УДК 544.23+544-971

DOI: 10.14529/chem180404

РАСЧЕТ ТЕРМОДИНАМИЧЕСКИХ СВОЙСТВ ЩЕЛОЧНЫХ БОРОГЕРМАНАТОВ И ГЕРМАНОСИЛИКАТОВ

М.В. Штенберг¹, В.А. Бычинский², О.Н. Королева³, Н.М. Коробатова¹, Т.В. Мосунова⁴, А.П. Дмитриева⁴

1 Институт минералогии УрО РАН, г. Миасс, Россия

² Институт геохимии им. А.П. Виноградова СО РАН, г. Иркутск, Россия

³ Южно-Уральский государственный университет, филиал в г. Миассе, Россия

⁴ Южно-Уральский государственный университет, г. Челябинск, Россия

Оценка термодинамических свойств соединений, не изученных экспериментально, выполнялась с помощью регрессионного анализа на основе классического аддитивного метода Неймана-Коппа. Устанавливающая зависимость между величинами термодинамических (термохимических) потенциалов и структурой веществ (базовых веществ) была рассчитана по уравнению множественной регрессии. В работе было необходимо введение дополнительных термодинамических ограничений, обусловленных свойствами базовых компонентов. Исследование закономерностей изменения энтальпии образования из простых веществ в рядах боратов, алюминатов, фторалюминатов, арсенатов щелочных металлов, а также алюминатов и арсенатов щелочноземельных металлов показали, что ярко выраженную зависимость от молекулярной массы однотипных структурных единиц имеют их избыточные функции.

С помощью регрессионного анализа были установлены зависимости стандартной энтропии для силикатов, боратов и германатов лития, натрия и калия от состава; получены уравнения стандартных энтальпии образования и теплоем кости. С целью улучшения качества регрессионного анализа уравнения были получены с помощью весовых коэффициентов, которые для оксидов Li₂O, Na₂O, K₂O вычислялись пропорционально доли германатной, силикатной и боратной части, соответственно. По результатам исследования получена сводная таблица сравнения экспериментальных и расчетных значений энтальпии образования для некоторых борогерманатов калия из которой видно, что отклонение между этими значениями менее 5 %. В работе получены расчетные значения термодинамических функций щелочных борогерманатов и германосиликатов в кристаллическом состоянии.

Ключевые слова: борогерманаты, германосиликаты, стандартные термодинамические функции.

Введение

В последнее время соединения, включающие несколько оксидов сеткообразователей, находят широкое применение в различных отраслях промышленности, в частности для производства нелинейных оптических лазерных систем и микропористых материалов. Огромный интерес в этом плане представляют борогерманаты [1–5] и германосиликаты [6–8]. Вхождение в структуру кристаллов и стекол в различных соотношениях атомов Ge, Si или B, способных формировать кристаллическую решетку, позволяет получать материалы с заданными свойствами.

Термодинамические потенциалы дают информацию о стабильности и реакционной способности молекул, что является ключевым фактором для синтеза соединений в масштабах химической промышленности. Однако подобных исследований немного, в виду больших трудозатрат на синтез и анализ [9–11]. Как показано в наших предыдущих работах, метод регрессионного анализа может с успехом применяться при расчете термодинамических свойств, в том числе при малом количестве исходных экспериментальных данных [12, 13].

Методы исследования

Методы расчета основаны на эмпирических соотношениях между физико-химическими величинами [14]. Поэтому целесообразно использовать соотношения «структура – свойство» для расчета неизвестных значений. Эти же соотношения используются в аддитивных методах расчета. Регрессионный анализ позволяет проводить корреляцию между термодинамическим потенциалом, составом и определенными свойствами соединений, исходя из этой корреляции, оценивать термодинамические потенциалы и свойства малоизученных соединений.

Аддитивный метод Неймана – Коппа и его разновидности с успехом применялись при расчете термодинамических свойств силикатных минералов [15, 16], фосфатов [17], карбонатов [18], водных сульфатов [19], водных боратов [20, 21] и других соединений. В представленных работах показано, что погрешность расчетов может быть менее 5 %, что сопоставимо с точностью экспериментальных методов.

Оценка термодинамических свойств соединений, не изученных экспериментально, выполнялась с помощью регрессионного анализа на основе классического аддитивного метода Неймана – Коппа:

$$F(\mathbf{A}_{k}\mathbf{B}_{l}) = kF(\mathbf{A}) + lF(\mathbf{B}), \tag{1}$$

где F — произвольный термодинамический или термохимический потенциал; А и В — структурные единицы (элементы, ионы, оксиды и т. д.), на которые могут быть разложены исследуемые вещества; k и l — количество структурных единиц.

Базовыми компонентами регрессионной матрицы множества изоструктурных веществ будем называть вещества, для которых известны величины исследуемых термодинамических потенциалов, исчерпывающе описывающих всю исследуемую систему стехиометрических единиц. Для неисследованных веществ должны быть известны независимые параметры (стехиометрические единицы), на основе которых могут быть рассчитаны неизвестные термодинамические свойства.

Уравнение множественной регрессии, устанавливающее зависимость между величинами термодинамических (термохимических) потенциалов и структурой веществ (базовых веществ), имеет вид

$$y_i = \sum_{i=1}^m b_j x_{ij},\tag{2}$$

где $y_i - i$ -е зависимое значение известного потенциала (численная величина исследуемого термодинамического свойства *i*-го базового вещества); $b_j - коэффициенты множественной регрессии; <math>x_{ij}$ – независимые параметры известного потенциала (количество *i*-й структурной единицы).

При анализе данных по термодинамическим свойствам соединений большое значение имеет погрешность приводимых значений, так как иногда точность выполненных измерений завышена [22]. При расчете коэффициентов в системе уравнений (2) для исходных силикатов, боратов и германатов были использованы данные из общепризнанных и прошедших многократную проверку источников [23–26].

