УДК 544.01 + 552.63

ИССЛЕДОВАНИЕ МИКРОСТРУКТУРЫ И ФАЗОВОГО СОСТАВА ЧЕЛЯБИНСКОГО МЕТЕОРИТА

Ю.Н. Гойхенберг, Г.Г. Михайлов, Д.М. Галимов, Н.Т. Карева

Установлено присутствие в метеорите следующих шести основных фаз: трёх Fe – Ni твёрдых растворов с разной кристаллической решёткой и различной концентрацией никеля (камасита- α с концентрацией Ni от 3,5 до 5,5 ат. %, тэнита- γ , содержащего от 38 до 43 ат. % Ni и упорядоченной Fe – Ni фазы с кубической решёткой), а также сульфидов железа Fe_{1-x}S_x, оливина Mg_{1,727}Fe_{0,273}SiO₄ и алюмосиликатов Al₂Si₂₄O₅₁. Обнаружены металлические частицы, состоящие из α - и γ -твёрдых растворов, которые отделены друг от друга чёткой границей раздела. Внутри каждой из этих фаз большеугловые границы не выявляются. В отличие от α и γ фаз, более твёрдые сульфиды представляют собой конгломераты зёрен с чётко выраженными большеугловыми границами.

Ключевые слова: метеорит, фазовый состав, кристаллическая решётка, металлические частицы, большеугловые границы, твёрдые растворы.

Введение

В базе данных по метеоритам Челябинский метеорит классифицируется как LL5: обыкновенный хондрит из группы LL, отличающийся низким содержанием железа и металлов и имеющий сравнительно крупные хондры [1]. В исследованиях, описанных в работах [2–5], изучен минеральный состав, минералогия зоны оплавления и состав хондр Челябинского метеорита.

В данной работе большее внимание было уделено фазам, содержащим железо, и изучена макро- и микроструктура, а также фазовый состав фрагментов метеорита различных размеров.

Материал и методика исследования

Все исследованные фрагменты метеорита имеют приблизительно один и тот же состав (см. таблицу). Химический состав определяли на шлифах с помощью энергодисперсионного спектрометра Oxford INCA X-max 80, установленного на сканирующем электронном микроскопе JEOL JSM-7001F, а также химическим растворением прокаленного при 900 °C порошка фракцией менее 40 мкм с помощью оптико-эмиссионного спектрометра с индуктивно-связанной плазмой Perkin Elmer Optima-2100 DV. В таблице приведены усредненные значения по основным элементам, содержание которых превышает 0,1 масс. %. Содержание кислорода приведено по остатку.

Способ	Содержание элементов, масс. %										
определения	Fe	Ni	Mg	Al	Si	S	Ca	Mn	Cr	Na	0
Оптико- эмиссионный спектрометр	16,3– 17,3	0,61– 0,93	14,6– 15,2	0,97– 1,04	20,86– 21,12	не опре- деляли	1,27 – 1,34	0,24 – 0,25	0,32 - 0,33	0,11 - 0,13	не опре- деляли
Энергодиспер- сионный спектрометр	16,5	0,5	14,3	1,8	20,3	1,3	1,5	0,3	0,2	не опре- деляли	43,2

|--|

На исследуемых образцах размером $28 \times 16 \times 16$ и $20 \times 15 \times 15$ мм были изготовлены микрошлифы (рис. 1, а), которые изучали с помощью металлографического микроскопа Axio observer D1m как на нетравленных, так и на протравленных в различных реактивах шлифах, на растровом электронном микроскопе JEOL JSM-7001F, а также на рентгеновском дифрактометре в излучении кобальтового анода. Съемку рентгенограмм проводили на дифрактометре ДРОН–4, снабженном аппаратно-программным комплексом для автоматического управления и регистрации результатов измерений, со шлифов и с порошка, который подвергался магнитной сепарации.

