УДК 546.865+547.53.024+547.563.4+548.312.5

DOI: 10.14529/chem160408

ОСОБЕННОСТИ СТРОЕНИЯ μ_2 -ОКСО-БИС[(АРОКСИ)ТРИАРИЛСУРЬМЫ]: [Ar₃Sb(OAr')]₂O, Ar = Ph, Ar' = C₆H₂Cl₃-2,4,6, C₆H₂Br₂-2,6-(t-Bu)-4; Ar = p-Tol, Ar' = C₆H₂(NO₂)₃-2,4,6

В.В. Шарутин, О.К. Шарутина

Южно-Уральский государственный университет, г. Челябинск

Взаимодействием триарилсурьмы с 2,4,6-трихлорфенолом, 2,6-дибром-4третбутилфенолом и три(*пара*-толил)сурьмы с 2,4,6-тринитрофенолом в присутствии третбутилгидропероксида в водно-эфирном растворе получены с высоким выходом μ_2 -оксо-*бис*[(2,4,6-трихлорфеноксо)трифенилсурьма] (1), μ_2 -оксо-*бис*[(2,6-дибром-4-третбутилфеноксо)трифенилсурьма] (2), μ_2 -оксо-*бис*[(2,4,6-тринитрофеноксо)три(*пара*-толил)сурьма] (3). В биядерных молекулах 1, 2, 3 фрагменты SbOSb имеют угловое строение. Атомы сурьмы характеризуются искаженной тригонально-бипирамидальной координацией с атомами кислорода в аксиальных положениях. Длины связей атомов сурьмы с мостиковым атомом кислорода короче, чем с атомами кислорода арокси-групп.

Ключевые слова: окислительный синтез, µ-оксо-бис[(ароксо)триарилсурьма], строение, рентгеноструктурный анализ.

Введение

Биядерные производные сурьмы общей формулы (Ar₃SbX)₂O, где X – галоген или другой электроотрицательный заместитель, известны [1]. К настоящему моменту строение более тридцати соединений такого типа установлено методом рентгеноструктурного анализа [2]. Имея много общих закономерностей в строении координационного полиэдра атомов сурьмы, молекулы этих соединений могут существенно отличаться геометрией фрагмента Sb–O–Sb [3]. Валентный угол при мостиковом атоме кислорода в известных структурах варьирует от 130 до 180°. В молекулах с линейным строением центрального фрагмента длина связей Sb–O короче, а значит прочнее, чем в молекулах с угловым строением. Однако соединений с молекулами второго типа большинство. Причины, вызывающие искажение линейного угла, неоднократно обсуждались в литературе [4–7], тем не менее, до сих пор невозможно спрогнозировать, какую форму будет иметь фрагмент Sb–O–Sb в молекуле того или другого соединения.

Так, в молекулах μ_2 -оксо-*бис*[(ароксо)трифенилсурьмы] (Ph₃SbOC₆H₃OH-3-Ac-4)₂O, [Ph₃SbOC₆H₃(CHO)-2-Br-4]₂O [8], (Ph₃SbOC₆H₂Br₃-2,4,6)₂O [9] (Ph₃SbOC₆H₃Cl₂-2,6)₂O, (Ph₃SbOC₆H₂Br₂-2,6-NO₂-4)₂O [10] угол SbOSb изменяется в интервале 142–147°, тогда как в толильном производном (*p*-Tol₃SbOC₆H₄I)₂O указанный угол равен 180° [11].

В работе [4] при обсуждении строения биядерных элементоорганических соединений с мостиковым атомом кислорода (X–M–O–M–X) была обнаружена корреляция между длиной связи атомом металла M с терминальным лигандом X и величиной угла MOM: чем меньше длина связи M–X, тем больше значение угла. Вероятно, такую корреляцию уместно проводить только в ряду соединений с однотипными терминальными лигандами. Отметим, что в структурно охарактери-зованных соединениях [Ph₃SbOC₆H₃(CHO)-2-Br-4]₂O, (Ph₃SbOC₆H₃OH-3-Ac-4)₂O [8], (Ph₃SbOC₆H₃Cl₂-2,6)₂O, [10] (Ph₃SbOC₆H₂Br₃-2,4,6)₂O [9], (Ph₃SbOC₆H₂Br₂-2,6-NO₂-4)₂O [10] наоборот, удлинение связи Sb–O(Ar) (средние значения 2,135, 2,141, 2,145, 2,177, 2,213 Å соответственно) сопровождается увеличением угла SbOSb (142,4, 143,2, 142,7, 144,0, 147,6°).