Критерии корректности согласования оцениваются, исходя из положения, что вклады всех структурных составляющих (значения b_j) в значение исследуемого термодинамического потенциала должны иметь один знак, так как каждая структурная составляющая вносит в эту величину одноименный вклад. Только в этом случае на основании найденной зависимости можно осуществлять расчет для неисследованных соединений с величинами x_{i1} и x_{ij} , отличающимися от x_{i1} и x_{ij} базовых соединений.

Выбор единственного решения системы (2) не может быть произведен на основании только математических критериев, таких как коэффициент корреляции, среднеквадратичное отклонение и т. п. Необходимо введение дополнительных термодинамических ограничений, обусловленных свойствами базовых компонентов. В [22] показано, что для термодинамических потенциалов (например, стандартной энтропии) изоструктурных соединений величины b_j структурных составляющих имеют ярко выраженную зависимость от молекулярной массы структурных единиц.

Для других термохимических потенциалов (например, энтальпии образования из простых веществ) зависимость величины *b_i* от молекулярной массы структурных составляющих обычно

не проявляется. Поскольку в качестве структурных единиц А и В нами выбраны оксид кремния (бора или германия) и оксиды щелочных металлов, величину *b_i* можно представить в виде:

$$b_j = b_j (\operatorname{Str}) + b_j (\operatorname{Ex}), \tag{3}$$

где $b_j(Str)$ – величина исследуемого термодинамического или термохимического потенциала структурной составляющей x_{ij} как индивидуального вещества (в соответствующем фазовом состоянии); $b_j(Ex)$ – избыточная функция структурной составляющей x_{ij} при образовании соединения с термодинамическим или термохимическим потенциалом y_i .

Исследование закономерностей изменения энтальпии образования из простых веществ в рядах боратов, алюминатов, фторалюминатов, арсенатов щелочных металлов, а также алюминатов и арсенатов щелочноземельных металлов показали, что ярко выраженную зависимость от молекулярной массы однотипных структурных единиц имеют их избыточные функции. Таким образом, анализ (3) позволяет выбрать единственное решение системы (2) для термохимических потенциалов.

Результаты и их обсуждение

Ранее нами были рассчитаны термодинамические свойства щелочных силикатов, боратов и германатов [12, 13]. Общий ход расчетов на примере силикатов включает следующие шаги:

1) согласование имеющихся термодинамических потенциалов на основе установления закономерностей «структура – свойство» аддитивными методами;

2) конструирование формуляров согласованных термодинамических свойств выполняется для соединений, для которых имеется необходимое количество исходных данных;

3) на основе сконструированных формуляров находятся закономерности, позволяющие выполнять интерполяцию и экстраполяцию, необходимые для оценки неизвестных термодинамических свойств веществ со структурой $mMe_2O-nSiO_2$.

Поскольку согласование термодинамических величин следует выполнять на основе представительного количества изоструктурных веществ, расчеты проводились одновременно для силикатов калия, лития и натрия. Тогда система (2) принимает вид:

$$y = b_1 x_{\text{SiO}_2} + b_2 x_{\text{Li}_2\text{O}} + b_3 x_{\text{Na}_2\text{O}} + b_4 x_{\text{K}_2\text{O}}.$$
 (4)

Далее с помощью регрессионного анализа были установлены зависимости стандартной энтропии для силикатов, боратов и германатов лития, натрия и калия от состава:

$$S^{\circ}(x_{ij}\text{Me}_{2}\text{O} \cdot x_{i1}\text{GeO}_{2}; \kappa; 298,15 \text{ K}) = 48,657 \cdot x(\text{GeO}_{2}) + 44,603 \cdot x(\text{Li}_{2}\text{O}) + 83,425 \cdot x(\text{Na}_{2}\text{O}) + 117,202 \cdot x(\text{K}_{2}\text{O}) \ \text{Дж} \cdot \text{K}^{-1} \cdot \text{моль}^{-1}.$$
(7)

Подобные уравнения были получены также для стандартной энтальпии образования из простых соединений:

$$\Delta_{f} H^{\circ} (x_{ij} \operatorname{Me}_{2} \operatorname{O} \cdot x_{i1} \operatorname{SiO}_{2}; \kappa; 298, 15 \operatorname{K}) = -919, 788 \cdot x (\operatorname{SiO}_{2}) - 720, 705 \cdot x (\operatorname{Li}_{2} \operatorname{O}) - -625, 385 \cdot x (\operatorname{Na}_{2} \operatorname{O}) - 650, 962 \cdot x (\operatorname{K}_{2} \operatorname{O}) \ \kappa \ \text{Дж} \cdot \operatorname{MOJL}^{-1}.$$
(8)

$$\Delta_{f} H^{\circ} (x_{ij} \operatorname{Me}_{2} \operatorname{O} \cdot x_{i1} \operatorname{B}_{2} \operatorname{O}_{3}; \kappa; 298, 15 \operatorname{K}) = -1305, 296 \cdot x (\operatorname{B}_{2} \operatorname{O}_{3}) - 738, 059 \cdot x (\operatorname{Li}_{2} \operatorname{O}) - -678, 501 \cdot x (\operatorname{Na}_{2} \operatorname{O}) - 723, 862 \cdot x (\operatorname{K}_{2} \operatorname{O}) \kappa \operatorname{Дж} \cdot \operatorname{MOJb}^{-1}.$$
(9)

$$\Delta_{f} H^{\circ} (x_{ij} \text{Me}_{2} \text{O} \cdot x_{i1} \text{GeO}_{2}; \kappa; 298, 15 \text{ K}) = -626, 676 \cdot x (\text{GeO}_{2}) - 698, 569 \cdot x (\text{Li}_{2} \text{O}) - -579, 601 \cdot x (\text{Na}_{2} \text{O}) - 569, 652 \cdot x (\text{K}_{2} \text{O}) \kappa \exists \mathsf{K} \cdot \mathsf{MOJL}^{-1}.$$
(10)

