ОСОБЕННОСТИ ТЕРМИЧЕСКОГО ПОВЕДЕНИЯ ДВОЙНОГО КОМПЛЕКСА [Ni(NH₃)₆]₃[Fe(CN)₆]₂

Д.П. Домонов, С.И. Печенюк

Институт химии и технологии редких элементов и минерального сырья им. И.В. Тананаева Кольского научного центра Российской академии наук, г. Апатиты

> Рассмотрено термическое поведение двойного комплекса $[Ni(NH_3)_6]_3[Fe(CN)_6]_2$ в окислительной (воздух), инертной (аргон, азот) и восстановительной (водород) атмосферах. Изучены твердые и газообразные продукты термолиза. Установлено, что в атмосфере воздуха образуются твердые оксиды металлов-комплексообразователей, аммиак, CO₂ и N₂O, в инертных атмосферах в газовой фазе – аммиак, циановодород и азот, в твердой фазе при температуре $\leq 600 \ ^{\circ}C$ – металлы и их цианиды, а при $\geq 600 \ ^{\circ}C$ – металлы и значительное количество рентгеноаморфного углерода. В атмосфере водорода в газовую фазу также выделяются аммиак, циановодород и азот, но координированные цианогруппы частично гидрируются до аммиака и углеводородов, преимущественно метана. Чистые металлы в твердой фазе (твердый раствор Ni–Fe) образуются при температуре не ниже 800 $^{\circ}C$.

> Ключевые слова: двойные комплексные соединения, термолиз, водород, азот, аргон, воздух, аммиак, интерметаллиды.

Введение

В большинстве работ, посвященных двойным комплексным соединениям (ДКС), особенно отечественных, отмечается, что эти соединения являются перспективными прекурсорами для получения однородных полиметаллических фаз с широко варьируемым составом [1]. Из числа двойных комплексных соединений металлов I переходного ряда [2–4] особенный интерес представляет ДКС $[Ni(NH_3)_6]_3[Fe(CN)_6]_2$. В качестве прекурсора для получения биметаллических Fe–Ni порошков он очень привлекателен, так как, кроме металлов, содержит только водород, азот и минимально возможное для цианокомплексов количество углерода, а никель и железо образуют интерметаллические соединения и твердые растворы, а также сложные оксиды типа шпинели, что позволяет получать из него разнообразные продукты.

Для получения чистых биметаллических продуктов важно, чтобы все атомы, входящие в состав лигандов, полностью удалялись в процессе термолиза. Известно, что аммиак слабо удерживается никелем (для катиона $[Ni(NH_3)_6]^{2+} K_{yer} = 10^8 [5]$) и, казалось бы, не должно быть проблем с удалением основной части азота. Однако простота задачи получения чистых биметаллических фаз из этого соединения оказалась мнимой. Цель настоящей работы состоит в том, чтобы дать полную картину термического поведения данного комплекса и определить условия, в которых возможно получение чистых биметаллических продуктов.

Экспериментальная часть

Изучаемое ДКС получали смешиванием водных растворов эквивалентных количеств $[Ni(NH_3)_6]Cl_2$, синтезированного согласно [6], и реактивного $K_3[Fe(CN)_6]$ (х.ч.).

Для C₁₂H₅₄N₃₀Ni₃Fe₂ (м.м. 905.8) вычислено (масс. %): C – 15,9; Ni – 19,4; Fe – 12,3.

Найдено (масс. %): C – 15,8; Ni – 19,7; Fe – 12,3.

Для изучения ДКС и продуктов его термолиза использовали элементный анализ, рентгенофазовый анализ (РФА), ИК-спектроскопию и хроматографический анализ. Анализ на содержание углерода производили на автоматическом анализаторе ELTRA CS-2000. Для определения содержания металлов навески комплекса и продуктов его термолиза растворяли в смеси концентрированных кислот HNO₃ и HCl (табл. 1). Полученные растворы анализировали атомноабсорбционным методом на спектрометре «AAnalyst 400». Дифрактограммы получали на дифрактометре Shimadzu XRD 6000 с использованием CuK_α-излучения (монохроматор графит) и сравнивали их с данными базы JCPDS-ICDD 2002 [7]. ИК-спектры исходных веществ и твёрдых продуктов термолиза снимали на спектрометре Nicolet 6700 FT-IR в таблетках с KBr, используя для отнесения спектров монографию [8].

