УДК 546.98+547.537

DOI: 10.14529/chem180306

СИНТЕЗ И СТРОЕНИЕ КОМПЛЕКСОВ ПАЛЛАДИЯ [Ph₃PMe]⁺[PdBr₃(DMSO)]⁻ и [Ph₃P(CH₂)₆PPh₃]²⁺[PdBr₃(Et₂SO)]⁻₂

Д.М. Ярыгина, А.Е. Баталов, В.С. Сенчурин

Южно-Уральский государственный университет, г. Челябинск, Россия

Взаимодействием бромида палладия с бромидом метилтрифенилфосфония (1:1 мольн.) в диметилсульфоксиде и дибромидом гексаметилен-бис-трифенилфосфония (2:1мольн.) в диэтилсульфоксиде синтезированы комплексы $[Ph_3PMe]^+[PdBr_3(dmso-S)]^-(1)$ и $[Ph_3P(CH_2)_6PPh_3]^{2+}[PdBr_3(Et_2SO-S)]^{-2}$ (2) соответственно. По данным рентгеноструктурного анализа, проведенного при 293 К на автоматическом четырехкружном дифрактометре D8 Quest Bruker (двухкоординатный CCD – детектор, MoK_{a} -излучение, λ = 0,71073 Å, графитовый монохроматор), красно-коричневых кристаллов 1 [C₄₂H₄₈O₂P₂S₂Br₆Pd₂, *M* 1403,12, сингония моноклинная, группа симметрии *P*2₁, a 8,91(2), b 24,88(4), c 22,34(5) Å, V 4954(18) Å³, Z 4, μ 5,747 мм⁻¹, независимых отражений 6306, R_{int} 0,0525, переменных уточнения 1022, GOOF 1,069, $R_1 = 0,0580$, $wR_2 = 0,1429$] и предварительным данным РСА красно-коричневых кристаллов 2 $[C_{50}H_{62}P_2S_2Br_6Pd_2O_2, M 1513,32, сингония триклинная, группа симметрии P2_1,$ а 13,046(13), b 13,065(14), c 17,784(18) Å, V 2885(5) Å³, Z 2, независимых отражений 6831, R_{int} 0,0647, переменных уточнения 582, GOOF 1,086, $R_1 = 0,1422, wR_2 = 0,3876$] атомы фосфора в 1 и 2 имеют мало искаженное тетраэдрическое окружение (СРС 107,3(14)-111,1(14)°, 107,2(18)-110,9(16)°), длины связей Р-С составляют 1,78(2)-1,84(3) Å и 1,77(4)–1,82(3) Å соответственно. В моноядерных плоскоквадратных анионах (углы SPdBr-*цис* 87,1(3)°, 92,8(3)° (1), 90,3(3)°, 91,0(3)° (2), BrPdBr-*транс* и SPdBrтранс 174,37(14)°, 177,4(2)° (1), 173,4(2)°, 178,5(3)° (2); BrPdBr-цис 89,72(19)°-90,43(19)° (1), 89,2(2)°-89,6(2)° (2)); диметил- и диэтилсульфоксидные лиганды координируются с атомами Pd посредством атомов серы (Pd-S 2,275(8) и 2,266(13) Å), длины связей Pd-Br для 1 и 2 изменяются в интервалах 2,426(5)-2,450(5) Å и 2,426(5)-2,451(6) Å. Полные таблицы координат атомов, длин связей и валентных углов для структуры 1 депонированы в Кембриджском банке структурных данных (№ 1833574; deposit@ccdc.cam.ac.uk; http://www.ccdc. cam.ac.uk).

Ключевые слова: дибромид палладия, бромид фосфония, диметилсульфоксид, диэтилсульфоксид, синтез, строение, рентгеноструктурный анализ.

Введение

Комплексные соединения палладия с анионами типа $[PdHal_3(dmso-S)]^-$ Hal = Cl, Br описаны в литературе [1-11], однако подобные комплексы с анионами, содержащими координированные молекулы диэтилсульфоксида структурно не охарактеризованы. Известны единичные примеры комплексов платины (II) с анионом $[PtHal_3L]^-$, где L – S-координированные молекулы сульфоксидов, отличные от диметилсульфоксида, такие как L – диэтилсульфоксид, Hal = Cl [12], Br [13]; L – ди-*n*-пропилсульфоксид, Hal = Cl, Br; L – тетраметиленсульфоксид, Hal = Cl [14]. Единственный структурно охарактеризованный нейтральный комплекс платины с S-координированными молекулами диэтилсульфоксида – $[Pt(Et_2SO-S)(\mu-Cl)Cl]_2$ был получен в результате термолиза комплекса *cis*- $[Pt(Et_2SO-S)(R'CN)Cl_2]R' = Me, CH₂Ph, протекающего с элиминированием молеку$ лы нитрила и последующей димеризацией [15].