И уравнения для стандартной теплоемкости:

$$C_{p}^{\circ}(x_{ij}\operatorname{Me}_{2}\operatorname{O} \cdot x_{i1}\operatorname{SiO}_{2}; \kappa; 298, 15 \operatorname{K}) = 43,153 \cdot x(\operatorname{SiO}_{2}) + 38,366 \cdot x(\operatorname{Li}_{2}\operatorname{O}) + 73,796 \cdot x(\operatorname{Na}_{2}\operatorname{O}) + 103,426 \cdot x(\operatorname{K}_{2}\operatorname{O}) \operatorname{Hzr}_{2} \operatorname{K}^{-1}_{2} \operatorname{Norm}^{-1}$$
(11)

$$+/3, /96 \cdot x(Na_2O) + 103, 426 \cdot x(K_2O)$$
 Дж · К · моль · .
 $C_r^{\circ}(x_i; Me_2O \cdot x_i; B_2O_2; K; 298.15 \text{ K}) = 58.104 \cdot x(B_2O_2) + 62.917 \cdot x(Li_2O) +$

$$+72,246 \cdot x(\text{Na}_2\text{O}) + 75,736 \cdot x(\text{K}_2\text{O}) \ \text{Дж} \cdot \text{K}^{-1} \cdot \text{моль}^{-1}.$$
(12)

$$C_{p}^{\circ}(x_{ij}\text{Me}_{2}\text{O} \cdot x_{i1}\text{GeO}_{2}; \kappa; 298,15 \text{ K}) = 51,961 \cdot x(\text{GeO}_{2}) + 54,455 \cdot x(\text{Li}_{2}\text{O}) + 68,454 \cdot x(\text{Na}_{2}\text{O}) + 76,505 \cdot x(\text{K}_{2}\text{O}) \text{ Дж} \cdot \text{K}^{-1} \cdot \text{моль}^{-1}.$$
(13)

Необходимо отметить, что уравнения были получены с учетом погрешности исходных экспериментальных данных, то есть использовались весовые коэффициенты. Это позволило существенно улучшить качество регрессионного анализа.

Для расчета термодинамических свойств (энтальпии образования, энтропии и теплоемкости) борогерманатов и германосиликатов брались соответствующие коэффициенты из уравнений (5)–(13). Исходя из предположения равномерного распределения катионов щелочных металлов в структуре, коэффициенты для оксидов Li₂O, Na₂O, K₂O вычислялись пропорционально доли германатной, силикатной и боратной части, соответственно. Например, соединение K₂B₂Ge₃O₁₀ можно расписать на составные оксиды и рассчитать энтальпию образования:

$$K_{2}B_{2}Ge_{3}O_{10} = \frac{K_{2}O_{(B_{2}O_{3})}}{4} + \frac{3 \cdot K_{2}O_{(GeO_{2})}}{4} + B_{2}O_{3} + 3 \cdot GeO_{2}$$

$$\Delta_{f}H^{\circ}(K_{2}B_{2}Ge_{3}O_{10}) = \frac{-723,862}{4} + \frac{3 \cdot (-569,652)}{4} - -1305,296 - 3 \cdot 626,676 = -3793,5 \ \kappa \mbox{Дж · моль}^{-1}.$$
(14)

В табл. 1 представлены результаты расчетов термодинамических свойств для некоторых борогерманатов щелочных металлов.

Соединение	S° (298,15 K), Дж·К ⁻¹ ·моль ⁻¹ Расчет по (5)–(7)	Δ _f H° (298,15 K), кДж∙моль ⁻¹ Расчет по (8)–(10)	C_p° (298,15 K), Дж·К ⁻¹ ·моль ⁻¹ Расчет по (11)–(13)	Δ _/ G° (298,15 K), кДж∙моль ^{−1}
Li ₂ B ₂ Ge ₃ O ₁₀	237.9	-3894	270.6	-3610
$Li_2B_2Ge_2O_8$	190,6	-3270	219,3	-3043
Li ₂ B ₂ GeO ₆	144,6	-2650	168,8	-2480
Na ₂ B ₂ Ge ₃ O ₁₀	277,6	-3790	283,4	-3505
$Na_2B_2Ge_2O_8$	230,6	-3171	231,7	-2943
Na ₂ B ₂ GeO ₆	185,2	-2561	180,4	-2389
$K_2B_2Ge_3O_{10}$	306,4	-3794	290,3	-3509
$K_2B_2Ge_2O_8$	257,8	-3180	238,3	-2951
K ₂ B ₂ GeO ₆	209,1	-2579	186,2	-2406
Li ₄ B ₂ Ge ₃ O ₁₁	286,5	-4602	327,1	-4285
Li ₄ B ₂ Ge ₂ O ₉	240,5	-3982	276,6	-3722
Li ₄ B ₂ GeO ₇	197,3	-3369	227,4	-3166
$Na_4B_2Ge_3O_{11}$	365,9	-4394	352,8	-4074
Na ₄ B ₂ Ge ₂ O ₉	320,5	-3784	301,5	-3521
Na ₄ B ₂ GeO ₇	278,4	-3190	250,8	-2985
$K_4B_2Ge_3O_{11}$	423,6	-4402	366,6	-4083
$K_4B_2Ge_2O_9$	374,9	-3801	314,5	-3538
$K_4B_2GeO_7$	326,2	-3225	262,3	-3019

