DOI: 10.14529 /cmse220101

UNIFIED APPROACH FOR PROVISION
OF SUPERCOMPUTER CENTER RESOURCES

© 2022 A.V. Paokin, D.A. Nikitenko
Lomonosov Moscow State University (GSP-1, Leninskie Gory 1, Moscow, 119991 Russia)

E-mail: |andrejpaokin@yandex.ru, |dan@parallel. ru
Received: 12.12.2021

Within one supercomputer center, there may be several computing systems with different architectures and
principles of work with the end user. When organizing user access, it is necessary to fully describe the systems for
the coordinated choice of tasks, software packages and hardware by the user, as well as to take into account the
details of quotas, authentication, and launching applications on each of the individual machines within a single
workflow. In this paper, we propose an approach to the provision of resources of a supercomputer center, where
a user, using a complete description of computing systems, creates requests for access with desirable quotas. The
approach describes the life cycle of access. When an access state transition occurs, it is supposed to interact with
computing systems through their interfaces without deep integration. An overview of widely used approaches to
quoting and organizing access is given, and the proposed approach is implemented as a software module for the
Octoshell supercomputer center support system and tested on a computing system managed by the OpenNebula
cloud computing platform.

Keywords: supercomputer center administering, resource provision, Octoshell.

FOR CITATION

Paokin A.V., Nikitenko D.A. Unified Approach for Provision of Supercomputer Center
Resources. Bulletin of the South Ural State University. Series: Computational Mathematics
and Software Engineering. 2022. Vol. 11, no. 1. P. 5-14. DOI: 10.14529/cmse220101.

Introduction

A modern supercomputer center can consist of several computing systems with tens of
thousands of hardware and software components which are used by thousands of people .
Therefore, organizing the work of a supercomputer center is a complex task.

Within one supercomputer center, in addition to supercomputers with distributed memory,
there may be virtual machines. The number of virtual machines is limited only by physical
resources and the desire of users to use them. The supercomputer often acts as a shared resource,
while virtual machines are created for users to be used exclusively.

Therefore, resource quotas on these machines can be different. For example, in the cloud
case, a virtual machine is created on the server of a certain CPU model occupying as many cores
as a cloud administrator previously defined. In case of supercomputers, CPU hours or available
nodes can act as similar but not the same type of resource. There are other limits that usually
relate to supercomputers only: the maximum number of files for a user, the maximum number of
user tasks to be executed, etc. Supercomputer limits are often correspond to different software,
making the task of providing resources more difficult.

Therefore, a unified approach to the provision of resources of the supercomputer center is
proposed in this paper. Its main goal is to help users choose a computing system based on its
description and send a correct request to be considered by administrators. The approach will

help administrators to control user access in a unified manner.

2022, T. 11, Ne 1 5

mailto:andrejpaokin@yandex.ru
mailto:dan@parallel.ru

Unified Approach for Provision of Supercomputer Center Resources

The article is organized as follows. Section 1 describes existing approaches for computer
resource provision. Section 2 is devoted to the proposed approach and necessary interfaces for
computing systems to be implemented. In Section 3 we describe the implementation of the
approach used for cloud computing platforms. Section 4 contains performance evaluations and
implementation details linked to such evaluations.

1. Existing approaches for computing resource provision

It is important to consider organizational properties of resource provision. First of all, there
are project-based or user-based model of resource delegation. In the user-based model, resources
are simply given to a user, but in the project-based model, resources are given to a project:
a group of users united to solve one specific problem. Sometimes computing resources can be
given to scientists for free. Computing resources can be given on a free basis: this can be actual
for supercomputer centers connected with a government. But, in this case, the work carried on
the computing systems should be monitored properly: the problem to be solved should be well
described, and scientific results checked from time to time.

In this paper, we focus on computing system description, quota usage and authentication,
but the resulting method should be able to integrate into any of the organizational schemes.

1.1. Supercomputer system resource provision

The widespread way of accessing supercomputer resources is SSH protocol. Using a
command-line interface, users send their computing tasks to a workload manager and these tasks
are executed when requested resources are ready. It is possible that a supercomputer consists of
several partitions, which differ in hardware. That is why limits can correspond to one partition
only or the whole supercomputer and limits can be set for user, project (group of users). Also,
limits can be cumulative (CPU hours) and number of used resources should be saved and checked
from time to time.