В настоящей работе описан синтез трибромо(диметилсульфоксидо)палладата метилтрифенилфосфония и трибромо(диэтилсульфоксидо)палладата гексаметилен-*бис*-трифенилфосфония и рассмотрены особенности их строения.

Экспериментальная часть

Синтез трибромо(диметилсульфоксидо)палладата метилтрифенилфосфония (1). Смесь 0,100 г (0,38 ммоль) дибромида палладия и 0,134 г (0,38 ммоль) бромида метилтрифенилфосфония растворяли в 3 мл диметилсульфоксида. После испарения растворителя наблюдали образование игольчатых кристаллов красно-коричневого цвета. Получили 0,192 г (73 %) соединения 1 с т. разл. 160 °C. ИК-спектр, (*v*, см⁻¹): 3441, 3053, 3024, 2987, 2907, 1585, 1483, 1435, 1404, 1335, 1307, 1128, 1113, 1107, 1024, 1013, 995, 920, 903, 787, 747, 719, 687, 511, 503, 436, 422.

По аналогичной методике взаимодействием дибромида палладия с дибромидом гексаметилен-*бис*-трифенилфосфония (2:1 мольн.) в диэтилсульфоксиде получено в виде кристаллов красно-коричневого цвета соединение **2** (48 %), т. разл. 167 °С. ИК-спектр, (*v*, см⁻¹): 3053, 3024, 2931, 2893, 2868, 1587, 1483, 1435, 1402, 1375, 1339, 1317, 1267, 1193, 1115, 1074, 1031, 995, 935, 791, 766, 743, 723, 689, 669, 530, 509, 496, 455, 411.

ИК-спектры соединений **1**, **2** записывали на ИК-Фурье спектрометре Shimadzu IRAffinity-1S в таблетке КВг в области 4000–400 см⁻¹.

Рентгеноструктурный анализ (PCA) кристаллов 1, 2 проведен на автоматическом четырехкружном дифрактометре D8 QUEST фирмы Bruker (Мо К_{α}-излучение, $\lambda = 0.71073$ Å, графитовый монохроматор). Сбор, редактирование данных и уточнение параметров элементарной ячейки, а также учет поглощения проведены с помощью программ *SMART* и *SAINT-Plus* [16]. Все расчеты по определению и уточнению структур выполнены с помощью программ *SHELXL/PC* [17] *OLEX2* [18]. Структуры определены прямым методом и уточнены методом наименьших квадратов в анизотропном приближении для неводородных атомов. Положение атомов водорода уточняли по модели наездника ($U_{\rm H30}$ (H) = 1,2 $U_{\rm 3KB}$ (C)). Кристаллографические данные и результаты уточнения структур приведены в табл. 1, геометрические характеристики координационного полиэдра атома сурьмы – в табл. 2.

Таблица 1

Π	Соединение		
Параметр	1	2	
Формула	$C_{42}H_{48}O_2P_2S_2Br_6Pd_2$	$C_{50}H_{62}P_2S_2Br_6Pd_2O_2$	
M	1403,12	1513,32	
Т, К	293	293	
Сингония	моноклинная	триклинная	
Пр. группа	$P2_1$	P 1	
<i>a</i> , Å	8,91(2)	13,046(13)	
b, Å	24,88(4)	13,065(14)	
<i>c,</i> Å	22,34(5)	17,784(18)	
a,°	90,00	72,14(7)	
β,°	90,17(13)	89,94(4)	
γ,°	90,00	90,02(4)	
$V, Å^3$	4954(18)	2885(5)	
Ζ	4	2	
ρ(выч.), г/см ³	1,881	1,742	
μ, мм ⁻¹	5,747	4,941	
F(000)	2720,0	1484,0	
Размер кристалла, мм	$0,35 \times 0,34 \times 0,21$	0,44 imes 0,29 imes 0,1	
Область сбора данных по θ, град.	5,84 - 35,42	5,74 - 43,68	
	$-7 \le h \le 7,$	$-13 \le h \le 13,$	
Интервалы индексов отражений	$-21 \le k \le 21,$	$-13 \le k \le 13,$	
	$-18 \le l \le 18$	$-18 \le l \le 18$	
Измерено отражений	12140	36093	
Независимых отражений	6306	6831	
R _{int}	0,0525	0,0647	
Переменных уточнения	1022	582	
GOOF	1,069	1,086	