С целью подтверждения наблюдаемой корреляции в настоящей работе синтезированы биядерные ароксиды триарилсурьмы с мостиковым атомом кислорода: (Ph₃SbOC₆H₂Cl₃-2,4,6)]₂O (1), [Ph₃SbOC₆H₂Br₂-2,6-4-(*t*-Bu)]₂O (**2**), [p-Tol₃SbOC₆H₂(NO₂)₃-2,4,6]₂O (**3**) и изучены особенности их строения.

Экспериментальная часть

Синтез µ₂-оксо-*бис*[(ароксо)триарилсурьмы] 1, 2, 3 проводили по методике, описанной в [9]. Рентгеноструктурный анализ (РСА) кристаллов 1,2,3 проведен на автоматическом четырехкружном дифрактометре D8 QUEST фирмы Bruker (Мо К_{α}-излучение, $\lambda = 0,71073$ Å, графитовый монохроматор). Сбор, редактирование данных и уточнение параметров элементарной ячейки, а также учет поглощения проведены с помощью программ *SMART* и *SAINT-Plus* [12]. Все расчеты по определению и уточнению структур выполнены с помощью программ *SHELXL/PC* [13]. Структуры определены прямым методом и уточнены методом наименьших квадратов в анизотропном приближении для неводородных атомов. Положение атомов водорода уточняли по модели наездника ($U_{изo}$ (H) = 1,2 $U_{3кB}$ (С)). Кристаллографические данные и результаты уточнения структур приведены в табл. 1, геометрические характеристики координационного полиэдра атома сурьмы – в табл. 2.

Параметры	Значения			
	1	2	3	
Сингония	Триклинная	Триклинная	Триклинная	
Пространственная группа	$P\overline{1}$	PĪ	PĪ	
<i>a</i> , Å	12,9431(5)	14,0394(5)	11,7172(11)	
b, Å	13,3057(5)	14,0693(6)	13,0140(13)	
<i>c,</i> Å	15,6069(7)	15,7425(7)	22,487(2)	
α, град.	86,496(2)	73,694(2)	75,504(4)	
β, град.	69,320(2)	86,544(2)	79,018(4)	
ү, град.	67,631(2)	66,991(2)	66,915(4)	
$V, Å^3$	2317,02(16)	2742,7(2)	3037,5(5)	
Ζ	2	2	2	
ρ _(вычисл.) , г/см ³	1,598	1,618	1,380	
μ, мм ⁻¹	1,552	3,939	0,954	
F(000)	1100,0	1308,0	1268,0	
Размер кристалла, мм	$1,07 \times 0,62 \times 0,48$	0,23 × 0,15 × 0,12	0,47 × 0,39 × 0,18	
Область сбора данных по θ , град.	5,92–77,48	4,04–51,68	4,26–50,8	
Интервалы индексов отражений	$-22 \le h \le 16,$	$-17 \le h \le 17,$	$-14 \le h \le 14,$	
	$-23 \le k \le 20,$	$-17 \le k \le 17,$	$-15 \le k \le 15,$	
	$-27 \leq l \leq 27$	$-19 \le l \le 19$	$-27 \leq l \leq 27$	
Измерено отражений	43124	46355	47491	
Независимых отражений	22730	10394	11121	
$R_{ m int}$	0,0295	0,0785	0,0326	
Переменных уточнения	532	592	700	
GOOF	1,234	0,992	1,068	
R -фактор по $F^2 > 2\sigma(F^2)$	$R_1 = 0,0871,$	$R_1 = 0,0383,$	$R_1 = 0,0489,$	
	$wR_2 = 0,1667$	$wR_2 = 0,0680$	$wR_2 = 0,1271$	
<i>R</i> -факторы по всем отражениям	$R_1 = 0,1336,$	$R_1 = 0,0857,$	$R_1 = 0,0626,$	
	$wR_2 = 0,1880$	$wR_2 = 0,0805$	$wR_2 = 0,1416$	
Остаточная электронная плотность (min/max), <i>e</i> /Å ³	3,63/-2,35	1,05/-0,74	2,05/-0,57	