Different combinations of conditions lead to difficulties in defining and checking limits, but
this is only a part of the problem: supercomputer operation usually depends on several software
tools and limits are defined there in different ways. It is possible that two types of file systems
exist for one supercomputer and the typical quotas on maximum hard drive space and number of
files are written in different ways. The other user quotas are set on CPU hours and the number
of launched and pending tasks.

1.2. Cloud computing platforms

The OpenNebula cloud computing platform will be considered further from the point of view
of this work . Every object in OpenNebula has its own id and type. Some of them are listed
below:

e A virtual machine can have several real / virtual CPUs and, depending on the settings,
a different amount of allocated RAM. These parameters can be changed, and only when
the machine is in the “power oft” state. There are more than 60 states in total: power on,
power off, waiting for resource allocation, etc., as well as various transient and error states.

e Host, a server running OpenNebula responsible for running virtual machines.

e Hard drive, where virtual machine data is stored.

e Virtual network, designed for communication between virtual machines and with the

management server.

6 Bectauk FOYpI'Y. Cepus «BpruunciaurenpHas MmareMaTnKa 1 “”HOOPMaTAKA»

A.V. Paokin, D.A. Nikitenko

e Image, containing operating system and software.
e Template, containing virtual machine settings and can be used for creating virtual

machines.

Access privilege management in OpenNebula is similar to the UNIX file system. Each object
has its owner, and you can define available actions for three categories of users in relation to the
object: owner, owner’s group, and other users. There are 3 available actions: use, management
and administration.

OpenNebula is accessible via the command line interface and the XML-RPC interface.
OpenNebula provides the reach web-interface called OpenNebula Sunstone using the XML-RPC
interface above to interact with OpenNebula, available for administrators and regular users.
Administrators and ordinary users (of course, respecting quotas given) can create a virtual
machine from scratch or through a template. In the latter case, the user can change any item
from the list above, taking into account access rights.

Administrators can set limits on the usage for users and user groups applied for different types
of objects: data stores, virtual machines (to limit the overall memory, cpu or VM instances),
network (to limit the number of IPs got from a given network), images (images can contain
consumable resources like software licenses) .

OpenStack is probably a more famous cloud computing platform . From a system
administrator’s point of view, it differs from OpenNebula. An OpenNebula cluster can be
exploited by a single system administrator, which is not the same as talking about OpenStack,
especially during software upgrades. But, the user level resource description is almost the same.
A notable difference is that OpenStack uses flavors instead of templates. Flavor is an available
hardware configuration for a server . It defines parameters for a virtual server that can be
launched: number of virtual CPUs, main memory and root disk sizes.

Both OpenNebula and OpenStack lack resource applications or other means of
communication among ordinary users or administrators. Despite the positive experience of
working with OpenNebula at the supercomputer center of Lomonosov Moscow State University,
users, who were given access to OpenNebula, sometimes addressed simple tasks to administrators

directly via email, and not to OpenNebula Sunstone.

2. Proposed approach

Before proceeding to the detailed description of the approach, we will describe the basic
principles.

e To access computing resources, users send requests, and they should be structured: it
should be clear, which system the request is for and how much resources are requested.

e [t is important to fully describe computing systems in a structured manner, so that a user
could choose a right computing system. Values of resources and their limits should be clear
to a user.

e Thousands of users can work in a single supercomputer center. That is why, common tasks,
such as granting and blocking access, should be automated.

e The software implementation of the approach should not be deeply integrated with
computing systems, but communicate with them through special interfaces.

Structural description of computing systems and request, if approved, is necessary to
automatically provide access with the required parameters. Parameters can be various quotas,
for example, CPU hours for supercomputers or the maximum amount of used RAM for virtual

2022, T. 11, Ne 1 7

Unified Approach for Provision of Supercomputer Center Resources

machines. Computing systems can be combined into types, and they, in turn, into a hierarchy,
which makes it easier for users to find a system suitable for their problems.