Кристаллографические данные, параметры эксперимента и уточнения структур 1 и 2

Окончание табл. 1

Параметр	Соединение		
	1	2	
R -факторы по F ² > 2 σ (F ²)	$R_{I} = 0,0580,$	$R_1 = 0,1422,$	
	$wR_2 = 0,1429$	$wR_2 = 0,3876$	
R-факторы по всем отражениям	$R_I = 0,0644,$	$R_1 = 0,1540,$	
	$wR_2 = 0,1469$	$wR_2 = 0,3933$	
Остаточная электронная плотность (min/max), е/А ³	1,34/-1,18	3,36/-1,37	

Длины связей и валентные углы для соединений 1 и 2

Таблица 2

		-		
Связь	d, Å	Угол	ω, град.	
	1			
Pd(1)–Br(1)	2,441(5)	Br(1)Pd(1)Br(2)	174,37(14)	
Pd(1)–Br(2)	2,426(5)	S(1)Pd(1)Br(3)	177,4(2)	
Pd(1)–Br(3)	2,450(5)	Br(1)Pd(1)Br(3)	90,43(19)	
Pd(1)–S(1)	2,275(8)	Br(2)Pd(1)Br(3)	89,72(19)	
S(1)–O(1)	1,448(19)	S(1)Pd(1)Br(1)	87,1(3)	
P(1)–C(1)	1,83(3)	S(1)Pd(1)Br(2)	92,8(3)	
P(1)-C(7)	1,78(2)	C(1)P(1)C(21)	107,3(14)	
P(1)-C(11)	1,84(3)	C(7)P(1)C(21)	111,1(14)	
P(1)-C(21)	1,80(3)			
2				
Pd(1)–Br(1)	2,451(6)	Br(2)Pd(1)Br(3)	173,4(2)	
Pd(1)–Br(2)	2,428(5)	S(1)Pd(1)Br(1)	178,5(3)	
Pd(1)–Br(3)	2,426(5)	Br(1)Pd(1)Br(2)	89,2(2)	
Pd(1)–S(1)	2,266(13)	Br(1)Pd(1)Br(3)	89,6(2)	
S(1)–O(1)	1,48(3)	S(1)Pd(1)Br(2)	90,3(3)	
P(1)–C(1)	1,82(3)	S(1)Pd(1)Br(3)	91,0(3)	
P(1)–C(7)	1,77(3)	C(7)P(1)C(21)	107,2(18)	
P(1)-C(11)	1,82(3)	C(1)P(1)C(21)	110,9(16)	
P(1)-C(21)	1,77(4)			

Полные таблицы координат атомов, длин связей и валентных углов депонированы в Кембриджском банке структурных данных (№ 1833574 для 1; deposit@ccdc.cam.ac.uk; http://www.ccdc.cam.ac.uk).

Обсуждение результатов

С целью синтеза новых комплексов палладия, содержащих координированные молекулы сульфоксидов, нами исследованы реакции дибромида палладия с бромидом метилтрифенилфосфония в диметилсульфоксиде и дибромида гексаметилен-*бис*-трифенилфосфонияв диэтилсульфоксиде.

Установлено, что при смешении эквимольных количеств дибромида палладия с бромидом метилтрифенилфосфония в диметилсульфоксиде и последующем медленном испарении растворителя наблюдается образование красно-коричневых игольчатых кристаллов комплекса трибромо(диметилсульфоксидо)палладата метилтрифенилфосфония (1):

$$[Ph_3PMe]Br + PdBr_2 \xrightarrow{dmso} [Ph_3PMe]^+ [PdBr_3(dmso-S)]^-$$

По аналогичной схеме протекает реакция между дибромидом палладия и дибромидом гексаметилен-бис-трифенилфосфония (2:1 мольн.) в диэтилсульфоксиде. В этом случае продуктом

реакции являются кристаллы комплекса трибромо(диэтилсульфоксидо)палладата гексаметиленбис-трифенилфосфония (2):

$$[Ph_{3}P(CH_{2})_{6}PPh_{3}]^{2+}Br_{2} + 2PdBr_{2} \xrightarrow{Et_{2}SO} [Ph_{3}P(CH_{2})_{6}PPh_{3}]^{2+}[PdBr_{3}(Et_{2}SO-S)]^{-}_{2}$$