Кривые термического анализа в атмосфере воздуха и аргона получали на приборе NETZSCH STA 409 PC/PG в корундовом тигле с крышкой (навески образца 7–10 мг, диапазон температур 20–1000 °C) (рис. 1, 2). Скорость потока газа составляла 40 мл/мин, скорость нагревания – 10 °C/мин.

Рис. 1. Кривые ТГ в различных газовых средах ДКС [Ni(NH₃)₆]₃[Fe(CN)₆]₂

Рис. 2. Кривые ДСК в различных газовых средах ДКС [Ni(NH₃)₆]₃[Fe(CN)₆]₂

Термогравиметрические измерения в атмосфере водорода (смесь гелия и водорода 5,8 % об. водорода) проводили с использованием термовесов TG 209 F1 Iris® фирмы NETZSCH (масса навески 20 мг, корундовый тигель, скорость потока газа 60 мл/мин (рис. 1)¹. ИКС-исследование газообразных продуктов проводили на приборе Netzsch STA 449F3 Jupiter, совмещенном с ИК-Фурье-спектрометром Bruker Tensor 27 в атмосфере синтетического воздуха и азота² в корундо-

¹ Авторы выражают благодарность научному сотруднику Института неорганической химии СО РАН к.х.н. Плюснину П.Е. за помощь в проведении этих экспериментов.

² Авторы выражают благодарность старшему научному сотруднику ВИАМ к.х.н. Шимкину А.А. за помощь в проведении этих экспериментов.

Физическая химия

вых тиглях при скорости потока газа носителя 50 мл/мин. Регистрировали ИК-спектры (рис. 3) в диапазоне 550-4000см⁻¹ с разрешением 4 см⁻¹ и усреднением по 32 сканам. Идентификация соединений проводилась путем сравнения с базой данных NIST. Скорость нагревания во всех экспериментах была 10°С/мин.

Рис. 3. Кривые ДТГ и изменение интенсивности полос в ИК спектрах газообразных продуктов термолиза ДКС [Ni(NH₃)₆]₃[Fe(CN)₆]₂ в атмосфере: а – воздуха; б – азота

Для температур, соответствующих окончанию определенных этапов термолиза (точки перегиба на кривой ТГ), выполняли точечные (статические) эксперименты для подробного исследования твердых и газообразных продуктов. Точечные эксперименты осуществляли в проточном трубчатом кварцевом реакторе, вставленном в трубчатую печь SNOL-0.2/1250, с навесками ~ 0,5 г, в токе воздуха, аргона и чистого водорода (12–15 л/ч). Аргон и азот предварительно пропускали через щелочную суспензию $Mn(OH)_2$ для очистки от следов кислорода, а затем через концентрированную серную кислоту для осушки. Водород получали с помощью генератора водорода ГВЧ-12К. По достижении заданной температуры реактор извлекали из печи и охлаждали. Поскольку ИК-спектрометрическое изучение газообразных продуктов термолиза свидетельствует о выделении аммиака, CO_2 и HCN, для их количественного определения поток газообразных продуктов термолиза последовательно пропускали через растворы HCl, а затем H_2O_2 + NaOH при температуре ~ 80 °C, предполагая, что HCN в щелочном растворе окисляется до карбонат- и нитрат-ионов. Растворы анализировали на содержание ионов аммония, карбонат- и нитрат-ионов (табл. 2) (методами Кьельдаля и титриметрическим [9]). Хроматографический анализ газообразных продуктов термолиза ДКС в атмосфере водорода выполняли на хроматографе «Цвет 102» (табл. 3).

