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A theoretical study of the crystal lattice of titanium dioxide (anatase), its spatial and
thermodynamic characteristics, face growth characteristics and ways of formation of its
macromolecular structures is performed. It is shown that the growth along ¢ axis of the crystal
is more favorable thermodynamically. The variants for controlling of the growth of various
faces by introducing of the acidic and basic components, as well as by temperature changes
are proposed.
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Introduction

Nanocrystalline titanium dioxide is widespread photocatalyst for destruction of organic pollutants
[1], a semiconductor in solar cells [2], a component of ceramic, composite, catalytic [3] and sorption
materials [4], because of its efficiency, low cost, non-toxicity, photo- and thermal stability. Frequently
nanocrystalline titanium oxide used as the photocatalyst, because of its ability to form part of a pair of
"electron — hole" under the UV and visible light radiation. The effectiveness of photocatalysts based on
nanocrystalline titanium dioxide is determined by many factors, such as phase content, the morphology
features, the specific surface area, the pore volume, the presence of dopant additives [5]. All of the
above mentioned characteristics of the material are formed by the processes of hydrolytic or non-
hydrolytic decomposition of TiO, precursors and templating agents used in the synthetic processes. Cur-
rently, a lot of technique allows to obtain photocatalysts with specified properties using a sol-gel or hy-
drothermal synthesis. However, most of the known methods for producing crystalline titanium oxides
require high temperatures or pressures for crystallization of the amorphous precursor into the desired
crystalline modification. Preparation of nanocrystalline titanium dioxide under mild conditions at a tem-
perature close to room temperature is an important problem, the solution of which will significantly re-
duce the cost of production of functional materials. A way for the achievement this goal is the usage of
biomineralizing agents in the synthesis of titanium dioxide that allow both to obtain crystalline titanium
dioxide under mild conditions, and to control its crystalline structure, and particles sizes. An important
advantage of biomineralization, along with the "ecology and economy", is unequivalent or "quasi-
catalytic" nature of the process, i.e. the process does not require the equivalent amounts of template. In
addition to the importance of the applied research of the crystalline phase of the titanium oxide forma-
tion, the problem of the general features determining the formation of metal oxide materials is funda-
mentally important. A lot of quantum DFT and ab initio calculations of the titanium dioxide, ranging
from small particles of TiO,, to large enough nanoclusters such as TiOgs6, for example, [6—8], was
performed. But so far, a little is known on the specific ways of macromolecular structures (phases) of
the titanium oxide formation, on the hydrolysis of oligomeric intermediates, as well as the on the me-
chanism of formation of oligomeric intermediates themselves [9, 10]. Determination of the mechanism,
identification of intermediates of structure formation processes, definition of the dependence between the
structure of the template and the parameters of nanocrystalline TiO, will create new ways for the effective
control of the formation of titanium oxide nanostructures, which will allow to increase the characteristics
of existing materials and yield in principally new functional materials. Therefore, the aim of this work is a
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theoretical study of the crystal lattice of titanium dioxide (anatase), its spatial and thermodynamic characte-
ristics, face growth characteristics and pathways of formation of its macromolecular structures.

Research Methodology

The crystal structure of anatase was used for the study. X-ray diffraction data for the anatase lattice
was taken from [11] and Crystallography Open Database (http://www.crystallography.net/ ID 9015929).
The crystal system of anatase is tetragonal, the space group is I41/amd, unit cell parameters
area=b=3.7845 A; ¢ =9.5143 A; a.= B =y =90°. The cell volume is 136.268 A’, ideal crystal density
is 3.894 g/cm3. The cell contains two formula units of titanium dioxide.

The investigation of the titanium dioxide was performed within MERA force field [12-22] begin-
ning from one unit cell (cluster formula TiyOsg) to 30 unit cells, propagated along the a and ¢ axes of
the crystal (cluster formula Tig70O1749). In the framework of this approach the potential energy of interac-
tions in the system is the sum of intra- and intermolecular Coulomb and Van der Waals interactions.
Energy of intra- and intermolecular electrostatic interactions are calculated by the usual formula of Cou-
lomb's law. The energy of intermolecular van der Waals interactions is calculated using the Lennard-
Jones equation
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i=l j=i+ ij

R; 1s the equilibrium distance of the van der Waals contact of the / and j atoms, equal to the sum of

their van der Waals radii calculated within the MERA model,
R;; s the actual distance between the i and j atoms.
Uj; value corresponds to the minimum of potential energy of interaction between atoms i and j and can
be calculated within the MERA model in accordance with the following formula
o TkR;;
Y 480’

o —a constant equal to 6.662:10 ' M/K;
k — the Boltzmann constant.