По данным РСА 1 и предварительным данным РСА для 2, атомы фосфора катионов имеют слабо искаженную тетраэдрическую координацию (рис. 1 и 2). Валентные углы СРС (107,3(14)–111,1(14)° (1), 107,2(18)–110,9(16)° (2)) мало отличаются от теоретического значения. Расстояния Р–С (1,78(2)–1,84(3) Å (1),1,77(4)–1,82(3) Å (2)) близки к сумме ковалентных радиусов атомов фосфора и углерода 1,88 Å [19]. Атомы палладия в квадратных моноядерных анионах четырех-координированы (углы SPdBr-*µuc* 87,1(3)°, 92,8(3)° (1), 90,3(3)°, 91,0(3)° (2), BrPdBr-*mpaнc* и SPdBr-*mpaнc* 174,37(14)°, 177,4(2)° (1), 173,4(2)°, 178,5(3)° (2); BrPdBr-*µuc* 89,72(19)°–90,43(19)° (1), 89,2(2)°–89,6(2)° (2)); длины связей Рd–Вг изменяются в интервалах 2,426(5)–2,450(5) Å (1), 2,426(5)–2,451(6) Å (2). Сульфоксидные лиганды координируются по атому палладия посредством атомов серы (расстояния Pd–S равны 2,275(8) (1) и 2,266(13) Å (2)).

Рис. 1. Строение соединения 1

Рис. 2. Строение соединения 2

Структурная организация в кристаллах обусловлена слабыми межионными водородными связями, в образовании которых принимают участие атомы кислорода и брома сульфоксидных, а также водорода арильных лигандов H···Br 2,85–3,05 Å (1), 2,87, 2,89 Å (2) и H···O 2,44–2,72 Å (1), 2,30–2,39 Å (2), что близко к сумме ван-дер-ваальсовых радиусов атомов водорода и брома (2,93 Å) и водорода и кислорода (2,62 Å)[20].

Выводы

Таким образом, продуктами взаимодействия дибромида палладия с бромидом метилтрифенилфосфония (1:1 мольн.) в диметилсульфоксиде и дибромидом гексаметилен-бистрифенилфосфония (2:1 мольн.) в диэтилсульфоксиде являются соответственно трибромо(диметилсульфоксидо)палладат метилтрифенилфосфония и трибромо(диэтилсульфоксидо)палладатгексаметилен-бис-трифенилфосфония, состоящие из тетраэдрических фосфониевых катионов и плоско-квадратных анионов [PdBr₃(dmso-S)]⁻ и [PdBr₃(Et₂SO-S)]⁻, в которых молекулы сульфоксидов координируется на центральный атом серой.

Благодарности

Мы благодарим проф. В.В. Шарутина за рентгеноструктурный анализ соединений 1 и 2.

Литература

1. Hazell, A. Mono-, di- and poly-nuclear transition-metal complexes of a *bis*(tridentate) ligand: towards *p*-phenylenediamine-bridged co-ordination polymers / A. Hazell, C.J. McKenzie, L.P. Nielsen // J. Chem. Soc., Dalton Trans. – 1998. – P. 1751–1756. DOI: 10.1039/A800602D.

2. Palladium complexes with pyrimidine-functionalized n-heterocyclic carbene ligands: synthesis, structure and catalytic activity / D. Meyer, M.A. Taige, A. Zeller et al. // Organometallics. -2009. - V. 28, $N_{2} 7. - P. 2142-2149$. DOI: 10.1021/om8009238.

3. On the electronic impact of abnormal c4-bonding in n-heterocyclic carbene complexes / M. Heckenroth, A. Neels, M.G. Garnier et al. // Chem. Eur. J. – 2009. – V. 15, № 37. – P. 9375–9386. DOI: 10.1002/chem.200900249.

4. Шарутин, В.В. Синтез и строение комплекса палладия [Ph₄P]⁺₂[PdCl₄]²⁻ / В.В. Шарутин, В.С. Сенчурин, О.К. Шарутина // Бутлеровские сообщения. – 2011. – Т. 28, № 20. – С. 31–34.

5. *N*-Heterocyclic carbene copper(I), mercury(II) and silver(I) complexes containing durene linker: synthesis and structural studies / Q.-X. Liu, A.-H. Chen, X.-J. Zhao et al. // CrystEngComm. – 2011. - V. 13, No 1. - P. 293-305. DOI: 10.1039/C0CE00142B.

6. Синтез и строение комплекса палладия [Ph₄Sb(DMSO)] [PdBr₃(DMSO)] / В.В. Шарутин, В.С. Сенчурин, О.К. Шарутина и др. // Бутлеровские сообщения. – 2012. – Т. 29, № 2. – С. 26–30.

7. Особенности взаимодействия тетрабромопалладийводородной кислоты с бромидами тетраорганилфосфония в различных растворителях. Синтез и строение комплексов палладия: $[Ph_3(cyclo-C_5H_9)P]^+_2[Pd_2Br_6]^{2-}$, $[Ph_3BuP]^+_2[Pd_2Br_6]^{2-}$, $[Ph_3AmP]^+_2[Pd_2Br_6]^{2-}$, $[Ph_3(cyclo-C_5H_9)P]^+[PdBr_3(DMSO)]^-$, $[Ph_3BuP]^+[PdBr_3(DMSO)]^-$ и $[Ph_3AmP]^+[PdBr_3(DMSO)]^-$ / В.В. Шарутин, В.С. Сенчурин, О.К. Шарутина и др. // Бутлеровские сообщения. – 2012. – Т. 30, № 6. – С. 41–49.