Температура	Остаток,	Содержание в твердом остатке, %			Farme	M			
(выдержка)	%	Ni	Fe	С	ьрутто-состав	IVI.M.			
В атмосфере воздуха									
					$C_{0.6}O_8Ni_3Fe_2$	421			
200 (2 ч)	47,2	44,5	28,9	1,8	ИЛИ				
					$C_{0.6}N_{2.5}O_6Ni_3Fe_2$	427,6			
350 (1 ч)	45,4	45,4	28,6	0,1	N ₂ O ₆ Ni ₃ Fe ₂	411			
325*	63,8	_	_	13,3	$C_{6.5}H_{11}N_{9.1}Ni_3Fe_2$	502,8			
450	52,3	38,1	23,3	5,2	C ₂ O ₉ Ni ₃ Fe ₂	455,8			
В атмосфере аргона									
200	91,6	20,7	12,5	17,0	$C_{12}H_{45}N_{27}Ni_3Fe_2$	854,8			
275	89,9	23,9	15,0	19,1	$C_{12}H_{24}N_{20}Ni_3Fe_2$	735,8			
410	67,6	31,0	19,6	19,1	$C_9H_{15}N_{10}Ni_3Fe_2$	550,8			
600	61,3	33,4	20,9	19,4	C ₉ N ₉ Ni ₃ Fe ₂	521,8			
1000	41,4	-	-	25,5	C ₈ Ni ₃ Fe ₂	383,8			
В атмосфере азота									
420	420 74,0		16,7	16,0	$C_{8.9}H_{22}N_{19.4}Ni_3Fe_2$	688,2			
600	51,7	41,6	26,5	10,3	C _{3.6} N _{6.6} Ni ₃ Fe ₂	423,4			
1000	39,1	52,6	33,5	0,2	O _{2.5} N _{0.5} Ni ₃ Fe ₂	334,8			
В атмосфере водорода									
200(2 ч)	89,7	24,0	14,7	17,5	$C_{11}N_{25}H_{42}Ni_3Fe_2$	812			
350 (1 ч)	45,2	44,2	27,9	14,1	C ₅ N ₅ Ni ₃ Fe ₂	418			
500 (1 ч)	41,0	-	_	11,1	C _{3.4} N ₃ Ni ₃ Fe ₂	370			
700(1 ч)	38,0	-	_	6,7	$C_2N_{2.4}Ni_3Fe_2$	346			
420	39,4			10,94	C _{3.3} N _{2.3} Ni ₃ Fe ₂	359,6			
870	34,6	_	_	0,004	Ni ₃ Fe ₂	287,8			

					*					
										Таблица 1
Результаты те	рмол	иза []	Ni(NH ₃) ₆]	₃ [Fe(CN) ₆] ₂ в	различных ат	иосфе	эрах в	статических	условиях	

* Если время выдержки не указано, то эксперимент проводился без выдержки.

Таблица 2

Результаты анализа поглотительных жидкостей при термолизе [Ni(NH₃)₆]₃[Fe(CN)₆]₂ в атмосфере водорода и аргона

Условия эксперимента, °С		Кол-во NH ₃	Кол-во НСМ Остаток		Содержание С				
		в % от общего	в % от общего		в остатке				
		числа коорд.	числа коорд.	0/	от прокаливания				
		мол. NH ₃	CN	70	%	% от исх.			
в атмосфере аргона									
Без	20-400	83,3	25,0	66,0	19,1	79,8			
выдержки	20-800	100	29,0	46,9	24,3	72,1			
в атмосфере водорода									
Без	20-300	15,9	9,5	25.6					
выдержки	300-800	73,9	11,7	55,0	0,09	2,0			
С выдержкой	20-300	97,4	11,9	25.2					
	300-800	3,4	18,7	33,2	0,02	0,4			

Газообразные углеводороды, n·10⁻³, об. % C_5H_{12} $n - C_4 H_{10}$ C_4H_{10} C_4H_8 C_4H_8 C₅H₁₂ Т_{разл}, ⁰С C_2H_4 C_2H_6 C_3H_6 C_3H_8 CH₄ α – <u>-</u> ._ 1 u u 200 2,7 н/о 1400,0 113,0 27,5 89.9 4,9 350 0,19 14,2 1,37 3,5 1,2 0,43 500 659.0 0,48 0,68 0,63 0,11н/о н/о н/о н/о н/о н/о 700 540,0 0,11 н/о н/о н/о н/о н/о н/о н/о н/о н/о Соотношение компонентов газовой смеси $CH_4: C_2H_4: C_2H_6: C_3H_6: C_3H_8: i - C_4H_{10}: \alpha - C_4H_8: n - C_4H_{10}: \beta - C_4H_8: i - C_5H_{12}:$ 350 $n-C_5H_{12}=7368:595:145:473:26:1:75:7:18:6:2$ $\underline{CH_4: C_2H_4: C_2H_6: C_3H_6: C_3H_8=5990: 6:6:4:1}$ 500 700 CH₄: C₂H₄=4909 : 1

