts in fur-
fural aldol condensation and acetone self-condensation [2, 3]. Modification of the preparation technique
is the tool for tuning material’s surface properties. The main focus of the researchers dealing with syn-
thesis of Mg—Zr mixed oxides was on the modification and control of their morphology and specific sur-
face area, applying alkoxide-based sol-gel procedure [4] or ultra-dilution method [5] to reach their goal,
or dispersing a catalyst precursor on the high surface area supports [3]. However, the other approach,
that could enhance molecular homogeneity of the catalyst and suppress its crystallization, thus improv-
ing the distribution of the active sites, has not been considered yet. Here we report the thermal decompo-
sition features of a new precursor for Mg—Zr mixed oxide synthesis based on zirconium peroxocomplex.

Experimental

Zirconium oxychloride (ZrOCl,) solution was supplied by MEL Chemicals, magnesium sulfate hep-
tahydrate (MgSO, 7H,0), hydrogen peroxide (H,O,) 30 wt% water solution and citric acid monohydrate
were purchased from Aldrich, sodium hydroxide (NaOH) was obtained from Prolabo.

The conventional precipitation technique described by Aramendia [6] was applied to synthesize
Mg-Zr gel. Initially 50 mL of the aqueous solutions of MgSO, (0.1 M) and ZrOCl, (0.1 M) were mixed
and precipitated by the addition of NaOH (2 M) until pH value was 10.7. Then the precipitate was iso-
lated by centrifugation at 3000 r.p.m. and washed 8 times with deionized water. After the washing step
2.1 g of citric acid monohydrate, dissolved in 10 mL of H,0O,, was added to the precipitate. The obtained
suspension was heated to 100 °C, while stirring. When the most part of the precipitate was dissolved the
suspension was centrifuged at 3000 r.p.m. and the liquid phase was collected. Water was evaporated
from the peroxocomplex and the solid phase was dried at 50 °C for 24 h.

XRD patterns were registered using Rigaku Ultima IV diffractometer with Cu Ka source of radia-
tion. X-ray thermodiffractional studies were carried out on the PAN analytical X Pert Pro Philips dif-
fractometer. The samples were dried at 400 °C prior to thermodiffractional experiment, then they were
heated at the heating rate of 5 K/min in air and the XRD patterns were collected from 500 °C to 1000 °C
with a step of 100 °C. Thermogravimetry (TG) and differential scanning calorimetry (DSC) data were
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obtained by means of Netzsch STA 449F1 thermal analyzer in air atmosphere at the heating rate of
5 K/min.

Results and Discussion

The formation of water-soluble peroxocomplex was confirmed by the qualitative reaction with po-
tassium iodide, which colored the solution into orange. Elemental analysis made by EDS technique
showed that the intentional equimolar composition of Mg—Zr oxide had been reached.

The thermal decomposition of the peroxocomplex goes in several stages (Fig. 1a). In the low-
temperature region one can observe the mass-loss accompanied by endothermic effect, which is likely to
correspond to dehydration of the complex. The second stage of the mass-loss in the range of 400—500 °C
is unambiguously the combustion of the organic part of the complex. The exothermic effects at 625—
750 °C and 900950 °C are assigned to the phase transitions in the mixed oxide system. In order to cor-
roborate the suppositions made on the basis of thermal analysis the XRD and thermodiffractional studies
have been carried out.
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Fig. 1. Thermoanalytical curves of the peroxocomplex precursor (a), DSC and DTG curves in the range
of 600-1000 °C (b)

The as-prepared complex is amorphous (Fig. 2a) and shows no presence of magnesium hydroxide
or oxide phases. The broad reflection at 9 2@ probably corresponds to the zirconium peroxocomplex,
similar observation was reported by Ichinose et. al [7] for peroxotitanate hydrate.
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Fig. 2 XRD pattern of the amorphous complex (a) and thermodiffractional patterns of Zr-Mg mixed oxide (b)
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From Fig. 2b it is seen that the material up to 700 °C is the mixture of poorly crystalline phases of
MgO (ICDD PDF2 99-200-4113) and cubic magnesia-stabilized zirconia Mg,Zr, O, (ICDD PDF2 00-
080-0967 and 00-080-0964). Thus, the exothermic effect on the DSC curve (Fig. 1a) in the range of
400-600 °C could not be assigned to the phase transition in the mixed oxide, but only to the combustion
of the organic residue. The doubled exothermic effect at 625—750 °C (Fig. 1b) is attributed to the coales-
cence of the small crystallites of magnesia-stabilized zirconia and magnesia into larger crystallites, that
is obvious from the improved crystallinity (Fig. 2b). The last exothermic effect near 950 °C (Fig. 1b),
according to thermodiffractinal study, reflects the process of phase transition of magnesia-stabilized zir-
conia Mg,Zr, O, phase into tetragonal zirconia (ICDD PDF2 00-081-1544) accompanied by separa-
tion of periclase.

Conclusion

The process of thermal decomposition of the new precursor for Zr-Mg mixed oxide synthesis
shows that the formation of oxide phases goes directly from amorphous precursor. Up to 700 °C the
sample contains the mixture of poorly crystalline phases of cubic magnesia-stabilized zirconia and peric-
lase phases. The coalescence of the small crystallite near 700 °C accompanied by two exothermic effects
leads to the formation of highly crystalline material. The cubic magnesia-stabilized zirconia phase starts
decomposing at 900 °C, forming tetragonal ZrO, and cubic MgO. The hindered crystallization behavior
of the mixed oxide prepared via proposed technique could be the feature of high importance for its ap-
plication as a catalyst for aldol condensation reactions.
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OCOBEHHOCTU TEPMUYECKOI'O PA3JIOXXEHUA
HOBOI'O NPEKYPCOPA CMELUAHHbBIX OKCUOOB Mg-Zr

N.B. Kpueuoe, A.4. KacamkuHa, B.B. AeOuH

[IpumeHEH HOBBII NEPOKCO-METOA MOIYUYEHHs] CMEIIAaHHBIX OKCUAoB Mg—Zr. Ycra-
HOBIICHO, YTO HCCIICOBaHHBIN MpeKypcop npu HarpeBanuu ao 700 °C obOpasyer crmabo-
KPHUCTaJUIN30BaHHBIH okcna Mg—Zr. MeTogaMn TepMUYECKOT0 aHAIN3a U PEHTI€HOBCKOM
mudpaknny 1MokasaHo, 4To oKcuaHas (aza oOpasyeTcs HEMOCPEICTBEHHO N3 aMOpP(HBIX
MIEPOKCOKOMILIEKCOB 0e3 (hopmupoBanus mpomexxyrounor ¢azer Mg(OH),. Ilepoxco-
KOMIUIEKCHBIH IyTh MO3BOJISIET JOCTUYb BHICOKOM CTEMEHU MOJICKYJSIPHOM TOMOTEHHOCTH
B CMEIIaHHBIX OKCHJAaX M BBICOKOTO PACIPEEeNICHNs] aKTUBHBIX LIEHTPOB 32 CUET HU3KOU
KPUCTaJUTMYHOCTH MaTtepuana. [lomyueHHble 00pa3ibl SBISIOTCS MOTEHIMAIHHBIMH KaTa-
JIU3aTOPAMU TSI PEaKIMi abJ0JIbHOI KOHACHCAIUH.

Kniouesvie cnosa: ZrO, MgO, MgO/ZrO, cmewanuvie OKCUObl, 30/1b-2€b,
NePOKCOKOMNNEKC, ANbOOIbHAS KOHOCHCAYUSL.
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