СИНТЕЗ И СТРОЕНИЕ КОМПЛЕКСОВ РУТЕНИЯ [Ph₄P][*trans*-RuCl₄(dmso-S)₂] И [Ph₄Sb(dmso-O)][*trans*-RuCl₄(dmso-S)₂]

В.В. Шарутин, О.К. Шарутина, В.С. Сенчурин

Южно-Уральский государственный университет, г. Челябинск

Взаимодействием хлоридов тетрафенилфосфония и тетрафенилстибония в диметилсульфоксиде синтезированы и структурно охарактеризованы комплексы[Ph₄P][*trans*-RuCl₄(dmso-S)₂] (1) и [Ph₄Sb(dmso-O)][*trans*-RuCl₄(dmso-S)₂] (2). По данным PCA, атомы фосфора в катионах1 имеют мало искаженную тетраэдрическую координацию (P–C 1,756(16)–1,794(19) Å, CPC 105,4(7)°–111,8(5)°), атомы сурьмы в катионах 2 – искаженную тригонально-бипирамидальную с атомом кислорода диметилсульфоксида в аксиальном положении (Sb–O2,633(15) Å, Sb–C 2,094(15)–2,146(15) Å, CSbO 178,54(16)°). В октаэдрических анионах [*mpaнc*-RuCl₄(dmso-S)₂]⁻комплексов 1 и 2 диметилсульфоксидные лиганды координируются на атом металла атомом серы (Ru–S2,349(3), Ru–Cl2,353(5), 2,355(3) Å и 2,332(3), 2,344(6), 2,336(4)–2,353(3) Å соответственно), углы SRuS и *mpanc*-ClRuCl составляют 180°.

Ключевые слова: синтез, комплекс, катион тетрафенилфосфония, катион тетрафенилстибония, транс-бис(диметилсульфоксидо)тетрахлорорутенат-анион, строение, рентгеноструктурный анализ.

Введение

Известны немногочисленные структурно охарактеризованные комплексы рутения с анионами [*trans*-RuCl₄(dmso-S)₂]⁻ [1–7], при этом только в состав одного входит тетраорганилфосфониевый катион [Ph₃PCH₂C(O)CH₃]⁺ [7]. Синтез комплекса осуществляли из гексахлорорутената(IV) калия и хлорида ацетонилтрифенилфосфония в смеси диметилсульфоксида и этанола в присутствии соляной кислоты. Отметим, что в результате окислительно-восстановительной реакции степень окисления рутения понижалась с +4 до +3.

Ранее сообщалось о получении *транс-бис*(диметилсульфоксидо)тетрахлорорутената(III) тетрафенилфосфония $[Ph_4P]^+[trans-RuCl_4(dmso-S)_2]^-$ с выходом 89 % по реакции обмена между хлоридом тетрафенилфосфония и комплексом $[(dmso)_2H]^+[mpanc-RuCl_4(dmso-S)_2]^-$ в воде [8]. Вывод о строении продукта был сделан на основании данных ИК- и ЯМР-спектроскопии.

В настоящей работе описаны синтезы комплексов $[Ph_4P]^+[trans-RuCl_4(dmso-S)_2]^-$ и $[Ph_4Sb(dmso-O)]^+[trans-RuCl_4(dmso-S)_2]^-$ и приведены результаты исследования их строения методом рентгеноструктурного анализа (PCA).

Экспериментальная часть

Синтез [Ph₄P]⁺[*trans*-RuCl₄(dmso-S)₂]⁻ (1). Смесь 0,072 г (0,191 ммоль) хлорида тетрафенилфосфония и 0,050 г (0,191 ммоль) гидрата хлорида рутения(III) растворяли при перемешивании в 2 мл диметилсульфоксида. После уменьшения объема раствора до 0,5 мл наблюдали образование кристаллов темно-оранжевого цвета, которые отбирали и сушили. Получили 0,074 г (52 %) комплекса 1 с т. разл. 200 °C. ИК спектр, (v, см⁻¹): 3082, 3059, 3040, 3026, 3011, 2922, 1632, 1585, 1485, 1439, 1406, 1308, 1194, 1167, 1121, 1111, 1020, 995, 972, 934, 918, 760, 725, 694, 532, 522, 451, 417. Найдено, %: С 44,98, H 4,57. С₂₈H₃₂O₂S₂PCl₄Ru. Вычислено, %: С 45,52, H 4,34.