Результаты качественного анализа смеси газообразных углеводородов, образующихся при восстановительном термолизе [Ni(NH₃)₆]₃[Fe(CN)₆]₂

Таблица 3

Результаты и обсуждение

Термолиз в атмосфере воздуха

Кривые термического анализа и ИКС-исследование газообразных продуктов термолиза (рис. 1, 2, 3) показывают, что в интервале 30–450 °C выделяется аммиак с двумя максимумами в областях 125 и 300°C. Углерод цианогрупп окисляется в интервале 200–480 °C с образование CO₂. Кроме того, в области 300 °C наблюдается выделение некоторого количества N₂O. В сумме эти процессы приводят к появлению широкого экзопика на кривой ДСК в области 250–460 °C (рис. 2). Остаток от прокаливания при 325 °C представляет собой смесь Fe₃O₄[88-0866], NiO[78-0423] и Ni[04-0850], а при 450 °C Fe₃O₄[88-0866], и Ni[04-0850] [7]. Оба продукта содержат остаточный углерод. Брутто-состав см. в табл. 1. Промежуточные продукты разложения при 200–300 °C еще частично сохраняют в своем составе анионы [Fe(CN)₆]³⁻, так как в ИК-спектре твердого остатка имеется соответствующая полоса поглощения (v(CN) 2107–2110 см⁻¹) [8]. Полное удаление остаточного углерода из продукта термолиза на воздухе достигается путем выдержки остатка при постоянной температуре в течение некоторого времени, например, при 350 °C для этого достаточно выдержки в течение 1 часа.

Термолиз в инертных атмосферах

Как показано на рис. 1, кривые ТГ во всех атмосферах совпадают до ~ 150 °C. В атмосферах азота и аргона кривые ТГ имеют почти одинаковую форму, но потеря массы в атмосфере азота при одних и тех же температурах на 3-7 % ниже, чем в атмосфере аргона. Потеря массы продолжается во всем интервале температур от комнатной до 1000 °C, и кривая ТГ на плато не выходит, т.е. процесс разложения, по-видимому, не заканчивается. Согласно кривой ТГ, в интервале от 50 до ~210 °C удаляется 10-11 из 18 молекул аммиака, и оставшиеся удаляются до 420 °C, что подтверждается данными ИК-спектроскопии газообразных продуктов для атмосферы азота (рис. 36). Согласно этим данным, основными газообразными продуктами термолиза здесь являются NH₃ и HCN. В работе [10] было описано образование дициана при термолизе K₃[Fe(CN)₆] в атмосфере аргона. Однако в данном случае он не зарегистрирован. Аммиак выделяется в двух температурных областях: 100-230 °C, как и в атмосфере воздуха, и 280-425 °C, максимумы при 130 и 400 °С, соответственно. Циановодород выделяется в одну стадию в области 300-425 °С, пик при 380 °С. Анализ поглотительного раствора (H₂O₂ + NaOH) для атмосферы аргона показывает, что в виде HCN выделяется не более 30% содержащихся в ДКС цианогрупп, то есть около 1.5–1.7 из каждого аниона (табл. 2). При ~ 550 °C в обеих атмосферах наблюдаются экзоэффекты и резкие пики потери массы (рис. 2, 3, б), которым в ИК-спектре газообразных продуктов не соответствует никакого сигнала и которые связаны с выделением молекулярного азота, так как при температуре > 550 °C содержание азота в твердых остатках резко снижается. В точечном эксперименте при 275 °C в атмосфере аргона найден остаток брутто-состава $C_{12}H_{24}N_{20}N_{i_3}Fe_2$, а РФА показывает наличие изоструктурных кристаллических фаз [9]: Ni₂[Fe(CN)₆] [46-0908] (d,Å/*I*: 5,00/100; 3,54/96; 3,02/18; 2,50/55; 2,24/11; 2,04/17; 1,77/20 1,58/22) и Fe₄[Fe(CN)₆]₃ [73-0687] (d,Å/*I*: 5,07/100; 3,58/16; 2,53/12; 2,27/12; 2,07/2; 1,79/3; 1,60/2). Такому составу соответствует соотношение этих фаз 21:1. Остаток с тем же содержанием углерода, но значительно большим содержанием азота получен в атмосфере азота при 420 °C. В точечном эксперименте (см. табл. 1) при 410 °C в атмосфере аргона получен кристаллический остаток неидентифицированной структуры брутто-состава C₉H₁₅N₁₀Ni₃Fe₂, при 600 °C в атмосфере аргона получен рентгеноаморфный C₉N₉Ni₃Fe₂, а при 1000°C – C₈Ni₃Fe₂, состоящий из Ni₃Fe[65-3244], Fe и рентгеноаморфного углерода. Видно, что при термолизе в атмосфере аргона твердый остаток теряет главным образом азот, а содержание углерод (табл. 1). До 1000 °C идет плавная потеря массы. По кривой ТГ в аргоне остаток состав-ляет 35,83 %, что на 4,06 % превышает сумму содержания металлов в исходном соединении. В атмосфере азота остаток по кривой ТГ составляет 47,6 %. Это превышение мы объясняем при-сутствием остаточного углерода в первом случае и азота с кислородом³ во втором.