8. Шарутин, В.В. Синтез и строение комплексов палладия [Ph₃PhCH₂P]⁺[PdCl₃(dmso)]⁻·dmso, [Ph₄P]⁺[PdCl₃(dmso)]⁻ и [Ph₄Sb(dmso)]⁺ [PdCl₃(dmso)]⁻ / В.В. Шарутин, В.С. Сенчурин, О.К. Шарутина // Журн. неорган. химии. – 2013. – Т. 58, № 5. – С. 616–620.

9. Consecutive modular ligation as an access route to palladium containing polymers / C. Lang, K. Pahnke, C. Kiefer et al. // Polym. Chem. – 2013. – V. 4, № 21. – P. 5456–5462. DOI: 10.1039/C3PY00648D.

10. Синтез и строение комплексов палладия: $[Ph_3(иикло-C_3H_5)P]^+_2[PdBr_4]^2$, $[Ph_3(иикло-C_3H_5)P]^+_2[Pd_2Br_6]^2$, $[Ph_3(иикло-C_3H_5)P]_+[PdBr_3(dmso)]^-$ / В.В. Шарутин, О.К. Шарутина, В.С. Сенчурин и др. // Коорд. химия. – 2015. – Т. 41, № 7. – С. 430–437.

11. Синтез и строение комплексов палладия [Ph₃P(CH₂)₃PPh₃][PdBr₄], [Ph₃P(CH₂)₃PPh₃][Pd₂Br₆]·DMF и [Ph₃P(CH₂)₃PPh₃][PdBr₃(dmso-*S*)]₂ / В.В. Шарутин, О.К. Шарутина, В.С. Сенчурин и др. // Журн. общ. химии. – 2017. – Т. 87, № 1. – С. 128–133.

12. Deoxygenation of coordinated sulfoxides and oxidation of the metal ion in thePt(II) complexes using HX (X = C1, Br): a convenient procedure for the preparation of thioether compounds of Pt(IV).

X-ray structure of potassium trichloro(diethyl sulfoxide)platinate(II) / V.Yu. Kukushkin, V.K. Belsky, V.E. Konovalov et al. // Phosphorus, Sulfur, Silicon, Relat. Elem. – 1992. – V. 69, № 1–2. – P. 103–117. DOI: 10.1080/10426509208036859.

13. Belsky, V.K. Structure of potassium tribromo(diethyl sulfoxide)platinate(II) / V.K. Belsky, V.E. Konovalov, V.Yu. Kukushkin // Acta Cryst. – 1993. – V. 49. – P. 751–752. DOI: 10.1107/S0108270192008308.

14. Rochon, F.D. Multinuclear Magnetic Resonance Study of Pt(II) Compounds with sulfoxide ligands and crystal structures of complexes of the types $[Pt(R_2SO)X_3]$ and $Pt(R_2SO)_2Cl_2$ / F.D. Rochon, C. Bensimon, C. Tessier // Inorg. Chim. Acta. – 2008. – V. 361, No 1. – P. 16–28. DOI: 10.1016/j.ica.2007.06.004.

15. Synthesis of halogen-bridged complexes $[Pt(R_2SO)(\mu-X)X]_2$ by thermolysis of *cis*- $[Pt(R_2SO)(R'CN)X_2]$. X-ray structure of di- μ -chloro-dichlorobis(diethyl sulfoxide) diplatinum(II) / V.Yu. Kukushkin, V.K. Belsky, V.E. Konovalov et al. // Inorg. Chim. Acta. – 1991. – V. 183, No 1. – P. 57–63. DOI: 10.1016/S0020-1693(00)82995-3.

16. Bruker. SMART and SAINT-Plus. Versions 5.0. Data collection and processing software for the SMART system. Bruker AXS Inc., Madison, Wisconsin, USA, 1998.

17. Bruker. SHELXTL/PC. Versions 5.10. An integrated system for solving, refining and displaying crystal structures from diffraction data. Bruker AXS Inc., Madison, Wisconsin, USA, 1998.

18. OLEX2: Complete structure solution, refinement and analysis program / O.V. Dolomanov, L.J. Bourhis, R.J. Gildea et al. // J. Appl. Cryst. – 2009. – V. 42. – P. 339–341. DOI: 10.1107/S0021889808042726.