По аналогичной методике синтезирован комплекс [**Ph**₄**Sb**(**dmso-O**)]⁺[*trans*-**RuCl**₄(**dmso-S**)₂]⁻ (2) (71 %), т. разл. 167 °C. ИК спектр, (*v*, см⁻¹): 3051, 3001, 2924, 2853, 1481, 1437, 1406, 1306, 1121,1063, 1018, 995, 957, 741, 692, 455, 415. Найдено, %: С 39,35, Н 4.26. С₃₀H₃₈O₃S₃Cl₄RuSb. Вычислено, %: С 39,71, Н 4,19.

ИК-спектр комплексов **1**, **2** записывали на ИК-Фурье спектрометре Shimadzu IRAffinity-1S в таблетке KBr в области $4000-400 \text{ cm}^{-1}$.

Рентгеноструктурный анализ (PCA) кристаллов 1, 2 проведен на автоматическом четырехкружном дифрактометре D8 QUEST фирмы Bruker (Мо К_{α}-излучение, $\lambda = 0,71073$ Å, графитовый монохроматор). Сбор, редактирование данных и уточнение параметров элементарной ячейки, а также учет поглощения проведены с помощью программ SMART и SAINT-Plus [9]. Все расчеты по определению и уточнению структур выполнены с помощью программ SHELXL/PC [10]. Структуры определены прямым методом и уточнены методом наименьших квадратов в анизотропном приближении для неводородных атомов. Положение атомов водорода уточняли по модели наездника ($U_{\mu_{30}}$ (H) = 1,2 U_{3KB} (C)). Кристаллографические данные и результаты уточнения структур приведены в табл. 1, геометрические характеристики координационного полиэдра атома сурьмы – в табл. 2.

п	Значения			
Параметры	1	2		
Сингония	Ромбическая	Моноклинная		
Пространственная группа	Pnma	C2/c		
<i>a</i> , Å	13,6897(5)	34,5388(13)		
b, Å	25,9220(10)	9,3800(3)		
<i>c,</i> Å	8,9148(3)	23,9260(9)		
α, град.	90,00	90,00		
β, град.	90,00	91,8430(10)		
ү, град.	90,00	90,00		
$V, Å^3$	3163,5(2)	7747,4(5)		
Ζ	8	8		
ρ _(вычисл.) , г/см ³	1,511	1,556		
μ, мм ⁻¹	1,036	1,552		
F(000)	1480,0	3624,0		
Размер кристалла, мм	0,65 × 0,51 × 0,04	$0,43 \times 0,18 \times 0,13$		
Область сбора данных по θ , град.	6,56–45,54	6,62–47,08		
	$-14 \le h \le 14,$	$-33 \le h \le 38,$		
Интервалы индексов отражений	$-28 \le k \le 28,$	$-10 \le k \le 10,$		
	$-9 \le l \le 9$	$-24 \le l \le 26$		
Измерено отражений	26936	10056		
Независимых отражений	2184	5165		
$R_{ m int}$	0,0337	0,0312		
Переменных уточнения	170	388		
GOOF	2,100	1,063		
R -фактор по $F^2 > 2\sigma(F^2)$	$R_1 = 0,1168,$	$R_1 = 0,0909,$		
	$wR_2 = 0,4008$	$wR_2 = 0,2552$		
<i>R</i> -факторы по всем отражениям	$R_1 = 0,1348,$	$R_1 = 0,1073,$		
	$wR_2 = 0,4416$	$wR_2 = 0,2724$		
Остаточная электронная плотность (min/max), e/Å ³	3,53/-1,78	4,46/-1,97		