В инертных атмосферах наблюдаются одинаковые закономерности: в твёрдых остатках при температурах 200 и 275 °C найдены Ni₂[Fe(CN)₆] и Fe₄[Fe(CN)₆]₃ – продукты разложения исходного ДКС, основными газообразными продуктами являются аммиак и циановодород. Специально поставленные эксперименты показали, что остатки от прокаливания ДКС в атмосфере азота при 1000 °C содержат остаточный азот. Так, при растворении остатка от прокаливания в 6 N HCl найдено количество ионов NH₄⁺, соответствующее содержанию ~ 2 масс. % азота. Согласно [11–13], нитриды Fe и Ni легко растворяются в водных растворах кислот с образованием в растворе ионов NH₄⁺, поэтому можно предполагать, что этот азот находится в составе нитридов.

Некоторые различия в термоаналитических кривых, записанных в близких по свойствам инертных газов, можно объяснить особенностями проведения термического анализа в аргоне и в азоте (разные приборы, разные скорости продувки газа-носителя). В каком-то случае, вероятно, сказалось частичное удаление аммиака из катиона до начала анализа.

Термолиз в атмосфере водорода

Термический анализ был выполнен в атмосфере водородно-гелиевой смеси (см. эксп. часть), а точечные эксперименты в атмосфере чистого водорода. До 320 °С кривые ТГ в атмосферах водородно-гелиевой смеси и аргона практически совпадают друг с другом. Остаток от прокаливания, согласно ТГ, составляет 35-36%. Эта величина больше суммы чистых металлов в соединении (31,77%), а элементный анализ продуктов точечных экспериментов показывает значительное содержание углерода. На кривой ТГ хорошо различимы 4 стадии потери массы. На первой стадии (25-160 °C) отщепляются 9-10 молекул аммиака из катиона. На второй стадии (160-350 °C) идёт выделение оставшегося аммиака. Анализ поглотительных жидкостей (см. табл. 2) показал, что даже при термолизе в атмосфере чистого водорода также выделяется циановодород. Определили количество выделившихся NH₃ и HCN в интервалах 20-300 и 300-800 °C, для чего по достижении 300 °C поглотительные жидкости меняли и нагревали систему до 800 °C с выдержкой и без (табл. 2). С повышением температуры термолиза относительное содержание в газообразных продуктах HCN возрастает, а NH₃ снижается (см. табл. 2). В условиях, соответствующих получению кривой ТГ (без выдержки), из навески ~ 0,5 г до 300 °C выделяется всего 1/6 координированного аммиака, тогда как с выдержкой в течение 1 ч – 3/4. Соответственно изменяется и выход HCN. В твёрдом остатке от прокаливания при 800°С с выдержкой в течение 1 часа углерод практически отсутствует (табл. 2), при отсутствии выдержки остаток, не содержащий углерода, получен при 870°С (см. табл. 1). Оба остатка состоят из Ni₃Fe[65-3244] по картотеке JCPDS [7] и твёрдого раствора NiFe[47-1417] [7].