The request, in addition to a complete description of the required computing resources,
contains the fields for a sender and an administrator who considers it and various details related
to the methods of access. A widespread option is the SSH protocol, which prompts the idea
that users only need to describe in one place all the information related to access. It is allowed
to submit a request for modifying an existing access. Requests can be in one of the following
states: new, submitted for review, canceled by user, rejected and approved. Upon approval of
the application, an administrator can change some parameters, informing the user about this
and a request to grant access with the required parameters is sent.

The user should have access to the technical details of connecting to the computer and a set
of possible actions: “power on”, “power off”, “get state” (this is relevant for virtual machines).

Access can be in one of the following states:

e New. Access is in this state if the administrator has approved the user’s request and is
changing some parameters at the moment.

e Approved. The user is allowed to access the computing system.

e Prepared for completion by the administrator, prepared for completion. In these states,
the user is denied access, but the data on the hard drives is not erased yet. These states
differ only in those who initiated this process: the administrator or the user.

e Access denied, completed. In these states, all user data on hard drives is erased. In the states
“Access Denied” and “Completed”, the administrator transfers accesses from the states
“Prepared for completion by the administrator” and “Prepared for completion” respectively.

The interface for communicating with computing systems is described further in general. So,
for example, the actions to turn a supercomputer on and off by a user are completely irrelevant,
but during the operation of a virtual machine, they can be useful when a virtual machine is not

responding. The actions that can be performed through the interface are as follows:

e Load data about computing system, if it is relevant.

e Create and modify access parameters specified by requests.

e Load information about the current state of the computer and possible actions at the
moment. For user convenience, hints and names for operations in different languages can
be added.

e Perform actions to change the state of the machine available to the user: power on, power
off, etc.

e Terminate user access without deleting user data on hard drives.

e Delete data on hard drives.

3. Implementation

Like any other workflow for communicating with the user at the Lomonosov Moscow State
University supercomputer center, it is reasonable to implement provision of an access as a
module for the Octoshell supercomputer center functioning support system accessed using web
browsers @ . Also, the process of granting access also depends on the state of projects, the
availability of SSH keys and the fact of passing the preliminary procedures, the logic of which
has already been implemented in Octoshell and its implementation is open-source . Integration
with other objects in the Octoshell system is also a definite advantage.

8 Bectauk FOYpI'Y. Cepus «BpruunciaurenpHas MmareMaTnKa 1 “”HOOPMaTAKA»

A.V. Paokin, D.A. Nikitenko

In Octoshell, the organization of access to supercomputer systems is independent of a specific
machine and is not related to the system software responsible for supercomputer management.
Users are united into projects and gain or lose access to computing systems depending on events
in the Octoshell system. For example, if the report on the project work gets a low mark, then
this project goes into the “blocked” state and then, after synchronization, the project is denied
access. Synchronization calls scripts located directly on supercomputers and thus the scripts form
an interface. To work on the computing systems of Lomonosov Moscow State University, users
go through preparatory procedures that are not directly related to the approach of providing
resources such as preparation of required documents and their approval. Project managers apply
for resource quotas and users upload the public part of their SSH keys to the Octoshell system,
which are used to work with all available supercomputer systems. The resources subject to quotas
are CPU hours, disk space, and GPU hours. These routines are implemented inside the Octoshell
module called core.

For work on supercomputer systems, the core module has shown itself well, but it is difficult
to call it a unified approach. The types of resource quotas are hardcoded right in the source
code, and these types of quotas are not suitable for virtual machines. The same applies to
the description of supercomputer systems themselves. The approach proposed in the article is
implemented primarily in the module for interacting with cloud systems. But this does not imply
module generality, because it can also work with supercomputers and cloud systems at the same
time. It is convenient to describe the implementation details through entities, so they will be
considered further (Fig. .