The energy of the intermolecular van der Waals interactions and hydrogen bonds is calculated as
follows
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a, b, ¢ — the unit cell parameters;
k—integers 0, 1, 2,3, ...

The calculation of the thermodynamic characteristics of the anatase crystal lattice was fulfilled us-
ing the MERA model by the scheme shown in [14, 20, 21]. The calculation of atomic charges, as well as
the value of the charged surface was carried out within the framework of the full equalization of the or-
bital electronegativity formalism [23] in the modification of the model MERA [13]. The calculation of
the electronegativity of crystals was performed the J. Gasteiger scheme within the formalism of full
equalization of the orbital electronegativity [23].

Discussion

Calculation which was fulfilled for the anatase unit cell showed the following: the portion of a
charged cell surface, responsible for soption of polar molecules (e.g., amino acids or oligopeptides that
can be used for hydrolytic decomposition method of TiO, precursors), is low enough. Its value is only
2.19 % of the unit cell total surface (the square is 3.78 A%). About 80 % of the surface belongs to the side
faces of the cell and just over 20 % belongs to base faces. Thus, each side face possesses about 20% of
the charged surface, whereas each base face possesses just over 10 %.

Modelling of the crystal lattice growth along the a axis showed the following: the thermal effect of
the unit translation along the a axis is quite significant, the standard enthalpy is —2743 kJ/mole, the en-
tropy increment is 584 kJ/mole-K, lowering of the standard Gibbs free energy is 2917 kJ/mole. Electro-
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negativity of the crystal increases with the crystal growth along a axis by 0.41 eV per cell unit. Thus the
strength of sorption sites with respect to the positively charged hydrogens of carboxylic and ammonium
groups of oligopeptides (which may be used in the synthesis of titanium dioxide nanosized particles). It
should be noted that the electronegativity growth is nonlinear. The dependency represents a saturation
curve (Fig. 1) and can be approximated by the following equation

4 =652+ 3.025n ,
1.671+n

x — electronegativity of crystal eV;
n — the number of cells along the a axis.

Analyzing the equation, it is obvious, that the electronegativity can achieve the value 9.54 eV at the
saturation. A 50 % degree of completion of the saturation process will be achieved when the number of
cells will achieve n = 3. A 90 % degree of completion of the saturation process will be achieved when
the number of cells will achieve n = 17. Since the length of the a axis is 3.7845 A, the linear length of
17 unit cells equals 64.34 A, or 6,434 nm, which will be the minimum size of the crystals at the equili-
brium sorption of polar components.

Modelling of the crystal lattice growth along the ¢ axis showed the following: the thermal effect when
the unit translation along the ¢ axis even greater than for the growth along a axis and — the standard enthalpy
is —3482 kJ/mole, the increase of entropy is also significantly higher it equals 869 kJ/mole-K, lowering of the
standard Gibbs free energy also greater and amounts to 3741 kJ/mole. Thus, the crystal growth along the ¢
axis is more favorable than along the a or b axes under thermodynamic conditions. However, the number of
side faces is twice greater than the base faces perpendicular to ¢ axis.
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Fig. 1. The dependency of the crystal electronegativity on the number of unit cells along the a axis

Electronegativity of the crystal increases with growth along the ¢ axis but its increment is almost
twice less than for the growth along a axis: the increment is 0.22 eV per unit. The further electronegativ-
ity growth is nonlinear and dependency also represents a saturation curve (Fig. 2). It can be approx-
imated using the following formula
1.6925n

¥ =6.86+——"
1.134+n

n — the number of unit cells along the ¢ axis.
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Fig. 2. The dependency of the crystal electronegativity on the number of unit cells along the c axis

Analyzing the equation, it is obvious, that the electronegativity can achieve the value 8.55 eV,
which is less than the growth along the a axis by almost one. A 50 % degree of completion of the satura-
tion process will be achieved when the number of cells will achieve n = 4. A 90 % degree of completion
of the saturation process will be achieved when the number of cells will achieve n = 12. Since the length
of the ¢ axis is 9.5143 A, the linear length of the 12 unit cells equals 114.17 A, or 11.417 nm, which will
be the minimum size of the crystals at the equilibrium sorption of polar components.