-	

Таблица 1

				Окончание табл. 1
	<i>S</i> ° (298,15 K),	$\Delta_{f}H^{\circ}(298,15 \text{ K}),$	C_p° (298,15 K),	Δ <i>G</i> ° (298.15 K).
Соединение	Дж•К •моль •	кДжмоль	Дж К моль	кЛу:мощ ⁻¹
	Расчет по (5)-(7)	Расчет по (8)-(10)	Расчет по (11)-(13)	кдж молв
Li ₂ B ₄ Ge ₃ O ₁₃	283,6	-5205	329,9	-4840
$Li_2B_4Ge_2O_{11}$	236,6	-4582	278,8	-4273
Li ₂ B ₄ GeO ₉	190,6	-3962	228,3	-3710
$Na_2B_4Ge_3O_{13}$	323,8	-5110	342,1	-4743
$Na_2B_4Ge_2O_{11}$	277,1	-4493	290,5	-4183
Na ₂ B ₄ GeO ₉	231,7	-3883	239,2	-3630
$K_2B_4Ge_3O_{13}$	349,7	-5122	348,3	-4755
$K_2B_4Ge_2O_{11}$	301,1	-4511	296,3	-4200
K ₂ B ₄ GeO ₉	252,4	-3910	244,2	-3655
Li ₄ B ₄ Ge ₃ O ₁₄	334,7	-5919	387,8	-5521
Li ₄ B ₄ Ge ₂ O ₁₂	289,2	-5301	337,5	-4960
Li ₄ B ₄ GeO ₁₀	245,9	-4687	288,4	-4404
Na ₄ B ₄ Ge ₃ O ₁₄	415,1	-5729	412,0	-5329
$Na_4B_4Ge_2O_{12}$	370,3	-5122	360,8	-4779
Na ₄ B ₄ GeO ₁₀	328,2	-4528	310,1	-4243
$K_4B_4Ge_3O_{14}$	466,9	-5753	424,5	-5352
$K_4B_4Ge_2O_{12}$	418,2	-5157	372,4	-4812
K ₄ B ₄ GeO ₁₀	369,5	-4582	320,2	-4293
$K_4B_8Ge_2O_{18}$	504,8	-7819	488,3	-7310

Как отмечалось выше, экспериментальных работ по определению термодинамических свойств борогерманатов немного: существуют данные по стандартной энтальпии образования для $K_2B_2Ge_3O_{10}$, $K_2GeB_4O_9 \cdot 2H_2O$ и $K_4B_8Ge_2O_{17}(OH)_2$, соответственно $-3937,1 \pm 4,7$ кДж·моль⁻¹, $-4560,8 \pm 3,4$ кДж·моль⁻¹ и $-8257,9 \pm 6,8$ кДж·моль⁻¹ [10, 11]. В работе [27] на примере алюмофосфатов показано, что регрессионный анализ может с успехом применяться при расчете термодинамических свойств сложных соединений, содержащих молекулярную воду и гидроксильные группы, и их вклад можно оценить. Коэффициенты для вычисления энтальпии образования соединений с молекулярной водой и гидроксильными группами соответственно равны -304,4 и -240,7 кДж·моль⁻¹. Используя эти коэффициенты, можно рассчитать значения $\Delta_f H^\circ$ для безводных борогерманатов и сравнить с полученными результатами (табл. 2). Как видно, отклонения между вычисленными и экспериментальными значениями составляют менее 5 %.

Таблица 2

для некоторых оброгерманатов калия				
Соединение		0		
	Экспериментальные данные	Расчет по (8)-(10)	Отклонение, %	
$K_2B_2Ge_3O_{10}$	-3937,1 [10]	-3793,5	3,6	
K ₂ GeB ₄ O ₉	-3952,8 [11]	-3909,7	1,1	
$K_4B_8Ge_2O_{18}$	-7777,9 [11]	-7819,5	0,5	

Сравнение экспериментальных и расчетных значений энтальпии образования для некоторых борогерманатов калия

Используя уравнения (5)–(13), были рассчитаны термодинамические свойства для щелочных германосиликатов (табл. 3).

		Ť	аблица 3
Расчетные значения	а термод	инамических функций щелочных германосиликатов в кристаллическом сос	тоянии

Соединение	<i>S</i> ° (298,15 K), Дж·К ⁻¹ ·моль ⁻¹	∆ _f H° (298,15 K), кДж∙моль ⁻¹	C_p° (298,15 К), Дж·К ⁻¹ ·моль ⁻¹	$\Delta_f G^{\circ} (298, 15 \text{ K}),$
	Расчет по (5)-(7)	Расчет по (8)-(10)	Расчет по (11)-(13)	кдж моль
Li2SiGe3O9	232,2	-3504	254,7	-3247
Li ₂ SiGe ₂ O ₇	183,0	-2879	203,0	-2678
Li ₂ SiGeO ₅	133,3	-2256	151,6	-2111
Na ₂ SiGe ₃ O ₉	270,1	-3391	268,2	-3132
Na ₂ SiGe ₂ O ₇	220,7	-2768	216,4	-2565
Na ₂ SiGeO ₅	170,4	-2149	164,6	-2001