Template Template kind
(virtual machine, - - Description
extra hard disk) - Cloud type (VM template, disk)
- Description - Relationships with ather types of object
-cloud id (Reguest composition rules)
Editable resources - Resource kinds
Uneditable resources
L
i .
Cloud
Request {ACCESS] - Adapter (OpenNebula, ssh, https)
- Creator - URI (hostname, port, ...)
- Request text
- State

Template instances . .
D Virtual machine

- Relationships with other types of - cloud id
instances [- state - Logs

- address

- actions

Fig. 1. The diagram of module entities

Template and resource kinds. Every cloud infrastructure object, that a user can send
requests for, is represented in the module as a template. The template has its own type and you
can specify links with other types. These links show how the instances in the requests and user
accesses can be related to each other (the power of the connection and, in general, the ability to

link the instances). Types can be combined in hierarchies, thus creating subtypes. For a template

2022, T. 11, Ne 1 9

Unified Approach for Provision of Supercomputer Center Resources

type, the relation to a cloud computing platform can be specified. At the moment, only the type of
relationship to the cloud called “virtual machine” is supported, and this can be specified only for
one type of template. The template type also indicates the types of resources that will be changed
in user requests or not, depending on template resource configuration. Each resource type has
an identifier by which cloud platforms associate the resource type in the Octoshell module with
their own. For example, the resource type “RAM size” has the “MEMORY” identifier. Currently,
Octoshell has the following types of resources: the amount of RAM and disk space, the number
of CPU cores and access to the Internet. The latter, from the OpenNebula point of view, means
belonging to the special OpenNebula network with a dedicated Internet address.

A template has a verbal description, platform affiliation, and a cloud id that is unique on
the target cloud platform. For the template, resources are specified that the user can edit or only
see, depending on the settings of the resource view. There is an option not to specify resources
at all: then, when creating virtual machines, only the values of the template stored on the target
cloud platform will be used. The module allows you to create descriptions of a template, its
type and resource types completely manually, or almost automatically by loading them from the
target cloud platform: it remains only to indicate whether the resource is editable or not, as well
as the limits in user requests and default values (if the resource is editable).

Requests are described by template instances, text, id of the creator and admin who
reviewed the request, and state. Request and access states were described in the previous section.

Access also provides a collection of template instances, but already functioning on the
template target platform, and state.

Virtual machine has its own id on the cloud and external, internal addresses. Each time
the status information is updated, the possible actions for the virtual machine are also updated
and saved in the Octoshell database: starting from the id of the action to be parsed by the cloud
adapter and ending with prompts and action names in Russian and English. As a result, the user
access page with virtual machines takes the following form in Fig.

There are usually several OpenNebula XML-RPC interface commands behind each adapter
action, and each of them, depending on the cloud state, may not be executed due to errors or
have to wait until the virtual machine takes a suitable state (after exiting the intermediate state
caused by the previous command, for example). Therefore, the result of each action is recorded

in the logs. In case of command execution errors, administrators are notified.

4. Performance evaluation

As it has been already mentioned, the proposed approach is implemented in the Octoshell
supercomputer center functioning support system and users access its functionality using web
browsers. Thus, the primary goal is to ensure that pages are downloaded fast. Base functionality
of all Octoshell engines (including the engine implementing the current approach) are run on
the same virtual machine (on the same Linux process) sharing hardware resources equally.
Technically, new engine did not operate with huge amounts of data, did not add sufficient amount
of code able to disrupt the functioning of virtual machine. Reasonably implemented the previous
version of the engine showed itself well, consuming less than 0.5 second to prepare page for web
browser, what is the same with many other Octoshell engines.

Previous information corresponds to the base functionality, but there are long-running jobs
in almost any modern web application. “Long-running” refers to processes consuming (or which

can consume) significantly more than 1 second: such delays are not suitable for any modern web

10 Bectauk FOYpI'Y. Cepus «BpruunciaurenpHas MmareMaTnKa 1 “”HOOPMaTAKA»

A.V. Paokin, D.A. Nikitenko

Access#1

Finish Update VM state Reinstantiate

User

Paokin Andrei user1@octoshell.ru
Started sync at
2021.08.01 19:38:55
Finished sync at
2021.08.01 19:39:18
Finish date