присталлографические данные, параметры эксперимента и уточнения структур соединении т, 2	Кристаллографические данные	параметры эксперимента и у	уточнения структур соединений 1, 2	
--	-----------------------------	----------------------------	------------------------------------	--

Таблица 2

Таблица 1

Основные длины связей (d) и валентные углы (ω) в структурах соединений 1, 2

Связь	d, Å	Угол	ω, град.		
1					
Ru(1)–Cl(1)	2,355(3)	$Cl(1)Ru(1)Cl(1^1)$	180,0		
$Ru(1)-Cl(1^{1})$	2,355(3)	$Cl(2^1)Ru(1)Cl(1)$	90,14(13)		
$\operatorname{Ru}(1)-\operatorname{Cl}(2^1)$	2,353(5)	$Cl(2)Ru(1)Cl(1^{1})$	90,14(13)		
Ru(1)–Cl(2)	2,353(5)	$Cl(2^1)Ru(1)Cl(1^1)$	89,86(13)		
$Ru(1)-S(1^{1})$	2,349(3)	Cl(2)Ru(1)Cl(1)	89,86(13)		

Химия металлоорганических соединений

	- 0				
Связь	<i>d</i> , A	Угол	<i>ю</i> , град.		
Ru(1)-S(1)	2,349(3)	$Cl(2)Ru(1)Cl(2^{1})$	179,998(1)		
S(1)–O(1)	1,467(10)	$S(1^{1})Ru(1)Cl(1^{1})$	86,50(13)		
S(1)–C(7)	1,738(14)	$S(1^1)Ru(1)Cl(1)$	93,50(13)		
S(1)–C(8)	1,774(13)	S(1)Ru(1)Cl(1)	86,50(13)		
P(1)-C(1)	1,756(16)	$S(1)Ru(1)Cl(1^{1})$	93,50(13)		
P(1)–C(11)	1,789(14)	S(1)Ru(1)Cl(2)	89,07(13)		
P(1)-C(21)	1,788(14)	$S(1^{1})Ru(1)Cl(2^{1})$	89,08(13)		
P(1)–C(31)	1,794(19)	$S(1^1)Ru(1)S(1)$	180,00(11)		
Преобразования симметрии: 1	1-x, 1-y, 1-z				
		2			
Sb(1)–C(11)	2,123(14)	C(11)Sb(1)C(31)	101,9(5)		
Sb(1)–C(31)	2,146(15)	C(21)Sb(1)C(11)	111,5(5)		
Sb(1)–C(21)	2,112(14)	C(21)Sb(1)C(31)	100,3(6)		
Sb(1)–C(1)	2,094(15)	C(1)Sb(1)C(11)	122,2(5)		
Sb(1)–O(3)	2,633(15)	C(1)Sb(1)C(31)	100,5(6)		
$Ru(1)-Cl(1^1)$	2,336(4)	C(1)Sb(1)C(21)	115,7(6)		
Ru(1)–Cl(1)	2,336(4)	C(31)Sb(1)O(3)	178,54(16)		
$Ru(1)-S(1^{1})$	2,344(6)	$Cl(1)Ru(1)Cl(1^{1})$	179,999(1)		
Ru(1)–S(1)	2,344(6)	Cl(1)Ru(1)S(1)	87,9(2)		
$Ru(1)-Cl(2^1)$	2,334(7)	$Cl(1^{1})Ru(1)S(1)$	92,1(2)		
Ru(1)–Cl(2)	2,334(7)	$S(1^1)Ru(1)S(1)$	180,0(3)		
$Ru(2)-Cl(3^2)$	2,353(3)	Cl(2)Ru(1)Cl(1)	92,3(2)		
Ru(2)–Cl(3)	2,353(3)	Cl(2)Ru(1)S(1)	90,7(3)		
$Ru(2)-Cl(4^2)$	2,344(3)	$Cl(2)Ru(1)Cl(2^{1})$	180,0(4)		
Ru(2)–Cl(4)	2,344(3)	$Cl(3^2)Ru(2)Cl(3)$	179,997(1)		
Ru(2)–S(2)	2,332(3)	$S(2^2)Ru(2)S(2)$	180,0		
$Ru(2)-S(2^2)$	2,332(3)	$Cl(4^2)Ru(2)Cl(4)$	180,00(15)		
Преобразования симметрии: ¹ 2-х, 1-у, 2-z; ² 3/2-х, 3/2-у, 1-z					