Согласно более ранним нашим исследованиям [14], координированные CN-группы при термолизе в атмосфере чистого водорода восстанавливается до NH₃ и углеводородов. Однако теперь видно, что этот процесс в атмосфере водорода происходит не полностью, а часть цианогрупп выделяется в виде циановодорода. Количество C, выделившегося от 20 до 800 °C в виде HCN составляет 30,6 %, следовательно, около 70 % углерода выделяется в виде других газообразных соединений, которыми здесь могут быть только углеводороды (см. табл. 2). В то же время в атмо-

³ Результат неполной очистки азота.

Физическая химия

сфере аргона сумма углерода, выделившегося в виде HCN и оставшегося в твёрдом остатке, соответствует 100±5 % (см. табл. 2).

Из табл. 3 хорошо видно, что образуются как предельные углеводороды, главный из которых – метан, так и непредельные. Наибольшее разнообразие продуктов наблюдается при средних температурах термолиза (350 °C), в то время как при более низких и высоких температурах углерод выделяется почти исключительно в виде метана. Выход CH₄ при 350 °C также является максимальным (см. табл. 3), а при более высоких температурах снижается. Твердыми продуктами термолиза ДКС в атмосфере водорода при высоких температурах является твердый раствор Ni– Fe с небольшим содержанием углерода и азота.

Заключение

Соединение начинает терять свою индивидуальность уже при комнатной температуре, поскольку ДКС содержит термодинамически малоустойчивый катион $[Ni(NH_3)_6]^{3+}$. Приблизительно до 150 °C ход процесса одинаков во всех атмосферах. Сначала идёт отщепление молекул NH₃ в две стадии. Анион $[Fe(CN)_6]^{3-}$ как структурная единица промежуточного продукта частично сохраняется вплоть до 400 °C, когда катионная часть ДКС уже полностью распалась, и центральный ион катионной части потерял все свои координированные лиганды. В зависимости от атмосферы анионная часть комплекса разрушается с образованием CO₂ и N₂O (на воздухе) и HCN, N₂ и рентгеноаморфного углерода (в инертной среде). В атмосфере водорода происходит частичное гидрирование цианогрупп с образованием углеводородов и NH₃. Получение чистых биметаллических фаз в инертных атмосферах невозможно, а получение чистых оксидов в атмосфере воздуха и металлических Ni и Fe в атмосфере водорода возможно при температурах более 400 и 800 °C, соответственно, при 1-2-часовой выдержке при постоянной температуре. Однако биметаллические порошки в обоих случаях не являются гомогенными

Литература

1. Синтез и структура двойных комплексов платиновых металлов – предшественников металлических материалов / С.В. Коренев, А.Б. Венедиктов, Ю.В. Шубин, С.А. Громилов, К.В. Юсенко // Журн. структур. химии. – 2003. – Т. 44, № 1. – С. 58–73.

2. О влиянии природы аниона на процесс термолиза двойных комплексов [Co(NH₃)₆][Fe(CN)₆] и [Co(NH₃)₆]₄[Fe(CN)₆]₃ / С.И. Печенюк, Д.П. Домонов, Д.Л. Рогачев, А.Т. Беляевский // Журн. неорг. химии. – 2007. – Т. 52, № 7. – С. 1110–1115.

3. Синтез и термическое разложение двойных комплексных соединений, содержащих медь и 1,3-диаминопропан / С.И. Печенюк, А.Н. Гостева, Д.П. Домонов, Т.И. Макарова // Вестник Южно-Уральского гос. ун-та. Серия «Химия». – 2012. – Вып. 9, № 24. – С. 4–12.

4. Thermal decomposition of $[Co(en)_3][Fe(CN)_6]$ ·2H₂O: Topotactic dehydration process, valence and spin exchange mechanism elucidation / Z. Travniček, R. Zbořil, M. Matikova-Malarova B. Drahoš, J. Černák // Chem. Central J. – 2013. – 7:28.