2021.04.30

Allowed by

admin admin@octoshell.ru
Project

Octocalc_1

Login to virtual machines as "root". For example, ssh root@<ip> -i <path/to/private_key=>. Allowed keys are all active keys of project members in the allowed state

Alpine Linux 3.10#1

CPUs: 1

Main memory: 2.0 GB
Disk volume: 2 GB
Internet access: Yes

Add to request for modification
Id 1 .
Cloud id 575
Local address 172.16.2.7
Internst address 10.0.0.2 » reinstall
e
State running (ACTIVE | RUNNING)

State info updated 2021.08.01 19:39:18

Fig. 2. User access page

application. Typical examples of such jobs in Octoshell are sending an email and interaction with
computing systems, which are located on the different servers and even can be inaccessible at
the moment. The typical solution is to delegate these jobs to other operating system processes,
usually called background workers to be executed asynchronously. As a result, the only thing
remained to be considered is efficiency of background job execution.

When talking about our approach, long-running jobs are all interactions with servers
responsible for computing system functioning. Thus, these jobs are delegated to background
workers and a user does not need to wait until they finish, usually receiving notifications about
their final status: completed or failed. In general, adapters responsible for such communications
simply send their messages via SSH and HT'TPS protocols. Requests described at the end of the
“Proposed approach” section do not require return value and can be executed asynchronously.
Even data about the current state of a computing system does not require to be loaded
immediately.

In case of OpenNebula, it has the rich API, but there are situations when one request of
the Octoshell cloud engine results in nearly 10 OpenNebula API calls. A virtual machine can
be in one of nearly 60 states: error, transient (‘“changing disk size”) or normal state (power off,
power on, etc.). To update parameters of a virtual machine, the Octoshell cloud engine requests
can cause attachment or removal of SSH keys, network interface controllers, change of disk or

main memory size, CPU resources, etc. Each of these actions has to be run in their own specific

2022, T. 11, Ne 1 11

Unified Approach for Provision of Supercomputer Center Resources

state with their own OpenNebula API call. For us, it was reasonable to implement OpenNebula
adapter directly inside Octoshell instead of creating a new subsystem to accomplish our goals.
The main idea of adapter is to divide big requests like virtual machine modification, creation into
small requests. Each small request is OpenNebula API call with required actions to check that
a virtual machine is in a right state. In some cases, background worker has to wait until virtual
machine leaves transient state and background worker performs API call to check virtual machine
state. If the state is transient, it sleeps (operating system call) for 5 seconds, then sends requests
again. Anyway, each large request is performed in less than 30 seconds and these background
workers do not load web server resources significantly. This situation is expected to remain in
the future, when more virtual machines controlled by Octoshell appear. If not, the architecture
of the cloud computing engine allows to develop non-local adapters, accessible via HT'TPS and
SSH protocols.

Conclusions

As a result, the unified approach to the provision of resources in the supercomputer center
and the module for organizing user access on cloud systems for the Octoshell have been developed.
The cloud module can also be used to work with supercomputer systems.

The module improves the convenience of working with the cloud, reduces the number of
manual procedures and the loss of information, which is now presented in a common place for
all participants (project member, project manager and administrator). The latter is especially
relevant in the upcoming tasks of creating a new information system, which, based on data from
monitoring systems and Octoshell together will inform the user about the peculiarities of the
task and the expected behavior on different sections of the supercomputer center.

It is especially important that such system has access to data from monitoring systems of both
the user’s tasks and similar users, where data integration with Octoshell is often indispensable.

The module has been successfully tested on a copy of the main Octoshell system and a server

running OpenNebula @ It will be deployed to the main system after the next update.

The results are obtained with the financial support of the Russian Foundation for Basic
Research (grant No. 20-07-00864).

This paper is distributed under the terms of the Creative Commons Attribution-Non
Commercial 4.0 License which permits non-commercial use, reproduction and distribution of

the work without further permission provided the original work is properly cited.

References

1. Voevodin V.V., Antonov A.S., Nikitenko D.A., et al. Supercomputer Lomonosov-2: Large
Scale, Deep Monitoring and Fine Analytics for the User Community. Supercomputing Fron-
tiers and Innovations. 2019. Vol. 6, no. 2. P. 4-11. DOI: 10.14529/js£1190201.