Кристаллографические данные, параметры эксперимента и уточнения структур соединений 1–3

Таблица 1

Таблица 2

Основные длины связей (d) и валентные углы (ω) в структурах

Связь	d. Å	Угол	<i>(</i>) град		
	<i>w,</i> 11	1	<i>w</i> , тр и д.		
Sb(1) - C(1)	2 111(5)	Sb(1)O(3)Sb(2)	143 6(2)		
$\frac{Sb(1) - C(11)}{Sb(1) - C(11)}$	2,094(5)	O(3)Sb(1)O(1)	179 34(14)		
$\frac{Sb(1)-C(21)}{Sb(1)-C(21)}$	2 090(5)	O(3)Sb(2)O(2)	177 22(16)		
$\frac{Sb(1) - O(3)}{Sb(1) - O(3)}$	1 968(4)	C(11)Sb(1)C(1)	121 9(2)		
$\frac{50(1)-0(1)}{50(1)}$	2.180(3)	C(21)Sb(1)C(1)	117.73(18)		
$\frac{Sb(1)-O(1)}{Sb(1)-O(1)}$	1.307(6)	C(21)Sb(1)C(11)	119.24(19)		
Sb(2)-C(41)	2.094(5)	C(11)Sb(1)O(1)	84.99(17)		
Sb(2)–C(61)	2,105(5)	C(41)Sb(2)C(61)	123.0(2)		
Sb(2)–C(51)	2,102(5)	C(41)Sb(2)C(51)	116,2(2)		
Sb(2)–O(2)	2,161(4)	C(51)Sb(2)C(61)	120,1(2)		
Sb(2)–O(3)	1,973(4)	O(3)Sb(2)C(51)	98,08(17)		
C(71)–O(2)	1,317(6)	C(51)Sb(2)O(2)	84,60(18)		
2					
Sb(1)–O(1)	1,971(3)	Sb(1)O(1)Sb(2)	143,66(16)		
Sb(1)–O(2)	2,160(3)	O(1)Sb(1)O(2)	177,24(12)		
Sb(1)–C(1)	2,099(5)	O(1)Sb(2)O(3)	175,99(12)		
Sb(1)–C(11)	2,118(4)	C(1)Sb(1)C(11)	119,64(19)		
Sb(1)–C(21)	2,101(5)	C(1)Sb(1)C(21)	118,7(2)		
Sb(2)–O(1)	1,979(3)	C(21)Sb(1)C(11)	121,14(19)		
Sb(2)–O(3)	2,140(3)	C(1)Sb(1)O(2)	86,29(14)		
Sb(2)–C(41)	2,104(5)	O(1)Sb(1)C(1)	96,40(15)		
Sb(2)–C(61)	2,102(4)	C(61)Sb(2)C(41)	116,00(19)		
Sb(2)–C(51)	2,102(5)	C(61)Sb(2)C(51)	116,44(18)		
O(3)–C(71)	1,338(5)	C(51)Sb(2)C(41)	127,2(2)		
O(2)–C(31)	1,329(5)	C(51)Sb(2)O(3)	89,76(15)		
3					
Sb(1)–O(1)	1,946(4)	Sb(1)O(1)Sb(2)	143,2(2)		
Sb(1)–O(2)	2,364(3)	O(1)Sb(1)O(2)	175,37(14)		
Sb(1)-C(1)	2,103(5)	O(1)Sb(2)O(9)	176,70(15)		
Sb(1)-C(21)	2,115(5)	C(1)Sb(1)C(21)	114,1(2)		
Sb(1)–C(11)	2,111(5)	C(1)Sb(1)C(11)	111,22(19)		
Sb(2)–O(1)	1,971(3)	C(11)Sb(1)C(21)	131,22(19)		
Sb(2)–O(9)	2,246(4)	C(1)Sb(1)O(2)	82,07(16)		
Sb(2)–C(41)	2,105(5)	O(1)Sb(1)C(1)	101,87(17)		
Sb(2)–C(51)	2,102(5)	C(51)Sb(2)C(41)	115,6(2)		
Sb(2)–C(61)	2,106(6)	C(51)Sb(2)C(61)	112,2(2)		
O(2)–C(31)	1,265(6)	C(41)Sb(2)C(61)	131,0(2)		
O(9)–C(7)	1,266(6)	O(1)Sb(2)C(41)	93,35(17)		