Рис. 1. Общий вид двух шлифов фрагментов Челябинского метеорита (а) и микроструктура металлической составляющей при ×1000 (б)

Результаты исследования

Невооруженным глазом в плоскости шлифа видно, что внешняя «оболочка» образцов темнее внутренней части, при этом в той и другой области наблюдаются металлические блестки разных размеров, часто в виде строчечных выделений. Эта металлическая светлая составляющая наблюдается в виде капель или более крупных участков неправильной формы, в которых различаются системы параллельных полос практически одной ориентировки (рис. 1, б).

Результаты комплексных исследований, включающие рентгеноструктурный фазовый анализ в сочетании с анализом химического состава в микрообъемах отдельных структурных составляющих, свидетельствуют о присутствии в метеорите следующих основных фаз:

1) оливин ($Mg_{1,727}Fe_{0,273}SiO_4$); 2) алюмосиликаты ($Al_2Si_{24}O_{51}$); 3) сульфид железа ($Fe_{1-x}S_x$), а также твердые Fe - Ni растворы с различной концентрацией никеля;

4) а-твердый раствор с ОЦК решеткой Im3m;

5) ү-твердый раствор с ГЦК решеткой Fm3m;

6) Fe – Ni твердый раствор с кубической решеткой Р4132.

Дифрактограмма, снятая со шлифа метеорита, представлена на рис. 2.

Идентификацию фаз осуществляли с помощью программного обеспечения «Х-гау» путем сравнения экспериментальных рентгенограмм, перестроенных по программе на медное излучение, со стандартными штрих-рентгенограммами различных фаз базы данных международной картотеки PDF-2 [6].

Электронно-микроскопические исследования свидетельствуют о том, что в темной внешней оболочке толщиною от 300 до 800 мкм неметаллическая составляющая более плотная, чем во внутренней части образцов, а области, содержащие металл, наблюдаются в виде сетки тонких сплошных прослоек или в виде капель по границам неметаллических зерен, либо в виде крупных участков неправильной формы (рис. 3, а). На ещё меньшем по размерам фрагменте по сравнению с приведёнными на рис. 1, а, тёмная плотная неметаллическая составляющая распространяется по всему сечению шлифа, что, по-видимому, обусловлено его разогревом «насквозь» при прохождении через атмосферу, оплавлением некоторых фаз и возникновением ярко выраженной хондритной структуры (рис. 3, б). В этом случае отсутствует сетка металлических фаз по границам неметаллических зерен, видны металлические участки неправильной формы разных размеров, а химический и фазовый состав аналогичен составу светлой внутренней части более крупных фрагментов.

Анализ фаз, содержащих железо, показывает, что они представляют собой твердые растворы никеля в железе или сульфиды железа. При этом в α-твердом растворе с ОЦК решеткой концентрация никеля колеблется от 3,5 до 5,5 ат. % (3,8–5,8 масс. %) и дополнительно может содержаться до 3 % кобальта. В γ-твердом растворе с ГЦК решеткой никеля больше (от 38 до 43 ат. %).

Рис. 3. Микрофотография внешней оболочки и внутренней части крупного (а) и маленького (б) фрагментов метеорита: а – РЭМ, ×95, б – РЭМ, ×200

Существуют также зерна с промежуточной концентрацией никеля (14–26 ат. %), которые, повидимому, представляют собой упорядоченную фазу с кубической решеткой Р4132. При этом составляющие с разной концентрацией никеля отделены друг от друга извилистой границей раздела (рис. 4, а), а в α - и γ - фазах находятся неметаллические включения либо оливина или алюмосиликатов. Иногда выявляются системы параллельных пересекающихся «полос – балок» (рис. 4, б), что характеризует видманштеттову структуру метеоритов [7]. Кроме того, по границе α -твердого раствора встречается тонкая прослойка, состоящая из 76 % Fe + 17,5 % Ni + 6,5 % S (рис. 5, а).