2. OpenNebula — Open Source Cloud Computing Platform. URL: https://opennebula.io/
(accessed: 12.12.2021).

3. OpenNebula Usage Quota. URL: https://docs. opennebula.io/6.0/management _and_
operations/capacity_planning/quotas.html| (accessed: 12.12.2021).

4. OpenStack — Open Source Cloud Computing Platform. URL: https://opennebula. io/
(accessed: 12.12.2021).

12 Bectuuk FOYpI'Y. Cepusi «BorauciauresbHasg mareMaTuka u nH(pOpMaTUKa»

http://dx.doi.org/10.14529/jsfi190201
https://opennebula.io/
https://docs.opennebula.io/6.0/management_and_operations/capacity_planning/quotas.html
https://docs.opennebula.io/6.0/management_and_operations/capacity_planning/quotas.html
https://opennebula.io/

A.V. Paokin, D.A. Nikitenko

5. OpenStack flavors. URL: https://docs.openstack.org/nova/rocky/user/flavors.html
(accessed: 12.12.2021).

6. Nikitenko D., Voevodin V., Zhumatiy S. Resolving Frontier Problems of Mastering Large-
Scale Supercomputer Complexes. Proceedings of the ACM International Conference on Com-
puting Frontiers. ACM, 2016. P. 349-352. DOI: 10.1145/2903150.2903481/

7. Octoshell Supercomputer Center Support Functioning System. URL: https : //users .
parallel.ru/ (accessed: 12.12.2021).

8. Octoshell Source Code. URL: https://github.com/octoshell/octoshell-v2 (accessed:
12.12.2021).

9. Cloud Computing Engine for the Octoshell System. URL: https://github.com/apaokin/

octoshell - v2/tree/cloud_computing _engine/engines/cloud_computing (accessed:
12.12.2021).

YK 004.457 DOI: 10.14529/cmse220101

YHUOUITNPOBAHHBIN ITIOJX0/, K ITPEJOCTABJIEHUIO
PECYPCOB CVYIIEPKOMIIBIOTEPHOI'O IEHTPA

© 2022 A.B. ITaokun, I.A. HukuteHko

Mocxosckuii 2ocydapcmeennnii yrusepcumem umenu M.B. Jlomonocosa
(119991 Mocxksa, ya. Jlenurckue 2opoi, 0. 1)
E-mail: |andrejpaokin@yandex.ru, |dan@parallel.ru

[Tocrynmmna B pemaknuio: 12.12.2021

B pamMkax oJHOTO CyIEepKOMIBIOTEPHOTO IIEHTPA MOTYT HAXOIUTHCS HECKOJBKO BBIYUCUTEBHBIX CHCTEM C
Pa3HOI apXUTEKTYPOil U NPpUHIUIAMK pabOThI ¢ KOHEYHBIM I10JIb30BaTeseM. [Ipu oprasusaiun JocTyna noJib30Ba-
Teseil HeoOXOIMMO TTOJTHOE OMHUCAHME CHUCTEM JJIsi COTJIACOBAHHOTO BBIOODA MOJIB30BATEIEM 3aJ1a9, ITPOTPAMMHBIX
MaKEeTOB U alllapaTypbl, & TAK¥XKe YINTHIBATH JETAJTH KBOTUDOBAHIS, Ay TEHTU(DUKAIINN, 3AILYCKA TPUIOKEHUN Ha
KaKJ[0M M3 OTJEJIbHBIX MAIIMH B paMKax eJIuMHOro pabodero mnporecca. B manHOil pabore mpeiaraercs moJXom,
K IPEJIOCTABJIEHUIO PECYPCOB CyIEPKOMIILIOTEPHOIO IEHTPA, TJIE MOJIb30BATEeNb, MOJb3YysACh MOJHBIM ONUCAHUEM
BBIYUCJIUTE/IHHBIX CACTEM, CO3/A€T 3asBKU HAa JIOCTYII C YKeJaeMbIMU KBoTaMu. 1107X0/1 OnmchIBaeT >KU3HEHHBIN
[UKJI JOCTYIIa, IPU U3MEHEHUU COCTOSIHUSI KOTOPOTO IIPEJIIOJIaraeTcsl B3aNMOIeHCTBIAE C BBIYUCTUTEIBHBIMU CH-
creMaMu 4depe3 uHTepdeiichl crucreMm 6e3 riaybokoit maTerpanuu. Jlaercs 0630p MIMPOKOUCIIONIB3YyEMbIX MOJIX0/I0B
K KBOTHPOBAHUIO W OPTAHU3AINU JOCTYIA, & MPEJIOXKEHHBIN TOIX0 PEeaJu30BaH B BHJE MPOTPAMMHOTO MOJY-
JIST JIJIsE CUCTEMBI TOJJEPKKU (DYHKIIMOHUPOBAHUSI CYIepKOMIbIOTepHBIX 1eHTpoB Octoshell u anmpobupoBan Ha
BBIYUC/IMUTE/IBHOM CUCTEME IT0J1, yIpaBJIeHneM I1aTdopMbl Oprasusanuu obadabix Berauciaenuit OpenNebula.