Полные таблицы координат атомов, длин связей и валентных углов депонированы в Кембриджском банке структурных данных (№ 1046113 для 1, № 1052057 для 2, № 1049892 для 3; deposit@ccdc.cam.ac.uk; http://www.ccdc.cam.ac.uk).

Обсуждение результатов

Комплексы **1–3** были получены из триарилсурьмы, фенола и *трет*бутилгидропероксида при мольном соотношении 1:1:1 с высоким выходом.

 $2 \text{ Ar}_3\text{Sb} + 2 \text{ HOAr'} + 2 \text{ HOOBu-}t \rightarrow (\text{Ar}_3\text{SbOAr'})_2\text{O} + \text{H}_2\text{O} + 2 \text{ HOOBu-}t$ Ar = Ph, Ar' = C₆H₂Cl₃-2,4,6 (1), C₆H₂Br₂-2,6-4-(*t*-Bu) (2); Ar = *p*-Tol, Ar' = C₆H₂(NO₂)₃-2,4,6 (3)

По данным рентгеноструктурного анализа, геометрические характеристики молекул соединений **1**, **2**, **3** имеют близкие значения. Два фрагмента Ar₃SbOAr' связаны через атом кислорода (рис. 1, 2, 3).

Рис. 1. Строение молекулы соединения 1

Рис. 3. Строение молекулы соединения 3

Арильные циклы двух группировок Ar_3Sb находятся относительно друг друга в более энергетически выгодной заторможенной конформации. Углы между плоскостями арокси-групп в молекулах **1**,**2**,**3** равны 56,16°, 69,70°, 68,89° соответственно. Атомы сурьмы имеют искаженную тригонально-бипирамидальную координацию с атомами кислорода (мостиковым O_M и ароксильным O_a) в аксиальных положениях. Аксиальные углы O_MSbO_a составляют 179,34(14)°, 177,22(16)° (**1**), 177,24(12)°, 175,99(12)° (**2**) и 175,37(14)°, 176,70(15)° (**3**). Углы CSbC в экваториальной плоскости изменяются в интервалах 116,2(2)–123,0(2)°, 118,7(2)–127,2(2)° (**2**) и 111,22(19)–131,22(19)° (**3**), что можно объяснить стерическими затруднениями, связанными с увеличением объема заместителей в арокси-группах.

Атомы сурьмы выходят из экваториальной плоскости в сторону мостикового атома кислорода: в 1 – Sb(1) на 0,126 Å, Sb(2) на 0,107 Å; в 2 – Sb(1) на 0,090 Å, Sb(2) на 0,071 Å; в 3 – Sb(1) на 0,226 Å, Sb(2) на 0,134 Å, что приводит к отклонению углов между аксиальными и экваториальными связями от теоретического значения 90°. Центральные фрагменты в молекулах 1–3 имеют угловое строение, углы SbOSb равны 143,6(2)°, 143,66(16)°, 143,2(2)° соответственно. Длины связей Sb(1,2)–O_м (1,968(4), 1,973(4) Å (1); 1,971(3), 1,979(3) Å (2); 1,946(4), 1,971(3) Å

(3) близки к значениям аналогичных связей в молекулах подобных соединениях сурьмы [8–10]. В ряду соединений **2**, **1**, **3** расстояния Sb(1,2)–O_a возрастают (2,140(3), 2,160(3) Å; 2,161(4), 2,180(3) Å; 2,246(4), 2,364(3) Å соответственно), что коррелирует со значительным смещением электронной плотности в ароматическое кольцо при усилении электроноакцепторных свойств функциональных групп в ароксильных лигандах. Так, в молекуле **3** плоскости ароматически совпадают (углы между соответствующими плоскостями равны 3,02° и 6,78°), что обусловливают проявление этими электроотрицательными группами и индуктивного эффекта (–*I*) и эффекта сопряжения (–*M*). О перераспределении электронной плотности свидетельствует укорочение связей O–C(Ar) в рассматриваемом ряду (1,337(5), 1,328(5) Å; 1,317(7), 1,307(7) Å; 1,266(6), 1,265(7) Å в **2**, **1**, **3** соответственно). Отметим, что при различающихся средних значениях терминальных связей Sb–O (2,150(3) Å, 2,170(4) Å, 2,305(4) Å) углы SbOSb в молекулах приведенных соединений имеют близкие значения.