Сера может входить в состав α - или γ - твердых растворов, но чаще она образует изолированные сульфиды железа, располагающиеся отдельно или рядом с Fe – Ni твердыми растворами в виде конгломератов зерен (рис. 6). Следует отметить, что сульфиды присутствуют также и в виде отдельных капель без большеугловых границ (рис. 5, б). В то же время, железоникелевые твердые растворы только друг от друга отделены большеугловыми границами, а внутри каждой Fe – Ni фазы зеренная структура не обнаруживается даже при травлении в сильных реактивах. Кроме того, в фрагментах наблюдаются скопления сульфидов, разделенные Fe – Ni фазой (рис. 7, а) или являющиеся её продолжением (рис. 7, б). Гойхенберг Ю.Н., Михайлов Г.Г., Галимов Д.М., Карева Н.Т. Исследование микроструктуры и фазового состава Челябинского метеорита

Рис. 4. Изображения РЭМ границы раздела между α (слева) и γ (справа) Fe – Ni твердыми растворами (a), содержащими включения оливина или алюмосиликатов и видманштеттовой структуры в металлической Fe – Ni фазе (б)

a)

б)

Рис. 5. Изображения РЭМ α – твердого раствора с прослойкой по границе соединения состава 76 ат. % Fe + 17,5 ат. % Ni + 6,5 ат. % S (а) и капли сульфида Fe_{1-x}S_x в перекрестии (б)

Рис. 6. Микрофотография участка метеорита с изображением распределения элементов (Ni, Fe, S) в сульфиде и Fe – Ni твердом растворе (РЭМ)

Рис. 7. Поэлементное картирование двух участков метеорита, приведённых на электронных изображениях

В некоторых случаях видна Fe – Ni фаза, частично покрытая пленкой сульфида железа (рис. 8), что свидетельствует об имевшем место плавлении сульфида и последующей его кристаллизации на Fe – Ni подложке.

Заметим, что микротвердость Fe – Ni фаз, измеренная на цифровом микротвердомере FM-800, низкая (в пределах 160–195 HV), в то время как сульфид железа значительно тверже (его среднее значение микротвердости составляет 370 HV) и в процессе измерения при нагрузке

б

100 г из-за хрупкости он часто разрушается. Состав зерен сульфидов, в основном, соответствует формуле $Fe_{1-x}S_x$, но присутствуют и такие зёрна, которые дополнительно содержат другие элементы, а сама сера может входить в состав всех остальных обнаруженных в метеорите фаз. В оливин также, кроме основных элементов (Mg – Si – Fe – O), могут входить кальций, натрий, марганец, которые могут присутствовать и в алюмосиликатах.

Рис. 8. Серая плёнка сульфида на светлой α-фазе и распределение элементов на данном участке фрагмента

Внутри фрагментов метеорита встречаются металлические частицы, состоящие из Fe – Ni твердого раствора и сульфидов, которые окружены оксидами хрома с алюминием с одной стороны и оливином с другой (рис. 9). Наблюдаются также участки, где все присутствующие в образцах фазы контактируют и четко разделяются (рис. 7, б) Виден оливин, разделенный сульфидом и твердым раствором железа с никелем и небольшие участки алюмосиликатов.

Рис. 9. Микроструктура металлической частицы и карта распределения элементов в ней и вокруг неё

Заключение

Таким образом, изученные фрагменты Челябинского метеорита состоят из тёмной плотной внешней оболочки, что является следствием температурно–ударного воздействия, и более рыхлой светлой неметаллической составляющей внутри. При малых размерах фрагментов заметно температурно-ударное воздействие по всему сечению образцов.