Окончание табл. 3

	<i>S</i> ° (298,15 K),	Δ _f H° (298,15 K),	<i>C</i> [°] _p (298,15 K),	$A = C^{0} (200, 15 \text{ V})$
Соединение	$Д$ ж· K^{-1} ·моль ⁻¹	кДж∙моль ⁻¹	Дж·К ⁻¹ ·моль ⁻¹	$\Delta_f G^*$ (298,15 K),
	Расчет по (5)-(7)	Расчет по (8)-(10)	Расчет по (11)-(13)	кдж•моль
K ₂ SiGe ₃ O ₉	302,9	-3390	275,3	-3133
K ₂ SiGe ₂ O ₇	253,1	-2770	223,0	-2569
K ₂ SiGeO ₅	202,1	-2157	170,6	-2011
Li ₄ SiGe ₃ O ₁₀	275,2	-4208	309,9	-3916
Li ₄ SiGe ₂ O ₈	225,5	-3585	258,5	-3349
Li ₄ SiGeO ₆	174,8	-2966	207,5	-2785
Na ₄ SiGe ₃ O ₁₀	351,2	-3982	336,9	-3686
Na ₄ SiGe ₂ O ₈	300,9	-3363	285,1	-3123
Na ₄ SiGeO ₆	249,0	-2751	233,5	-2566
K ₄ SiGe ₃ O ₁₀	416,6	-3980	351,0	-3688
K ₄ SiGe ₂ O ₈	365,7	-3367	298,5	-3130
K ₄ SiGeO ₆	312,4	-2767	245,5	-2585
Li ₂ Si ₂ Ge ₃ O ₁₁	274,4	-4427	298,8	-4116
Li ₂ Si ₂ Ge ₂ O ₉	225,1	-3803	247,2	-3547
Li ₂ Si ₂ GeO ₇	175,4	-3180	195,7	-2980
Na ₂ Si ₂ Ge ₃ O ₁₁	311,8	-4318	312,0	-4004
Na ₂ Si ₂ Ge ₂ O ₉	262,2	-3695	260,2	-3438
Na ₂ Si ₂ GeO ₇	212,0	-3076	208,4	-2874
$K_2Si_2Ge_3O_{11}$	344,0	-4322	318,4	-4010
K ₂ Si ₂ Ge ₂ O ₉	293,9	-3703	266,2	-3447
K ₂ Si ₂ GeO ₇	243,0	-3090	213,7	-2889
Li ₄ Si ₂ Ge ₃ O ₁₂	316,5	-5134	354,5	-4788
Li ₄ Si ₂ Ge ₂ O ₁₀	266,6	-4512	303,1	-4221
Li ₄ Si ₂ GeO ₈	215,9	-3893	252,1	-3657
Na ₄ Si ₂ Ge ₃ O ₁₂	391,4	-4915	380,9	-4565
Na ₄ Si ₂ Ge ₂ O ₁₀	340,8	-4298	329,1	-4003
Na ₄ Si ₂ GeO ₈	289,0	-3686	277,5	-3446
$K_4Si_2Ge_3O_{12}$	455,7	-4924	393,7	-4577
$K_4Si_2Ge_2O_{10}$	404,2	-4314	341,1	-4021
K ₄ Si ₂ GeO ₈	351,0	-3714	288,1	-3476

Заключение

Получена новая информация об основных термодинамических свойствах щелочных борогерманатов и германосиликатов. Это позволяет пополнить базу термодинамических данных, необходимую для исследования сложных германатных систем. Рассчитанные значения могут быть использованы при оптимизации технологических процессов получения различных материалов (стекол, керамики). Хорошая согласованность с экспериментальными данными для борогермантов указывает на корректность применяемого подхода расчета.

Работа выполнена при финансовой поддержке гранта РФФИ (№ 16-35-60045).

Литература

1. Lin, Z.E. Synthesis and structure of $KBGe_2O_6$: the first chiral zeotype borogermanate with 7-ring channels / Z.E. Lin, J. Zhang, G.Y. Yang // Inorg. Chem. – 2003. – V. 42, No. 6. – P. 1797–1799.

2. Pan, Ch.-Y. A new zeotype borogermanate β -K₂B₂Ge₃O₁₀: synthesis, structure, property and conformational polymorphism / C.-Y. Pan, H.-D. Mai, G.-Y. Yang // Microporous Mesoporous Mater. – 2013. – V. 168. – P. 183–187.

3. $CsB_xGe_{6-x}O_{12}$ (x = 1): a zeolite sodalite-type borogermanate with a high Ge/B ratio by partial boron substitution / R. Pan, J.W. Cheng, B.F. Yang, G.Y. Yang // Inorg. Chem. – 2017. – V. 56, No. 5. – P. 2371–2374.

4. A borogermanate with three-dimensional open-framework layers / D.-B. Xiong, J.-T. Zhao, H.-H. Chen, X.-X. Yang // Chem. Eur. J. -2007. - V. 13, No. 35. - P. 9862-9865.

5. $Cs_2GeB_4O_9$: a new second-order nonlinear-optical crystal / X. Xu, C.L. Hu, F. Kong et al. // Inorg. Chem. – 2013. – V. 52, No. 10. – P. 5831–5837.

6. Synthesis and characterization of a layered silicogermanate PKU-22 and its topotactic condensation to a three-dimensional STI-type zeolite / Y. Chen, S. Huang, X.L. Wang et al. // Cryst. Growth & Des. -2017. -V. 17, No. 10. -P. 5465–5473.

7. Synthesis and characterization of CIT-13, a germanosilicate molecular sieve with extra-large pore openings / J.H. Kang, M.E. Davis, D.Xie et al. // Chem. Mater. – 2016. – V. 28, No. 17. – P. 6250–6259.

8. The mechanism of the initial step of germanosilicate formation in solution: a first-principles molecular dynamics study / T.T. Trinh, X. Rozanska, F. Delbecq et al. // Chem. Phys. -2016. - V. 18, No. 21. - P. 14419-14425.

9. Gao, Y.-H. Hydrothermal synthesis and thermodynamic properties of $2ZnO\cdot 3B_2O_3\cdot 3H_2O$ / Y.-H. Gao, Z.-H. Liu, X.-L. Wang // J. Chem. Thermodyn. – 2009. – V. 41, No. 6. – P. 775–778.

10. Thermochemical properties of microporous materials for two borogermanates, β -K₂[B₂Ge₃O₁₀] and NH₄[BGe₃O₈] / N. Kong, H.-H. Zhang, J. Wang, Z.-H. Liu // J. Chem. Thermodyn. – 2016. – V. 92. – P. 29–34.