Выводы

Таким образом, анализ данных рентгеноструктурных исследований соединений $[Ph_3SbOC_6H_2Br_2-2,6-4-(t-Bu)]_2O$, $(Ph_3SbOC_6H_2Cl_3-2,4,6)]_2O$, $[p-Tol_3SbOC_6H_2(NO_2)_3-2,4,6]_2O$ показал, что геометрические параметры координационных узлов атомов сурьмы в их молекулах имеют близкие значения. Наблюдаемое удлинение связей Sb-O_a в приведенном ряду соединений связано с повышением электроноакцепторных способностей функциональных групп в ароксильных лигандах. Зависимости между длиной терминальной связи Sb–O и значением валентного угла при мостиковом атоме кислорода не выявлено.

Литература

1. Кочешков, К.А. Методы элементоорганической химии. Сурьма, висмут / К.А. Кочешков, А.П. Сколдинов, Н.Н. Землянский; под ред. А.Н. Несмеянова. – М.: Наука, 1976. – 483 с.

2. Cambridge Crystallografic Database. Release 2015. Cambridge.

3. Шарутина, О.К. Молекулярные структуры органических соединений сурьмы (V) / О.К. Шарутина, В.В. Шарутин. – Челябинск: Издательский центр ЮУрГУ, 2012. – 395 с.

4. Glidewell, C. The Structures of Hexaorgano-substituted Triatomics $R_3^{-1}M^1XM^2R_3^{-2}$ and Related Species / C. Glidewell // J. Orgnomet. Chem. – 1988. – V. 356, No 2. – P. 151–158.

5. Tiekink, E.R.T.The Crystal and Molecular Structure of μ-Oxobis[chlorotriphenylantimony(V)]benzene Solvate(12) / E.R.T. Tiekink // J. Orgnomet. Chem. – 1987. – V. 333, № 2. – P. 199–204.

6. Recognition on Linear Bent Forms of Solid μ -Oxo-bis[iodotriphenylantimony(V)] (Ph₃SbI)₂O / M.J. Taylor, L.-J. Baker, C.E.F. Rickard et al. // J. Organomet. Chem. – 1995. – V. 498, No 1. – P. C14–C16.

7. Adduct Formation between $(Ph_3SbI)_2O$ and $I_2 / M.J.$ Almond, M.G.B. Drew, D.A. Rice et al. // J. Organomet. Chem. – 1996. – V. 522, No 2. – P. 265–269.

8. Синтез, строение и реакции соединений сурьмы (Ar₃SbX)₂O, X = Hal, NO₂, NO₃, OSO₂R, OC(O)R, OAr / B.B. Шарутин, А.П. Пакусина, Н.В. Насонова и др. // Химия и компьютерное моделирование. Бутлеровские сообщения. – 2002. – Т. 3, № 11. – С. 13–22.

9. Сурьмаорганические производные 2,4,6-трибромфенола / В.В. Шарутин, А.П. Пакусина, М.А. Пушилин и др. // Журн. общ. химии. – 2003. – Т. 73, № 4. – С. 573–577.

10. Шарутин, В.В. Синтез и строение μ-оксо-*бис*[трифенил(2,6-дихлорфенокси)сурьмы] и μоксо-*бис*[трифенил(2,6-дибром-4-нитрофенокси)сурьмы] / В.В. Шарутин, О.К. Шарутина, В.С. Сенчурин // Бутлеровские сообщения. – 2013. – Т. 36, № 10. – С. 52–56.