19. Бацанов, С.С. Атомные радиусы элементов / С.С. Бацанов // Журн. неорган. химии. – 1991. – Т. 36, № 12. – С. 3015–3037.

20. Consistent van der waalsradii for the whole main group / M. Mantina, A.C. Chamberlin, R. Valeroet al. // J. Phys. Chem. A. – 2009. – V. 113, № 19. – P. 5806–5812.

Ярыгина Дарья Михайловна – студент химического факультета, Южно-Уральский государственный университет. 454080, г. Челябинск, пр. Ленина, 76. E-mail: darya.yarygina.99@ mail.ru.

Баталов Алексей Евгеньевич – студент химического факультета, Южно-Уральский государственный университет. 454080, г. Челябинск, пр. Ленина, 76. E-mail: batalov.aleksei@mail.ru.

Сенчурин Владислав Станиславович – кандидат химических наук, доцент, кафедра теоретической и прикладной химии, Южно-Уральский государственный университет. 454080, г. Челябинск, пр. Ленина, 76. E-mail: senvl@rambler.ru.

Поступила в редакцию 30 марта 2018 г.

DOI: 10.14529/chem180306

SYNTHESIS AND STRUCTURE OF PALLADIUM COMPLEXES $[Ph_3PMe]^{+}[PdBr_3(DMSO)]^{-}and [Ph_3P(CH_2)_6PPh_3]^{2+}[PdBr_3(Et_2SO)]^{-}_2$

D.M. Jarygina, darya.yarygina.99@mail.ru **A.E. Batalov,** batalov.aleksei@mail.ru **V.S. Senchurin,** senvl@rambler.ru South Ural State University, Chelyabinsk, Russian Federation

 $[Ph_3PMe]^+[PdBr_3(dmso-S)]^-$ (1) and $[Ph_3P(CH_2)_6PPh_3]^{2+}[PdBr_3(Et_2SO-S)]^-_2$ (2) was obtained by the reaction of palladium dibromide with methyltriphenylphosphonium bromide (1:1 mol.) in the dimethylsulfoxide and hexamethylene-*bis*-triphenylphosphonium dibromide-in the diethylsulfoxide. According to X-ray analysis was performed on a Bruker D8 QUEST

automatic four-circle diffractometer (Mo K_{α}-emission, $\lambda = 0.71073$ Å, graphite monochromator) red-brown crystals 1 [C₄₂H₄₈O₂P₂S₂Br₆Pd₂, M 1403.12, crystal system moclinic, space group P2₁, a 8.91(2), b 24.88(4), c 22.34(5) Å, V 4954(18) Å³, Z 4, μ 5.747 mm⁻¹, independent reflections 6306, R_{int} 0,0525, refinement variables 1022, GOOF 1,069, $R_1 = 0.0580$, $wR_2 = 0.1429$] and preliminary data X-rayred-brown crystals 2 [C₅₀H₆₂P₂S₂Br₆Pd₂O₂, M1513.32, crystal system triclinic, space group P2₁, a 13.046(13), b 13.065(14), c 17.784(18) Å, V 2885(5) Å³, Z 2, independent reflections 6831, R_{int} 0.0647, refinement variables 582, GOOF 1.086, $R_1 = 0.1422$, $wR_2 = 0.3876$] atoms P in 1 and 2 have distorted tetrahedral coordination (CPC angles 107.3(14)-111.1(14)°, 107.2(18)-110.9(16)°), bond lengths P–C 1.78(2)–1.84(3) Å and 1.77(4)–1.82(3) Å. In mononuclear planar square anions (angles SPdBr-cis 87,1(3)°, 92.8(3)° (1), 90.3(3)°, 91.0(3)° (2), BrPdBr-trance and SPdBrtrance 174.37(14)°, 177.4(2)° (1), 173.4(2)°, 178.5(3)° (2), BrPdBr-cis 89.72(19)°- $90.43(19)^{\circ}$ (1), $89.2(2)^{\circ}-89.6(2)^{\circ}$ (2)), dimethyl- and diethylsulfoxide ligands coordinated to the Pd by sulfur atoms (Pd–S 2.275(8) and 2.266(13) Å), distances Pd-Br for 1 and 2 vary in the range 2.426(5) - 2.450(5) Å and 2.426(5) - 2.451(6) Å. The full tables of atomic coordinates, bond lengths, and bond angles were deposited with the Cambridge Crystallographic Data Centre (CCDC 1833574 for compound 1 deposit@ccdc.cam.ac.uk; http://www.ccdc.cam.ac.uk).

Keywords: palladium dibromide, phosphonium bromide, dimethylsulfoxide, diethylsulfoxide, synthesis, structure, X-ray analysis.