11. Zhang, Y. Thermodynamic properties of microporous crystals for two hydrated borogermanates, $K_2[Ge(B_4O_9)] \cdot 2H_2O$ and $K_4[B_8Ge_2O_{17}(OH)_2] / Y$. Zhang, S. Lei, Z.-H. Liu // J. Chem. Thermodyn. – 2013. – V. 61. – P. 27–31.

12. Methods for calculating and matching thermodynamic properties of silicate and borate compounds / O.N. Koroleva, M.V. Shtenberg, V.A. Bychinsky et al. // Bulletin of the South Ural State University. Ser. Chemistry. -2017. -V. 9, No. 1. -P. 39–48.

13. Расчет энтальпии образования, стандартной энтропии и стандартной теплоемкости щелочных и щелочно-земельных германатов / М.В. Штенберг, В.А. Бычинский, О.Н. Королева и др. // Журн. неорг. химии. – 2017. – Т. 62, № 11. – С. 1468–1473.

14. Spencer, P.J. Estimation of thermodynamic data for metallurgical applications / P. J. Spencer // Thermochim. Acta. – 1998. – V. 314, No. 1–2. – P. 1–21.

15. Aja, S.U. On estimating the thermodynamic properties of silicate minerals / S.U. Aja, S.A. Wood, A.E. Williams-Jones // Eur. J. Mineral. – 1992. – V. 4, No. 6. – P. 1251–1264.

16. Chermak, J.A. Estimating the thermodynamic properties of silicate minerals at 298 K from the sum of polyhedral contributions / J.A. Chermak, J.D. Rimstidt // Am. Mineral. -1989. - V. 74, No. 9-10. - P. 1023-1031.

17. La Iglesia, A. Estimating the thermodynamic properties of phosphate minerals at high and low temperature from the sum of constituent units / A. La Iglesia // Estud. geol. -2009. - V. 65, No. 2. - P. 109-119.

18. La Iglesia, A. Estimation of thermodynamic properties of mineral carbonates at high and low temperatures from the sum of polyhedral contributions / A.La Iglesia, J.F. Félix // Geochim. Cosmochim. Acta. – 1994. – V. 58, No. 19. – P. 3983–3991.

19. Billon, S. Prediction of enthalpies of formation of hydrous sulfates / S. Billon, P. Vieillard // Am. Mineral. -2015. - V. 100, No. 2-3. - P. 615-627.

20. Li, J. Calculation of thermodynamic properties of hydrated borates by group contribution method / J. Li, B. Li, S. Gao // Phys. Chem. Miner. -2000. - V. 27, No. 5. - P. 342-346.

21. Mattigod, S.V. A method for estimating the standard free energy of formation of borate minerals / S.V. Mattigod // Soil Sci. Soc. Am. J. – 1983. – V. 47, No. 4. – P. 654–655.

22. Подготовка термодинамических свойств индивидуальных веществ к физикохимическому моделированию высокотемпературных технологических процессов / А.А. Тупицын, А.В. Мухетдинова, В.А. Бычинский, Н.А. Корчевин. – Иркутск: Иркутский государственный университет, 2009. – 303 с.

23. JANAF thermochemical tables / Ed. by M. W. Chase. – 3 ed. – Washington, 1985. – V. 14. – 926 p.

24. Бабушкин, В.И. Термодинамика силикатов / В.И. Бабушкин, О.П. Мчедлов-Петросян, Г.М. Матвеев. – М.: Издательство литературы по строительству, 1972. – 351 с.

25. Термические константы веществ: справочник / сост. В.П. Глушко. – 2 изд. – М.: ВИНИТИ, 1981. – Т. 10, ч. 2. – 441 с.

26. Термодинамические свойства индивидуальных веществ: справочник / сост. Л.В. Гурвич. -3 изд. – М.: Наука, 1982. – Т. 4, кн. 1. – 623 с.

27. Расчет стандартных термодинамических потенциалов сульфатов и гидроксосульфатов алюминия / О.В. Еремин, О.С. Русаль, В.А. Бычинский и др. // Журн. неорг. химии. - 2015. -T. 60, № 8. – C. 1048–1055.

Штенберг Михаил Владимирович – кандидат геолого-минералогических наук, научный сотрудник, Институт минералогии УрО РАН, 456317, г. Миасс, Челябинская область, Территория Ильменский заповедник. E-mail: shtenberg@mineralogy.ru

Бычинский Валерий Алексеевич - кандидат геолого-минералогических наук, старший научный сотрудник, Институт геохимии им. А.П. Виноградова СО РАН, 664033, г. Иркутск, ул. Фаворского, д. 1a. E-mail: val@jgc.irk.ru

Королева Ольга Николаевна – кандидат химических наук, доцент, кафедра ТМиЕНММФ, Южно-Уральский государственный университет, филиал в г. Миассе. 456304, г. Миасс, Челябинская область, ул. Калинина, 37. E-mail: koroleva@mineralogy.ru

Коробатова Надежда Михайловна – инженер-исследователь, Институт минералогии УрО РАН, 456317, г. Миасс, Челябинская область, Территория Ильменский заповедник. E-mail: gilloten@vandex.ru

Мосунова Татьяна Владимировна – кандидат химических наук, кафедра экологии химической технологии, химический факультет, Южно-Уральский государственный университет. 454080, г. Челябинск, проспект Ленина, 76. E-mail: wik22@inbox.ru

Дмитриева Анастасия Павловна – студент, Южно-Уральский государственный университет. 454080, г. Челябинск, проспект Ленина, 76. E-mail: dmitrieva.n.15@mail.ru

Поступила в редакцию 2 сентября 2018 г.