5. Лурье, Ю.Ю. Справочник по аналитической химии / Ю.Ю. Лурье. – 4-е изд., перераб. и доп. – М.: Химия, 1971. – 456 с.

6. Brauer, G. Handbuch der Präparativen Anorganischen Chemie: in Drei Bänden / G. Brauer – Stuttgart: Ferdinand Enke, 1978. – 2113 p.

7. Картотека JCPDS. – 2002.

8. Nakamoto, K. Infrared and Raman Spectra of Inorganic and Coordination Compounds / K. Nakamoto – New York: John Wiley & Sons Inc., 1986. – 484 p.

9. Fritz, J.S. Quantitative Analytical Chemistry / J.S. Fritz, G.H. Schenk. – Boston: Allyn and Bacon, 1974. – 560 p.

10. Thermoanalytical Studies on the Double Complexes $[M(NH_3)_6][M'(CN)_6]$ and $[MCl(NH_3)_5][Ni(CN)_4]$ (M=Cr, Co, Ru, Rh; M'=Fe, Co) / S. Kohata, M. Asakawa, T. Maeda, H. Shyo, A. Ohyoshi // Anal. Sci. – 1986. – V. 2, no. 4. – P. 325–330.

11. Gmelins Handbuch der anorganische Chemie. S-N4. Stickstoff. Lfg. 2. 1936. S. 320–344.

12. Gmelins Handbuch der anorganische Chemie, Eisen, Teil A8, S. 137–156.

13. Gmelins Handbuch der anorganische Chemie, 8 Aufl., Nickel, Teil B, Lfg. 2, 1966, S. 496-500.

14. Превращения координированных лигандов при восстановительном термолизе некоторых двойных комплексных соединений / С.И. Печенюк, Д.П. Домонов, А.А. Аведисян, С.В. Икорский // Журн. неорг. химии. – 2010. – Т. 55. – № 5. – С. 788–792.

Домонов Денис Петрович – кандидат химических наук, Институт химии и технологии редких элементов и минерального сырья им. И.В. Тананаева Кольского научного центра Российской академии наук, 184209, г. Апатиты, Академгородок, 26а. E-mail: domonov@chemy.kolasc.net

Печенюк София Ивановна – доктор химических наук, профессор, Институт химии и технологии редких элементов и минерального сырья им. И.В. Тананаева Кольского научного центра Российской академии наук. 184209, г. Апатиты, Академгородок, 26a. E-mail: pechenyuk@chemy.kolasc.net.ru

Поступила в редакцию 3 сентября 2016 г.

DOI: 10.14529/chem160407

FEATURES OF THE DOUBLE COMPLEX [Ni(NH₃)₆]₃[Fe(CN)₆]₂ THERMAL BEHAVIOR

D.P. Domonov, domonov@chemy.kolasc.net

S.I. Pechenyuk, pechenyuk@chemy.kolasc.net.ru

I.V. Tananaev Institute of Chemistry and Technology of Rare Elements and Mineral Raw Materials of the Russian Academy of Sciences Kola Science Center, Apatity, Russian Federation

> Thermal behavior of double complex $[Ni(NH_3)_6]_3[Fe(CN)_6]_2$ in oxidative (air), inert (argon, nitrogen) and reductive (hydrogen) media has been considered. The solid and gaseous products of thermolysis have been studied. It has been found that in the air the solid oxides of metal-complexing agents are obtained with gaseous ammonia, CO₂ and N₂O; while gaseous NH₃, HCN and N₂ are formed in inert atmospheres. In the solid phase at ≤ 600 °C metals and their cyanides are obtained, but at ≥ 600 °C metals with great admixture of amorphous carbon are formed. In hydrogen atmosphere gaseous NH₃, HCN and N₂ are also formed, but coordinated cyano-groups are partly hydrogenated into ammonia and hydrocarbons, preferably into methane. The pure metals (Fe μ Ni₃Fe) are formed at the temperature greater than 800 °C.

> Keywords: double complex compounds, thermolysis, hydrogen, nitrogen, argon, air, ammonia, intermetallics.