Полные таблицы координат атомов, длин связей и валентных углов депонированы в Кембриджском банке структурных данных (№ 1477220, deposit@ccdc.cam.ac.uk; http://www.ccdc.cam.ac.uk).

Обсуждение результатов

Комплексы 1 и 2 синтезировали из гидрата хлорида рутения (III) и хлоридов тетрафенилфосфония и тетрафенилстибония (соответственно) в диметилсульфоксиде. Установлено, что при медленном испарении растворителя из раствора кристаллизуются устойчивые на воздухе темнооранжевые кристаллы:

$$\begin{array}{rcl} dmso \\ Ph_4PCl + RuCl_3 \cdot 3H_2O & \rightarrow & [Ph_4P]^+[trans-RuCl_4(dmso-S)_2]^- \\ & & (1) \end{array}$$

$$\begin{array}{rcl} dmso \\ Ph_4SbCl + RuCl_3 \cdot 3H_2O & \rightarrow & [Ph_4Sb(dmso-O)]^+[trans-RuCl_4(dmso-S)_2]^- \\ & (2) \end{array}$$

По данным PCA, в кристалле комплекса **1** катионы тетрафенилфосфония имеют мало искаженную тетраэдрическую конфигурацию: углы СРС варьируют в интервале 105,4(7)°–111,8(5)°, расстояния Р–С равны 1,756(16)–1,794(19) Å (рис. 1).

Окончание табл. 2

Синтез и строение комплексов рутения [Ph₄P][trans-RuCl₄(dmso-S)₂] и [Ph₄Sb(dmso-O)][trans-RuCl₄(dmso-S)₂]

Рис. 1. Строение комплекса 1 (атомы водорода не показаны)

В кристалле комплекса 2 координация атома сурьмы в катионе – искаженная тригональнобипирамидальная за счет дополнительного взаимодействия атома металла с атомом кислорода диметилсульфоксида (рис. 2). Расстояние Sb–O составляет 2,633(15) Å, что меньше суммы вандер-ваальсовых радиусов атомов на ~1 Å. Длина связей Sb–C изменяется в интервале 2,094(15)– 2,146(15) Å, при этом максимальное значение соответствует *псевдо*-аксиальной связи Sb–C(31), что характерно для тригонально-бипирамидальных структур. *Псевдо*-аксиальный угол CSbO (178,54(16)°) близок к теоретическому углу 180°. Сумма углов CSbC в *псевдо*-экваториальной плоскости (349,4(5)°) значительно меньше 360°. Атом сурьмы выходит из плоскости [C₃] в сторону атома C(31) на 0,399 Å.

Рис. 2. Строение комплекса 2 (атомы водорода не показаны)

В анионах [*транс*-RuCl₄(dmso-S)₂]⁻ комплексов **1** и **2** (в **2** два типа кристаллографически независимых анионов) длины связей Ru–Cl (2,353(5), 2,355(3) Å для **1**, 2,336(4)–2,353(3) Å для **2**) близки к сумме ковалентных радиусов атомов рутения и хлора (2,39 Å [11]). Диметилсульфоксидные лиганды координируются на центральный атом через атом серы (Ru–S 2,349(3) и 2,332(3)–2,344(6) Å соответственно), углы SRuS и *транс*-ClRuCl составляют 180°.