Изучена структура и распределение основных элементов, содержание которых превышает 0,1 %, по фазам, идентифицированным по дифрактограммам, в различных участках фрагментов. Результаты комплексных исследований свидетельствуют о присутствии в метеорите следующих основных фаз: трёх Fe – Ni твердых растворов с разной кристаллической решёткой и различной концентрацией никеля (камасита- α с концентрацией Ni от 3,5 до 5,5 ат. %, тэнита- γ , содержащего от 38 до 43 ат. % Ni и упорядоченной Fe – Ni фазы с кубической решёткой), а также сульфидов железа Fe_{1-x}S_x, оливина Mg_{1,727}Fe_{0,273}SiO₄ и алюмосиликатов Al₂Si₂₄O₅₁. Фазы, содержащие примеси, присутствующие в незначительных количествах (Ti, V, P, Cu и т. д.), не идентифицировали, хотя на дифрактограмме ещё существуют интерференционные линии, не относящиеся к какой–либо из шести обнаруженных фаз.

Проведён анализ фаз, содержащих железо. Большой интерес представляют металлические частицы, состоящие из α- и γ- твёрдых растворов, которые отделены друг от друга чёткой границей раздела. Внутри каждой из этих фаз зёренная структура и большеугловые границы не выявляются, а могут наблюдаться системы параллельных пересекающихся "полос – балок", характеризующих видманштеттову структуру метеоритов. В отличие от α и γ фаз более твёрдые сульфиды представляют собой конгломераты зёрен с чётко выраженными большеугловыми границами и часто контактирующие с Fe – Ni частицами.

Литература

1. «Chelyabinsk». Meteoritical Bulletin Database. The Meteoritical Society. – http://www.lpi.usra.edu/meteor/metbull.php.code=57165

2. Ученые Ур Φ У провели исследования метеорита «Чебаркуль». – Екатеринбург: Ур Φ У, 2013. – http://urfu.ru/home/press/news/article/uchenye-urfu-proveli-predvaritelnye-issledovanija-met/

3. Челябинский метеорит: минеральный состав: на рус. яз. – Новосибирск: ИГМ СО РАН, 2013. – Режим доступа: http://www.igm.nsc.ru/Menu/NewsDetails.aspx.newsid=45

4. Челябинский метеорит: состав хондр: на рус. яз. / В.В. Шарыгин, Н.С. Карманов, Т.Ю. Тимина и др. – Новосибирск: ИГМ СО РАН, 2013. – http://www.igm.nsc.ru/Menu/ NewsDetails. aspx.newsid=50

5. Челябинский метеорит: минералогия зоны оплавления: на рус. яз. / В.В. Шарыгин, Н.С. Карманов, Т.Ю. Тимина и др. – Новосибирск: ИГМ СО РАН, 2013. – http://www.igm.nsc.ru/Menu/NewsDetails.aspx.newsid=47

6. Порошковая дифракционная картотека (PDF–2) Объединённого комитета по порошковым дифракционным стандартам "International Centre For Diffraction Data" (ICPDS) // Swarthmore: Pennsylvania USA.

7. Кринов, Е.А. Метеориты / Е.А. Кринов // Большая Советская энциклопедия: в 30 т. Т. 16. – М.: Совет. энцикл., 1974. – С. 149–151.

Гойхенберг Юрий Нафтулович – доктор технических наук, профессор кафедры физического металловедения и физики твердого тела, Южно-Уральский государственный университет. 454080, г.Челябинск, пр.им. В.И.Ленина, 76. E-mail: main@physmet.susu.ac.ru

Михайлов Геннадий Георгиевич – доктор технических наук, профессор, заведующий кафедрой физической химии, Южно-Уральский государственный университет. 454080, г. Челябинск, пр.им. В.И.Ленина, 76. Е-mail: vic@fizchim.susu.ac.ru

Галимов Дамир Муратович – заместитель директора Научно-образовательного центра «Нанотехнологии» по НИОКР, Южно-Уральский государственный университет. 454080, г.Челябинск, пр.им. В.И.Ленина, 76. E-mail: galimovdm@ya.ru

Карева Надежда Титовна – кандидат технических наук, доцент кафедры физического металловедения и физики твердого тела, Южно-Уральский государственный университет. 454080, г.Челябинск, пр.им. В.И.Ленина, 76. E-mail: main@physmet.susu.ac.ru Гойхенберг Ю.Н., Михайлов Г.Г., Галимов Д.М., Карева Н.Т.