References

1. Korenev S.V., Venediktov A.B., Shubin Yu.V., Gromilov S.A., Yusenko K.V. Synthesis and Structure of Binary Complexes of Platinum Group Metals – Precursors of Metallic Materials. *Russ. J. Struct. Chem.*, 2003, vol. 44, no. 1, pp. 46–59. DOI: 10.1023/A:1024980930337.

2. Pechenyuk S.I., Domonov D.P., Rogachev D.L., Belyaevskii A.T. Anion Effect on the Thermolysis of Double Complexes [Co(NH₃)₆][Fe(CN)₆] and [Co(NH₃)₆]₄[Fe(CN)₆]₃. *Russ. J. Inorg. Chem.*, 2007, vol. 52, no. 7, pp. 1033–1038. DOI: 10.1134/S0036023607070108.

3. Pechenyuk S.I., Gosteva A.N., Domonov D.P., Makarova T.I. Synthesis and Thermal Decomposition of Double Complex Containing Copper and 1,3-Diaminopropane. *Bulletin of the South Ural State University. Ser. Chemistry*, 2012, iss. 9, no. 24, pp. 4–12. (in Russ.)

4. Travniček Z., Zbořil R., Matikova-Malarova M., Drahoš B., Černák J. Thermal Decomposition of [Co(en)₃][Fe(CN)₆]·2H₂O: Topotactic Dehydration Process, Valence and Spin Exchange Mechanism Elucidation. *Chem. Central J.*, 2013, 7:28. DOI: 10.1186/1752-153X-7-28.

5. Lur'e Yu.Yu. *Spravochnik po analiticheskoy khimii* [Handbook of Analytical Chemistry]. Moscow, Khimiya Publ., 1971. 456 p.

Физическая химия

6. Brauer G. Handbuch der Präparativen Anorganischen Chemie: in Drei Bänden. Stuttgart, Ferdinand Enke, 1978, 2113 p.

7. JCPDS-JCDD Card. - 2002.

8. Nakamoto K. *Infrared and Raman Spectra of Inorganic and Coordination Compounds*. New York, John Wiley & Sons Inc., 1986. 484 p.

9. Fritz J.S., Schenk G.H. *Quantitative Analytical Chemistry*, Boston, Allyn and Bacon, 1974. 560 p.

10. Kohata S., Asakawa M., Maeda T. Shyo H., Ohyoshi A. Thermoanalytical Studies on the Double Complexes [M(NH₃)₆][M'(CN)₆] and [MCl(NH₃)₅][Ni(CN)₄] (M=Cr, Co, Ru, Rh; M'=Fe, Co). *Anal. Sci.*, 1986, vol. 2, no. 4, pp. 325–330. DOI: 10.2116/analsci.2.325.

11. Gmelins Handbuch der anorganische Chemie. S-N4. Stickstoff. Lfg. 2. 1936. S. 320–344.

12. Gmelins Handbuch der anorganische Chemie, Eisen, Teil A8, S.137-156.

13. Gmelins Handbuch der anorganische Chemie, 8 Aufl., Nickel, Teil B, Lfg. 2, 1966, S. 496-500.

14. Pechenyuk S.I., Domonov D.P., Avedisyan A.A., Ikorskii S.V. Conversions of Coordinated Ligands by Reducing Thermolysis of Some Double Complex Compounds. *Russ. J. Inorg. Chem.*, 2010, vol. 55, no. 5, pp. 734–738. DOI: 10.1134/S0036023610050128.

Received 3 September 2016

ОБРАЗЕЦ ЦИТИРОВАНИЯ

Домонов, Д.П. Особенности термического поведения двойного комплекса [Ni(NH₃)₆]₃[Fe(CN)₆]₂ / Д.П. Домонов, С.И. Печенюк // Вестник ЮУрГУ. Серия «Химия». – 2016. – Т. 8, № 4. – С. 52–60. DOI: 10.14529/chem160407

FOR CITATION

Domonov D.P., Pechenyuk S.I. Features of the Double Complex [Ni(Nh₃)₆]₃[Fe(Cn)₆]₂ Thermal Behavior. *Bulletin of the South Ural State University. Ser. Chemistry.* 2016, vol. 8, no. 4, pp. 52–60. DOI: 10.14529/chem160407