11. Синтез и строение µ-оксо-*бис*[(4-иодфеноксо)три-*n*-толилсурьмы] [(4-МеС₆H₄)₃SbOC₆H₄I-4)]₂O / В.В. Шарутин, О.К. Шарутина, А.П. Пакусина и др. // Бутлеровские сообщения. – 2011. – Т. 27, № 14. – С. 36–40.

12. Bruker (1998). SMART and SAINT-Plus. Versions 5.0. Data Collection and Processing Software for the SMART System. Bruker AXS Inc., Madison, Wisconsin, USA.

13. Bruker (1998). SHELXTL/PC. Versions 5.10. An Integrated System for Solving, Refining and Displaying Crystal Structures From Diffraction Data. Bruker AXS Inc., Madison, Wisconsin, USA.

Шарутин Владимир Викторович – доктор химических наук, профессор, старший научный сотрудник УНИД, Южно-Уральский государственный университет. 454080, г. Челябинск, пр. им. В.И. Ленина, 76. E-mail: vvsharutin@rambler.ru.

Шарутина Ольга Константиновна – доктор химических наук, профессор, заведующий кафедрой теоретической и прикладной химии, Южно-Уральский государственный университет. 454080, г. Челябинск, пр. им. В.И. Ленина, 76. E-mail: sharutinao@mail.ru.

Поступила в редакцию 15 сентября 2016 г.

DOI: 10.14529/chem160408

STRUCTURAL FEATURES OF μ -OXO-BIS(TRIARYLAROXYANTIMONY): [Ar₃Sb(OAr')]₂O, Ar = Ph,Ar' = C₆H₂Cl₃-2,4,6, C₆H₂Br₂-2,6-(*t*-Bu)-4; Ar = p-Tol, Ar' = C₆H₂(NO₂)₃-2,4,6

V.V. Sharutin, vvsharutin@rambler.ru O.K. Sharutina, sharutinao@mail.ru

South Ural State University, Chelyabinsk, Russian Federation

Triphenylantimony reacting with 2,4,6-trichlorophenol, 2,6-dibromo-4-*tert*-butylphenol and 2,4,6-trinitrophenol in the presence of *tert*-butylhydroperoxide in water-ether solution forms μ -oxo-bis[triphenyl(2,4,6-trichlorophenoxy)antimony] (1), μ -oxo-bis[triphenyl(2,6-dibromo-4-tert-butylphenoxo)antimony] (2), μ -oxo-bis[trip-tolyl(2,4,6-trinitrophenoxo)-antimony] (3) with high yield. The 1,2,3 angles SbOSb equal 143.6(2)°, 143.66(16)°, 143.2(2)°. Antimony atoms have distorted trigonal-bipyramidal coordination. Bonds of the antimony atom to the bridging oxygen atom [1.968(4), 1.973(4) Å (1), 1.971(3), 1.979(3) Å (2), 1.946(4), 1.971(3) Å (3)] are shorter than those to the oxygen atoms of aroxy groups [2.111(5), 2.180(3) Å (1), 2.140(3), 2.160(3) Å (2), 2.246(4), 2.364(3) Å (3)].

Keywords: oxidative synthesis, μ -oxo-bis[(aroxo)triarylantimony], structure, X-ray analysis.

References

1. Kocheshkov K.A., Skoldinov A.P., Zemlyanskii N.N. *Metody elementoorganicheskoi khimii. Sur'ma, vismut* [Methods of Organometallic Chemistry. Antimony, Bismuth]. Moscow, Nauka Publ., 1976. 483 p.

2. Cambridge Crystallografic Database. Release 2015. Cambridge.

3. Sharutina O.K., Sharutin V.V. *Molekulyarnye struktury organicheskikh soedineniy sur'my (V)*. [The molecular structure of organic compounds antimony(V)]. Chelyabinsk, South Ural St. Univ. Publ., 2012, 395 p.

4. Glidewell C. The Structures of Hexaorgano-substituted Triatomics R₃¹M¹XM²R₃² and Related Species. *J. Orgnomet. Chem.*, 1988, vol. 356, no. 2, pp. 151–158. DOI:10.1016/0022-328X(88)83084-5.