References

1. Hazell A., McKenzie C.J., Nielsen L.P. Mono-, Di- and Poly-nuclear Transition-metal Complexes of a Bis(tridentate) Ligand: Towards *p*-Phenylenediamine-bridged Coordination Polymers. *J. Chem. Soc., Dalton Trans.*, 1998, pp. 1751–1756. DOI: 10.1039/A800602D.

2. Meyer D., Taige M.A., Zeller A., Hohlfeld K., Ahrens S., Strassner T. Palladium Complexes with Pyrimidine-Functionalized N-Heterocyclic Carbene Ligands: Synthesis, Structure and Catalytic Activity. *Organomet.*, 2009, vol. 28, no. 7, pp. 2142–2149. DOI: 10.1021/om8009238.

3. Heckenroth M., Neels A., Garnier M.G., Aebi Ph., Ehlers A.W., Albrecht M. On the Electronic Impact of Abnormal C4-Bonding in N-Heterocyclic Carbene Complexes. *Chem. Eur. J.*, 2009, vol. 15, no. 37, pp. 9375–9386. DOI: 10.1002/chem.200900249.

4. Sharutin V.V., Senchurin V.S., Sharutina O.K. [Synthesis and Structure of Palladium Complexes[Ph₄P]⁺₂[PdCl₄]^{2–}]. *Butlerov communications*, 2011, vol. 28, no. 20, pp. 31–34.(in Russ.).

5. Liu Q.-X., Chen A.-H., Zhao X.-J., Zang Y., Wu X.-M., Wang X.-G., Guo J.-H. *N*-Heterocyclic Carbene Copper(I), Mercury(II) and Silver(I) Complexes Containing Durene Linker: Synthesis and Structural Studies. *CrystEngComm*. 2011, vol. 13, no. 1, pp. 293–305. DOI: 10.1039/C0CE00142B.

6. Sharutin V.V., Senchurin V.S., Sharutina O.K., Guschin A.V. [Synthesis and Structure of Palladium Complexes[Ph₄Sb(DMSO)] [PdBr₃(DMSO)]]. *Butlerov communications*, 2012, vol. 29, no. 2, pp. 26–30.(in Russ.).

7. Sharutin V.V., Senchurin V.S., Sharutina O.K., Guschin A.V. [Features of Interaction of Tetrabromopalladiumhydrogen Acid with Tetraorganylphosphonium Bromides in Various Solvents. Synthesis and Structure of Palladium Complex: $[Ph_3(cyclo-C_5H_9)P]^+_2[Pd_2Br_6]^{2-}$, $[Ph_3BuP]^+_2[Pd_2Br_6]^{2-}$, $[Ph_3(cyclo-C_5H_9)P]^+[PdBr_3(DMSO)]^-$, $[Ph_3BuP]^+[PdBr_3(DMSO)]^-$ and $[Ph_3AmP]^+[PdBr_3(DMSO)]^-$]. *Butlerov communications*, 2012, vol. 30, no. 6, pp. 41–49.(in Russ.).

8. Sharutin V.V., Senchurin V.S., Sharutina O.K. Synthesis and Structure of Palladium Complexes $[[Ph_3PhCH_2P]^+[PdCl_3(dmso)]^- dmso, [Ph_4P]^+[PdCl_3(dmso)]^-, and [Ph_4Sb(dmso)]^+ [PdCl_3(dmso)]^-.$ *Rus. J. Inorg. Chem.*, 2013, vol. 58, no. 5, pp. 543–547. DOI: 10.1134/S0036023613050203.

9. Lang C., Pahnke K., Kiefer C., Goldmann A.S., Roesky P.W., Barner-Kowollik C. Consecutive Modular Ligation as an Access Route to Palladium Containing Polymers. *Polym. Chem.*, 2013, vol. 4, no. 21, pp. 5456–5462. DOI: 10.1039/C3PY00648D.

10. Sharutin V.V., Sharutina O.K., Senchurin V.S., Il'chenko I.A. The Palladium Complexes $[Ph_3(cyclo-C_3H_5)P]^+_2[PdBr_4]^{2-}$, $[Ph_3(cyclo-C_3H_5)P]^+_2[Pd_2Br_6]^{2-}$, and $[Ph_3(cyclo-C_3H_5)P]^+[PdBr_3(dmso)]^-$: Synthesis and structures. *Rus. J. Coord. Chem.*, 2015, vol. 41, no. 7, pp. 462–469. DOI: 10.1134/S1070328415070088.