Выводы

Таким образом, реакции гидрата хлорида рутения (III) и хлоридов тетрафенилфосфония и тетрафенилстибония в диметилсульфоксиде позволяют синтезировать комплексы с анионами

Химия металлоорганических соединений

 $[trans-RuCl_4(dmso-S)_2]^-$ в одну стадию. Отличие строения катионов $[Ph_4P]^+$ и $[Ph_4Sb(dmso-O)]^+$ в полученных комплексах обусловлено размерами и подвижностью координационной сферы атома металла, что в присутствии *n*-донорного лиганда (диметилсульфоксида) приводит к изменению координационного полиэдра и увеличению координационного числа атома сурьмы.

Литература

1. Jaswal, J.S. Ruthenium(III) Complexes Containing Dimethylsulfoxide or Dimethylsulfide Ligands, and a New Route to *trans*-Dichlorotetrakis(dimethylsulfoxide)ruthenium(II) / J.S. Jaswal, S.J. Rettig, B.R. James // Can. J. Chemistry. – 1990. – V. 68, N 10. – P. 1808–1817.

2. Synthesis, Molecular Structure, and Chemical Behavior of Hydrogen *trans*-Bis(dimethyl sulfoxide)tetrachlororuthenate(III) and *mer*-Trichlorotris(dimethyl sulfoxide)ruthenium(III): the First Fully Characterized Chloride-dimethyl Sulfoxide-ruthenium(III) Complexes / E. Alessio, G. Balducci, M. Calligaris et al. // Inorg. Chem. – 1991. – V. 30, N 4. – P. 609–618.

3. Calligaris, M. Structure of Acridinium *trans*-Tetrachlorobis(dimethyl sulfoxide)ruthenate(III) / M. Calligaris, N. Bresciani-Pahor, R.S. Srivastava // Acta Crystallogr. – 1993. – V. 49 C, № 3. – P. 448–451.

4. Синтез и строение *транс-*[(ДМСО)H][Ru(ДМСО)₂Cl₂] / О.В. Рудницкая, И.В. Мирошниченко, А.И. Сташ и др. // Журн. неорган. химии. – 1993. – Т. 38, № 7. – С. 1187–1190.

5. Рудницкая, О.В. Синтез и строение (Bu₄N)[Ru(ДМСО)₂Cl₂] / О.В. Рудницкая, А.И. Сташ, Н.М. Синицын // Журн. неорган. химии. – 1994. – Т. 39, № 2. – С. 262–265.

6. Ruthenium Complexes with Purine Derivatives: Syntheses, Structural Characterization and Preliminary Studies with Plasmidic DNA / A. García-Raso, J.J. Fiol, A. Tasada et al. // Inorg. Chem. Commun. -2005. - V. 8, $N_{2} 9. - P. 800-804$.

7. Шарутин, В.В. Синтез и строение бис(диметилсульфоксидо)Тетрахлорорутената(III) Ацетонилтрифенилфосфония [Ph₃PCH₂C(O)CH₃]⁺[Rucl₄(ДМСО)₂]⁻ / В.В. Шарутин, О.К. Шарутина, В.С. Сенчурин // Журн. общей химии. – 2015. – Т. 85, № 5. – С. 842–845.

8. Anderson, C.M. Synthesis and Characterization of Ionic Ru(III) Complexes Containing Dimethylsulfoxide and Dinitrogen Heterocyclic Ligands / C.M. Anderson, A. Herman, F.D. Rochon // Polyhedron. – 2007. – V. 26, № 14. – P. 3661–3668.

9. Bruker. SMART and SAINT-Plus. Versions 5.0. Data Collection and Processing Software for the SMART System. Bruker AXS Inc., Madison, Wisconsin, USA, 1998.

10. Bruker. SHELXTL/PC. Versions 5.10. An Integrated System for Solving, Refining and Displaying Crystal Structures From Diffraction Data. Bruker AXS Inc., Madison, Wisconsin, USA, 1998.