Bulletin of the South Ural State University Series "Chemistry" 2013, vol. 5, no. 3, pp. 28–35

INVESTIGATION OF STRUCTURE AND PHASE COMPOSITION OF THE CHELYABINSK METEORITE

Yu.N. Goykhenberg, South Ural State University, Chelyabinsk, Russian Federation, main@physmet.susu.ac.ru.
G.G. Mikhailov, South Ural State University, Chelyabinsk, Russian Federation, vic@fizchim.susu.ac.ru.
D.M. Galimov, South Ural State University, Chelyabinsk, Russian Federation, galimovdm@ya.ru.

N.T. Kareva, South Ural State University, Chelyabinsk, Russian Federation, main@physmet.susu.ac.ru.

Six principal phases are found in the meteorite: three Fe – Ni solid solutions with different crystal lattices and nickel concentrations (α -kamacite with 3.5–5.5 at. % Ni, γ -taenite with 38–43 at. % Ni and ordered Fe – Ni phase with the cubic lattice), iron sulphides Fe_{1-x}S_x, olivine Mg_{1.727}Fe_{0.273}SiO₄ and aluminum silicates Al₂Si₂₄O₅₁. Metallic particles contain α and γ solid solutions separated by distinct interfaces. High-angle boundaries within both phases are not revealed. Unlike α and γ phases harder sulphides are present as aggregates of grains with well-defined high-angle boundaries.

Keywords: meteorite, phase composition, crystal lattice, metallic particles, high-angle boundaries, solid solutions.

References

1. «Chelyabinsk». Meteoritical Bulletin Database, The Meteoritical Society. Available at: http://www.lpi.usra.edu/meteor/metbull.php.code=57165

2. Uchenye UrFU proveli issledovaniya meteorita «Chebarkul'» [UrFU Scientists investigate meteorite «Chebarkul»]. Available at: http://urfu.ru/home/press/news/article/uchenye-urfu-proveli-predvaritelnye-issledovanija-met/

3. Chelyabinskiy meteorit: mineral'nyy sostav: na rus. yaz. [Chelyabinsk meteorite: mineral composition: in Russian language]. Available at: http://www.igm.nsc.ru/Menu/NewsDetails.aspx.newsid=45

4. Sharygin V.V., Karmanov N.S., Timina T.Yu., Tomilenko A.A., Podgornyh N.M. Chelyabinskiy meteorit: sostav hondr: na rus. yaz. [Chelyabinsk meteorite: composition of chondrules: in Russian language]. Available at: http://www.igm.nsc.ru/Menu/NewsDetails.aspx.newsid=50

5. Sharygin V.V., Karmanov N.S., Timina T.Yu., Tomilenko A.A., Podgornyh N.M., Smirnov S.Z. Chelyabinskiy meteorit: mineralogiya zony oplavleniya: na rus. yaz. [Chelyabinsk meteorite: melt area mineralogy: in Russian language]. Available at: http://www.igm.nsc.ru/Menu/ NewsDetails.aspx.newsid=47

6. Powder Diffraction File Database «PDF–2», International Centre For Diffraction Data (ICPDS) //Swarthmore: Pennsylvania, USA. Available to purchase at http://www.icdd.com/products/pdf2.htm

7. Krinov E.A. Meteority. Bol'shaya Sovetskaya entsiklopediya: in 30 t. T.16 [Meteorites. Big Soviet encytslopedia, v.16] Moscow: Sovet. entsikl., 1974, pp. 149–151.

Поступила в редакцию 14 июня 2013 г.