DOI: 10.14529/chem180404

CALCULATING THERMODYNAMIC PROPERTIES OF ALKALI BOROGERMANATES AND GERMANOSILICATES

M.V. Shtenberg¹, shtenberg@mineralogy.ru

V.A. Bychinsky², val@igc.irk.ru O.N. Koroleva³, koroleva@mineralogy.ru

N.M. Korobatova¹, gilloten@yandex.ru

T.V. Mosunova⁴, wik22@inbox.ru **A.P. Dmitriyeva⁴**, dmitrieva.n.15@mail.ru

¹ Institute of Mineralogy UB RAS, Miass, Russian Federation

² Vinogradov Institute of Geochemistry SB RAS, Irkutsk, Russian Federation

³ South Ural State University, Miass, Russian Federation

⁴ South Ural State University, Chelyabinsk, Russian Federation

Evaluation of thermodynamic properties of the compounds, not studied experimentally, has been carried out with the use of regression analysis on the basis of the classical additive Neumann-Kopp method. Constitutive interdependence between the values of thermodynamic (thermochemical) potentials and the structures of substances (base substances) has been calculated according to the multiple regression equation. It has been necessary to introduce additional thermodynamic limitations caused by the properties of base components. The study of changes in enthalpies of formation in the series of borates, aluminates, fluoroaluminates, and arsenates of alkali metals, as well as aluminates and arsenates of alkaline-earth metals, has shown that the excess thermodynamic functions clearly depend on molecular masses of structural units of the same kind.

Composition dependencies of the standard entropy for lithium, sodium, and potassium silicates, borates, and germanates have been established; equations for the standard enthalpy of formation and heat capacity have been obtained. In order to refine the regression analysis the equations have been obtained with the help of weighting factors, which have been calculated in proportion to the fractions of germanate, silicate, and borate parts in Li₂O, Na₂O, and K₂O oxides, respectively. The summary table comparing the experimental and calculated values for enthalpies of formation of some potassium borogermanates shows that the disagreement between them is less than 5 %. The study results in calculated values of thermodynamic functions for alkali borogermanates and germanosilicates in the crystal state.

Keywords: borogermanates, germanosilicates, standard thermodynamic functions.

References

1. Lin Z.E., Zhang J., Yang G.Y. Synthesis and Structure of KBGe₂O₆: the First Chiral Zeotype Borogermanate With 7-Ring Channels. *Inorg. Chem.*, 2003, vol. 42, no. 6, pp. 1797–1799. DOI: 10.1021/ic020511h.

2. Pan C.-Y., Mai H.-D., Yang G.-Y. A New Zeotype Borogermanate β -K₂B₂Ge₃O₁₀: Synthesis, Structure, Property and Conformational Polymorphism. *Microporous Mesoporous Mater.*, 2013, vol. 168, pp. 183–187. DOI:10.1016/j.micromeso.2012.09.004.

3. Pan R., Cheng J.W., Yang B.F., Yang G.Y. $CsB_xGe_{6-x}O_{12}$ (x = 1): a Zeolite Sodalite-Type Borogermanate with a High Ge/B Ratio by Partial Boron Substitution. *Inorg. Chem.*, 2017, vol. 56, no. 5, pp. 2371–2374. DOI: 10.1021/acs.inorgchem.6b03002.

4. Xiong D.-B., Zhao J.-T., Chen H.-H., Yang X.-X. A Borogermanate with Three-Dimensional Open-Framework Layers. *Chem. Eur. J.*, 2007, vol. 13, no. 35, pp. 9862–9865. DOI: 10.1002/chem.200701009.

5. Xu X., Hu C.L., Kong F., Zhang J.H., Mao J.G., Sun J. Cs₂GeB₄O₉: a New Second-Order Nonlinear-Optical Crystal. *Inorg. Chem.*, 2013, vol. 52, no. 10, pp. 5831–5837. DOI: 10.1021/ic302774h.

6. Chen Y., Huang S., Wang X.L., Zhang L., Wu N., Liao F., Wang Y. Synthesis and Characterization of a Layered Silicogermanate PKU-22 and its Topotactic Condensation to a Three-Dimensional STI-Type Zeolite. *Cryst. Growth Des.*, 2017, vol. 17, no. 10, pp. 5465–5473. DOI:10.1021/acs.cgd.7b01000.

7. Kang J.H., Davis M.E., Xie D., Zones S.I., Smeets S., McCusker L.B. Synthesis and Characterization of CIT-13, a Germanosilicate Molecular Sieve with Extra-Large Pore Openings. *Chem. Mater.*, 2016, vol. 28, no. 17, pp. 6250–6259. DOI: 10.1021/acs.chemmater.6b02468.

8. Trinh T.T., Rozanska X., Delbecq F., Tuel A., Sautet P. The Mechanism of the Initial Step of Germanosilicate Formation in Solution: a First-Principles Molecular Dynamics Study. *Chem. Phys.*, 2016, vol. 18, no. 21, pp. 14419–14425. DOI: 10.1039/c6cp01223j.

9. Gao Y.-H., Liu Z.-H., Wang X.-L. Hydrothermal Synthesis and Thermodynamic Properties of 2ZnO·3B₂O₃·3H₂O. *J. Chem. Thermodyn.*, 2009, vol. 41, no. 6, pp. 775–778. DOI: 10.1016/j.jct.2008.12.012.

10. Kong N., Zhang H.-H., Wang J., Liu Z.-H. Thermochemical Properties of Microporous Materials for Two Borogermanates, β -K₂[B₂Ge₃O10] and NH₄[BGe₃O₈]. *J. Chem. Thermodyn.*, 2016, vol. 92, pp. 29–34. DOI: 10.1016/j.jct.2015.08.032.

11. Zhang Y., Lei S., Liu Z.-H. Thermodynamic Properties of Microporous Crystals for Two Hydrated Borogermanates, $K_2[Ge(B_4O_9)] \cdot 2H_2O$ and $K_4[B_8Ge_2O_{17}(OH)_2]$. J. Chem. Thermodyn., 2013, vol. 61, pp. 27–31. DOI: 10.1016/j.jct.2013.01.027.