11. Бацанов, С.С. Атомные радиусы элементов / С.С. Бацанов // Журн. неорган. химии. – 1991. – Т. 36, № 12. – С. 3015–3037.

Шарутин Владимир Викторович – доктор химических наук, профессор, старший научный сотрудник УНИД, Южно-Уральский государственный университет. 454080, г. Челябинск, пр. им. В.И. Ленина, 76. E-mail: vvsharutin@rambler.ru.

Шарутина Ольга Константиновна – доктор химических наук, профессор, кафедра теоретической и прикладной химии, Южно-Уральский государственный университет. 454080, г. Челябинск, пр. им. В.И. Ленина, 76. E-mail: sharutinao@mail.ru.

Сенчурин Владислав Станиславович – кандидат химических наук, доцент, кафедра теоретической и прикладной химии, Южно-Уральский государственный университет. 454080, г. Челябинск, пр. им. В.И. Ленина, 76. E-mail: senvl@rambler.ru

Поступила в редакцию 2 марта 2017 г.

SYNTHESIS AND STRUCTURE OF RUTHENIUM COMPLEXES [Ph₄P][*trans*-RuCl₄(dmso-S)₂] AND [Ph₄Sb(dmso-O)][*trans*-RuCl₄(dmso-S)₂]

V.V. Sharutin, vvsharutin@rambler.ru O.K. Sharutina, sharutinao@mail.ru V.S. Senchurin, senvl@rambler.ru

South Ural State University, Chelyabinsk, Russian Federation

Ruthenium complexes $[Ph_4P][trans-RuCl_4(dmso-S)_2]$ (1) and $[Ph_4Sb(dmso-O)][trans-RuCl_4(dmso-S)_2]$ (2) have been synthesized by interaction of tetraphenylphosphonium and tetraphenylstibonium chlorides in dimethylsulfoxide. Their structures have been characterized. According to the X-ray data, the phosphorus atoms in cation 1 have a slightly distorted tetrahedral coordination (P–C 1.756(16)–1.794(19) Å, CPC 105.4(7)°–111.8(5)°), and the antimony atoms in cation 2 have a distorted trigonal-bipyramidal coordination with the dimethyl sulfoxide oxygen atom in the axial position (Sb–O 2.633(15) Å, Sb–C 2.094(15)–2.146(15) Å, CSbO 178.54(16)°). In the [trans-RuCl_4(dmso-S)_2]⁻ octahedral anion complexes 1 and 2 dimethylsulfoxide ligands are coordinated to the metal atoms by sulfur atoms (Ru–S 2.349(3), Ru–Cl 2.353(5), 2.355(3) Å and 2.332(3)–2.344(6), 2.336(4)–2.353(3) Å, respectively; angles SRuS and trans-ClRuCl constitute 180°.

Keywords: synthesis, complex, tetraphenylphosphonium cation, tetraphenylstibonium cation, trans-bis(dimethylsulfoxido)tetrachlororuthenate-anion, structure, X-ray diffraction analysis.

References

1. Jaswal J.S., Rettig S.J., James B.R. Ruthenium(III) Complexes Containing Dimethylsulfoxide or Dimethylsulfide Ligands, and a New Route to *trans*-Dichlorotetrakis(dimethylsulfoxide)ruthenium(II). *Can. J. Chemistry*, 1990, vol. 68, no. 10, pp. 1808–1817. DOI: 10.1139/v90-282

2. Alessio E., Balducci G., Calligaris M., Costa G., Attia W., Mestroni G. Synthesis, Molecular Structure, and Chemical Behavior of Hydrogen *trans*-Bis(dimethyl sulfoxide)tetrachlororuthenate(III) and *mer*-Trichlorotris(dimethylsulfoxide)ruthenium(III): the First Fully Characterized Chloride-dimethyl Sulfoxide-ruthenium(III) Complexes. *Inorg. Chem.*, 1991, vol. 30, no. 4, pp. 609–618. DOI: 10.1021/ic00004a005.