A comparison of anatase crystal growth along the a and ¢ axes shows that the more thermodynami-
cally favorable is a growth along ¢ axis, which must provide a crystal habit elongated along c¢ axis.
However, when a doubling of unit cell along ¢ axis leads to a doubling of the free energy of the growth
along a axis. So, the next step provides adding a layer of unit cells along a direction. Thus, the ratio of
the size of the crystal during the growth under ideal thermodynamic conditions should be the ratio of the
free energies of growth, i.e.

a:c=b:c=2917:3741.

It is possible to make changes into this ratio in any direction under kinetic conditions. Since the
electronegativity of the crystal during the growth along the @ axis increases much stronger than during
the growth along the c axis, the insertion components with the positively charged fragments, such as ac-
ids or conjugated acids (for example, consisting of ammonia or carboxylic group) should accelerate the
growth along the a axis and yielding smaller particles (from 6.434 nm); the insertion of the conjugate
bases or bases should accelerate growth along the ¢ axis and yielding larger particles (from 11.417 nm).
It is well confirmed by the data of [24], where the sorption of neutral, acidic and basic amino acids on
titanium dioxide is elucidated. Since the entropy factor favors the growth along the ¢, the growth in this
direction will increase with the temperature increase; a reducing of the temperature will be favorable to
growth in the direction a. In both cases possible to obtain nanosized titanium dioxide particles.

Conclusion
Some thermodynamic and kinetic factors on the growth characteristics of nanoscale titanium dio-
xide particles are studied in the work. The conditions providing larger and smaller particles with higher
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and lower sorption capacity for acidic and basic peptides within hydrolytic decomposition method of
titanium dioxide precursors are offered.
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TEOPETUYECKOE UCCJIEQOBAHUE BIIUAHUA

PAOA TEPMOOAUMHAMUYECKUX U KWHETUYECKUX PAKTOPOB
HA OCOBEHHOCTU POCTA HAHOPA3MEPHbIX YACTUL
AOBYOKUCU TUTAHA

M.A. Npuwuna', A.B. Momemkur?, O.U. Bonbwakoe®, B.A. MomemkuH'

" FOxHO-Ypanbckuli 20cydapcmeeHHbil MeOUUUHCKUL yHusepcumem, 2. YensabuHck,

2 CaHkm-lNemepbypackull HayuoHanbHbIl uccnedosamenscKkull yHusepcumem UHpopMayu-
OHHbIX mexHo02uli, MexaHuUKuU u onmuku, . CaHkm-llemepbype,

% FOxHO-Ypansckuli 2ocydapcmeeHHbill yHusepcumem, 2. YensabuHck

[IpoBeneHo TeopeTHUECKOE WCCIEAOBAHUE KPUCTAINIMYECKOW pENIeTKH AWOKCHAA
TUTaHa (aHaTa3a), €ro IPOCTPAHCTBEHHBIX U TEPMOAMHAMHUYECKUX XapaKTEPHUCTHUK,
ocobeHHOCTel pocTa rpaHeil U myTell (popMHUPOBaHHA €ro MakpOMOJEKYISIPHBIX CTPYKTYP.
[loka3aHo, 9YTO TepMOAWHAMHYECKH Oojee OJIarompHATHBIM SBISETCS POCT BJIOJIb
HampaBJIeHUs ¢ KpucTamia. lIpeanmokeHbl BapHaHTHl YIPABICHHUS POCTOM TEX MM HMHBIX
rpaHell ITyTeM BBEICHUS KHUCIOTHBIX M OCHOBHBIX KOMIIOHEHTOB, a TaK)Ke IOCPEICTBOM
N3MEHEHHS TEMIIEPATYPBHI.

Kniouegvie crosa: ouoxcud mumana, aHamas, HAHOCMPYKMypd, mepmMoOUHamMu4ecKue
pacuemul, KuHemu4ecKue 0CO6EeHHOCMU.
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