12. Koroleva O.N., Shtenberg M.V., Bychinsky V.A., Tupitsyn A.A., Chudnenko K.V. Methods for Calculating and Matching Thermodynamic Properties of Silicate and Borate Compounds. *Bulletin of the South Ural State University. Ser. Chemistry*, 2017, vol. 9, no. 1, pp. 39–48. DOI: 10.14529/chem170105.

13. Shtenberg M.V., Bychinskii V.A., Koroleva O.N., Korobatova N.M., Tupitsyn A.A., Fomichev S.V., Krenev V.A. Calculation of the Formation Enthalpies, Standard Entropies, and Standard Heat Capacities of Alkali and Alkaline-Earth Germanates. *Russ. J. Inorg. Chem.*, 2017, vol. 62, no. 11, pp. 1464–1468. DOI: 10.1134/S0036023617110183.

14. Spencer P.J. Estimation of Thermodynamic Data for Metallurgical Applications. *Thermochim. Acta*, 1998, vol. 314, no. 1-2, pp. 1-21. DOI: 10.1016/S0040-6031(97)00469-3.

15. Aja S.U., Wood S.A., Williams-Jones A.E. On Estimating the Thermodynamic Properties of Silicate Minerals. *Eur. J. Mineral.*, 1992, vol. 4, no. 6, pp. 1251-1264. DOI: 10.1127/ejm/4/6/1251.

16. Chermak J.A., Rimstidt J.D. Estimating the Thermodynamic Properties of Silicate Minerals at 298 K from the Sum of Polyhedral Contributions. *Am. Mineral.*, 1989, vol. 74, no. 9–10, pp. 1023–1031.

17. La Iglesia A. Estimating the Thermodynamic Properties of Phosphate Minerals at High and Low Temperature from the Sum of Constituent Units. *Estud. geol.*, 2009, vol. 65, no. 2, pp. 109–119. DOI: 10.3989/egeol.39849.060.

18. La Iglesia A., Félix J.F. Estimation of Thermodynamic Properties of Mineral Carbonates at High and Low Temperatures from the Sum of Polyhedral Contributions. *Geochim. Cosmochim. Acta*, 1994, vol. 58, no. 19, pp. 3983–3991. DOI: 10.1016/0016-7037(94)90261-5.

19. Billon S., Vieillard P. Prediction of Enthalpies of Formation of Hydrous Sulfates. *Am. Mineral.*, 2015, vol. 100, no. 2–3, pp. 615–627. DOI:10.2138/am-2015-4925.

20. Li J., Li B., Gao S. Calculation of Thermodynamic Properties of Hydrated Borates by Group Contribution Method. *Phys. Chem. Miner.*, 2000, vol. 27, no. 5, pp. 342–346. DOI: 10.1007/s002690050263.

21. Mattigod S.V. A Method for Estimating the Standard Free Energy of Formation of Borate Minerals. *Soil Sci. Soc. Am. J.*, 1983, vol. 47, no. 4, pp. 654–655. DOI: 10.2136/sssaj1983.03615995004700040009x.

22. Tupitsyn A.A., Mukhetdinova A.V., Bychinskiy V.A. *Podgotovka termodinamicheskikh svoystv individual'nykh veshchestv k fiziko-khimicheskomu modelirovaniyu vysokotemperaturnykh tekhnologicheskikh protsessov* [Preparation of Thermodynamic Properties of Individual Substances by Physico-Chemical Modeling of High-Temperature Technological Processes]. Irkutsk: Irkutsk state University Publ., 2009, 303 p.

23. Chase M.W. (Ed.) JANAF Thermochemical Tables. Washington, 1985, vol. 14, 926 p. DOI: 10.1021/ac00198a726.

24. Babushkin V.I., Mchedlov-Petrosyan O.P., Matveev G.M. *Termodinamika silikatov* [Thermodynamics of Silicates]. Moscow, Izdatel'stvo literatury po stroitel'stvu Publ., 1972, 351 p.

25. Glushko V.P. (Ed.) *Termicheskie konstanty veshchestv: spravochnik* [Thermal Constants of Substances: Reference Book]. Moscow, VINITI Publ., 1981, vol. 10, ch. 2, 441 p.

26. Gurvich L.V. (Ed.) *Termodinamicheskie svoystva individual'nykh veshchestv: spravochnik* [Thermodynamic Properties of Individual Substances: Reference Book]. Moscow, Nauka Publ., 1982, vol. 4, book 1, 623 p.

27. Eremin O.V., Rusal' O.S., Bychinskii V.A., Chudnenko K.V., Fomichev S.V., Krenev V.A. Calculation of the Standard Thermodynamic Potentials of Aluminum Sulfates and Basic Aluminum Sulfates. *Russ. J. Inorg. Chem.*, 2015, vol. 60, no. 8, pp. 950–957. DOI: 10.1134/S0036023615080082.

Received 2 September 2018

ОБРАЗЕЦ ЦИТИРОВАНИЯ

Расчет термодинамических свойств щелочных борогерманатов и германосиликатов / М.В. Штенберг, В.А. Бычинский, О.Н. Королева и др. // Вестник ЮУрГУ. Серия «Химия». – 2018. – Т. 10, № 4. – С. 34–43. DOI: 10.14529/chem180404

FOR CITATION

Shtenberg M.V., Bychinsky V.A., Koroleva O.N., Korobatova N.M., Mosunova T.V., Dmitriyeva A.P. Calculating Thermodynamic Properties of Alkali Borogermanates and Germanosilicates. *Bulletin of the South Ural State University. Ser. Chemistry.* 2018, vol. 10, no. 4, pp. 34–43. (in Russ.). DOI: 10.14529/chem180404