3. Calligaris M., Bresciani-Pahor N., Srivastava R.S. Structure of Acridinium *trans*-Tetrachlorobis(dimethylsulfoxide)ruthenate(III). *Acta Crystallogr.*, 1993, vol. 49C, no. 3, pp. 448–451. DOI: org/10.1107/S010827019200725X.

4. Rudnitskaya O.V., Miroshnichenko I.V., Stash A.I., Sinitsyn N.M. [Synthesis and Structure of Complex *trans*-[(DMSO)H][Ru(DMSO)₂Cl₂]]. *Russian Journal of Inorganic Chemistry*, 1993, vol. 38, no. 7, pp. 1187–1190. (in Russ.)

5. Rudnitskaya O.V., Stash A.I., Sinitsyn N.M. [Structure and Properties of Complex (Bu₄N)[Ru(DMSO)₂Cl₂]]. *Russian Journal of Inorganic Chemistry*, 1994, vol. 39, no. 2, pp. 262–265. (in Russ.)

6. García-Raso A., Fiol J.J., Tasada A., Prieto M.J., Moreno V., Mata I., Molins E., Bunič T., Golobič A., Ture I. Ruthenium Complexes with Purine Derivatives: Syntheses, Structural Characterization and Preliminary Studies with Plasmidic DNA. *Inorg. Chem. Commun.*, 2005, vol. 8, no. 9, pp. 800–804. DOI: org/10.1016/j.inoche.2005.05.023.

7. Sharutin V.V., Sharutina O.K., Senchurin V.S. Preparation and Structure of Acetonyltriphenylphosphonium Bis(dimethylsulfoxido)tetrachlororuthenate(III). *Russian Journal of General Chemistry*, 2015, vol. 85, no. 5, pp. 1136–1139. DOI: 10.1134/S1070363215050229.

Химия металлоорганических соединений

8. Anderson C.M., Herman A., Rochon F.D. Synthesis and Characterization of Ionic Ru(III) Complexes Containing Dimethylsulfoxide and Dinitrogen Heterocyclic Ligands. *Polyhedron*, 2007, vol. 26, no. 14, pp. 3661–3668. DOI: org/10.1016/j.poly.2007.03.041.

9. Bruker. SMART and SAINT-Plus. Versions 5.0. Data Collection and Processing Software for the SMART System. Bruker AXS Inc., Madison, Wisconsin, USA, 1998.

10. Bruker. SHELXTL/PC. Versions 5.10. An Integrated System for Solving, Refining and Displaying Crystal Structures From Diffraction Data. Bruker AXS Inc., Madison, Wisconsin, USA, 1998.

11. Batsanov S.S. [Atomic Radii of the Elements]. *Russian Journal of Inorganic Chemistry*, 1991, vol. 36, no. 12, pp. 3015–3037. (in Russ.)

Received 2 March 2017

ОБРАЗЕЦ ЦИТИРОВАНИЯ

Шарутин, В.В. Синтез и строение комплексов рутения [Ph₄P][*trans*-RuCl₄(dmso-S)₂] и [Ph₄Sb(dmso-O)][*trans*-RuCl₄(dmso-S)₂] / В.В. Шарутин, О.К. Шарутина, В.С. Сенчурин // Вестник ЮУрГУ. Серия «Химия». – 2017. – Т. 9, № 2. – С. 58–64. DOI: 10.14529/chem170208 Sharutin V.V., Sharutina O.K., Senchurin V.S. Synthesis and Structure of Ruthenium Complexes [Ph₄P][*trans*-RuCl₄(dmso-S)₂] and [Ph₄Sb(dmso-O)][*trans*-RuCl₄(dmso-S)₂]. *Bulletin of the South Ural State University. Ser. Chemistry.* 2017, vol. 9, no. 2, pp. 58–64. (in Russ.). DOI: 10.14529/chem170208

FOR CITATION