5. Tiekink E.R.T. The Crystal and Molecular Structure of μ-Oxobis[chlorotriphenylantimony(V)]benzene Solvate(12). *J. Orgnomet. Chem.*, 1987, vol. 333, no. 2, pp. 199–204. DOI:10.1016/0022-328X(87)85152-5.

6. Taylor M.J., Baker L.-J., Rickard C.E.F., Surman P.W.J. Recognition on Linear and Bent Forms of Solid μ-Oxo-bis[iodotriphenylantimony(V)] (Ph₃SbI)₂O. *J. Organomet. Chem.*, 1995, vol. 498, no. 1, pp. C14–C16. DOI:10.1016/0022-328X(95)05555-4.

7. Almond M.J., Drew M.G.B., Rice D.A., Salisbury G., Taylor M.J. Adduct Formation between (Ph₃SbI)₂O and I₂. *J. Organomet. Chem.*, 1996, vol. 522, no. 2, pp. 265–269. DOI:10.1016/0022-328X(96)06304-8.

8. Sharutin V.V., Pakusina A.P., Nasonova N.V., Sharutina O.K., Gerasimenko A.V., Pushilin M.A. [Synthesis, Structure and reactions of antimony compounds $(Ar_3SbX)_2O$, X = Hal, NO_2 , NO_3 , OSO_2R , OC(O)R, OAr]. *Butlerov Communications*, 2004, vol. 3, no. 11, pp. 13–22. (in Russ.)

9. Sharutin V.V., Pakusina A.P., Pushilin M.A., Subacheva O.V., Gerasimenko A.V., Gerasimenko E.A. [Antimony Organic derivatives of 2,4,6-tribromophenol]. *Russian Journal of General Chemistry*, 2003, vol. 73, no. 4, pp. 573–577. (in Russ.)

10. Sharutin V.V., Sharutina O.K., Senchurin V.S. [Synthesis and Structure of μ-Oxo-bis[(2,6-dichlorophenoxy)triphenylantimony] and μ-Oxo-bis[(2,6-dibromo-4-nitrophenoxy)triphenylantimony]] *Butlerov Communications*, 2013, vol. 36, no. 10, pp. 52–56. (in Russ.)

11. Sharutin V.V., Sharutina O.K., Pakusina A.P., Smirnova S.A. [Synthesis and Structure of μ -Oxo-bis[(4-iodophenoxy)tri-*p*-tolylantimony] [(4-MeC₆H₄)₃SbOC₆H₄I-4)]₂O]. *Butlerov Communications*, 2011, vol. 27, no. 14, pp. 36–40. (in Russ.)

12. Bruker. SMART and SAINT-Plus. Versions 5.0. Data Collection and Processing Software for the SMART System. Bruker AXS Inc., Madison, Wisconsin, USA, 1998.

13. Bruker. SHELXTL/PC. Versions 5.10. An Integrated System for Solving, Refining and Displaying Crystal Structures From Diffraction Data. Bruker AXS Inc., Madison, Wisconsin, USA, 1998.

Received 15 September 2016

ОБРАЗЕЦ ЦИТИРОВАНИЯ

Шарутин, В.В. Особенности строения μ_2 -оксобис[(арокси)триарилсурьмы]: [Ar₃Sb(OAr')]₂O, Ar = Ph, Ar' = C₆H₂Cl₃-2,4,6, C₆H₂Br₂-2,6-(t-Bu)-4; Ar = p-Tol, Ar' = C₆H₂(NO₂)₃-2,4,6 / В.В. Шарутин, О.К. Шарутина // Вестник ЮУрГУ. Серия «Химия». – 2016. – Т. 8, № 4. – C. 61–68. DOI: 10.14529/chem160408

FOR CITATION

Sharutin V.V., Sharutina O.K. Structural Features of μ -Oxo-*bis*(Triarylaroxyantimony): $[Ar_3Sb(OAr')]_2O$, Ar = Ph, $Ar' = C_6H_2Cl_3-2,4,6$, $C_6H_2Br_2-2,6-(t-Bu)-4$; Ar = p-Tol, $Ar' = C_6H_2(NO_2)_3-2,4,6$. Bulletin of the South Ural State University. Ser. Chemistry. 2016, vol. 8, no. 4, pp. 61–68. DOI: 10.14529/chem160408