11. Sharutin V.V., Sharutina O.K., Senchurin V.S., Il'chenko I.A., Andreev P.V. Synthesis and Structure of the Palladium Complexes [Ph₃P(CH₂)₃PPh₃][PdBr₄], [Ph₃P(CH₂)₃PPh₃][Pd₂Br₆]·DMF, and

[Ph₃P(CH₂)₃PPh₃][PdBr₃(dmso-*S*)]₂. *Rus. J. Gen. Chem.*, 2017, vol. 87, no. 1, pp. 122–127. DOI: 10.1134/S1070363217010194.

12. Kukushkin V.Yu., Belsky V.K., Konovalov V.E., Aleksandrova E.A., Pankova E.Yu., Moiseev A.I. Deoxygenation of Coordinated Sulfoxides and Oxidation of the Metal Ion in the Pt(II) Complexes Using HX (X = C1, Br): a Convenient Procedure for the Preparation of Thioether Compounds of Pt(IV). X-ray Structure of Potassium Trichloro(diethyl sulfoxide)platinate(II). *Phosphorus, Sulfur, Silicon, Relat. Elem.*, 1992, vol. 69, no. 1–2, pp. 103–117. DOI: 10.1080/10426509208036859.

13. Belsky V.K., Konovalov V.E., Kukushkin V.Yu. Structure of Potassium Tribromo(diethyl sulfoxide)platinate(II). *Acta Cryst.*, 1993, vol. C49, pp. 751–752. DOI: 10.1107/S0108270192008308.

14. Rochon F.D., Bensimon C., Tessier C. Multinuclear Magnetic Resonance Study of Pt(II) Compounds with Sulfoxide Ligands and Crystal Structures of Complexes of the Types $[Pt(R_2SO)X_3]^-$ and $Pt(R_2SO)_2Cl_2$. *Inorg. Chim. Acta*, 2008, vol. 361, no. 1, pp. 16–28. DOI: 10.1016/j.ica.2007.06.004.

15. Kukushkin V.Yu., Belsky V.K., Konovalov V.E., Shifrina R.R., Moiseev A.I., Vlasova R.A. Synthesis of Halogen-Bridged Complexes $[Pt(R_2SO)(\mu-X)X]_2$ by Thermolysis of *cis*- $[Pt(R_2SO)(R'CN)X_2]$. X-ray Structure of Di- μ -chloro-dichlorobis(diethyl sulfoxide) Diplatinum(II). *Inorg. Chim. Acta.* 1991, vol. 183, no. 1, pp. 57–63. DOI: 10.1016/S0020-1693(00)82995-3.

16. Bruker. SMART and SAINT-Plus. Versions 5.0. Data Collection and Processing Software for the SMART System. Bruker AXS Inc., Madison, Wisconsin, USA, 1998.

17. Bruker. SHELXTL/PC. Versions 5.10. An Integrated System for Solving, Refining and Displaying Crystal Structures from Diffraction Data. Bruker AXS Inc., Madison, Wisconsin, USA, 1998.

18. Dolomanov O.V., Bourhis L.J., Gildea R.J., Howard J.A.K., Puschmann H. OLEX2: Complete Structure Solution, Refinement and Analysis Program. *Journal of Applied Crystallography*, 2009, vol. 42, pp. 339–341. DOI: 10.1107/S0021889808042726.

19. Batsanov S.S. [The Atomic Radii of the Elements]. Rus. J. Inorg. Chem., 1991, vol. 36, no. 12, pp. 3015–3037. (in Russ.).

20. Mantina M., Chamberlin A.C., Valero R., Cramer C.J., Truhlar D.G. Consistent Van der Waals Radii for the Whole Main Group. *J. Phys. Chem. A.*, 2009, vol. 113, no. 19, pp. 5806–5812.

Received 30 March 2018

ОБРАЗЕЦ ЦИТИРОВАНИЯ

Ярыгина, Д.М. Синтез и строение комплексов палладия [Ph₃PMe]⁺[PdBr₃(DMSO)]⁻ и [Ph₃P(CH₂)₆PPh₃]²⁺[PdBr₃(Et₂SO)]⁻₂ / Д.М. Ярыгина, А.Е. Баталов, В.С. Сенчурин // Вестник ЮУрГУ. Серия «Химия». – 2018. – Т. 10, № 3. – С. 51– 58. DOI: 10.14529/chem180306

FOR CITATION

Jarygina D.M., Batalov A.E., Senchurin V.S. Synthesis and Structure of Palladium Complexes [Ph₃PMe]⁺[PdBr₃(DMSO)]⁻ and [Ph₃P(CH₂)₆PPh₃]²⁺[PdBr₃(Et₂SO)]⁻₂. *Bulletin of the South Ural State University. Ser. Chemistry.* 2018, vol. 10, no. 3, pp. 51–58. (in Russ.). DOI: 10.14529/chem180306