Karoueswie caosa: admMunucmpupo8anue CYneproMnulOMEPHHT UEHMPO8, NPEeCOCTNABAEHUE PECYPCOS,
Octoshell.

OBPASBEIIl INTUPOBAHUA
Paokin A.V., Nikitenko D.A. Unified Approach for Provision of Supercomputer Center
Resources // Becruuk FOYpI'Y. Cepust: Borauciaurensuas maremaruka u undopmaruka. 2022.

T. 11, Ne 1. C. 5-14. DOI: 10.14529 /cmse220101.

2022, T. 11, Ne 1 13

https://docs.openstack.org/nova/rocky/user/flavors.html
http://dx.doi.org/10.1145/2903150.2903481
https://users.parallel.ru/
https://users.parallel.ru/
https://github.com/octoshell/octoshell-v2
https://github.com/apaokin/octoshell-v2/tree/cloud_computing_engine/engines/cloud_computing
https://github.com/apaokin/octoshell-v2/tree/cloud_computing_engine/engines/cloud_computing
mailto:andrejpaokin@yandex.ru
mailto:dan@parallel.ru

Unified Approach for Provision of Supercomputer Center Resources

JIureparypa

1.

Voevodin V.V., Antonov A.S., Nikitenko D.A., et al. Supercomputer Lomonosov-2: Large
Scale, Deep Monitoring and Fine Analytics for the User Community // Supercomputing
Frontiers and Innovations. 2019. Vol. 6, no. 2. P. 4-11. DOI: |10.14529/js£1190201.

OpenNebula — Open Source Cloud Computing Platform. URL: https://opennebula.io/
(mara obpamenns: 12.12.2021).

OpenNebula Usage Quota. URL: https://docs . opennebula.io/6.0/management _and_
operations/capacity_planning/quotas.html| (nara obpamenus: 12.12.2021).

OpenStack — Open Source Cloud Computing Platform. URL: https://opennebula. io/
(mara obpamienus: 12.12.2021).

OpenStack flavors. URL: https://docs.openstack.org/nova/rocky/user/flavors.html
(marta obpamenus: 12.12.2021).

Nikitenko D., Voevodin V., Zhumatiy S. Resolving Frontier Problems of Mastering Large-
Scale Supercomputer Complexes // Proceedings of the ACM International Conference on
Computing Frontiers. ACM, 2016. P. 349-352. DOI: [10.1145/2903150.2903481/

Octoshell Supercomputer Center Support Functioning System. URL: https ://users .
parallel.ru/ (mara obpamenns: 12.12.2021).

Octoshell Source Code. URL: https : //github . com/octoshell /octoshell - v2 (zmara
obpamenust: 12.12.2021).

Cloud Computing Engine for the Octoshell System. URL: https://github.com/apaokin/
octoshell-v2/tree/cloud_computing_engine/engines/cloud_computing (mara obparie-
st 12.12.2021).

[Taokun Anmpeit BukropoBud, acrnupanT, Kadeapa CyIepKOMIBIOTEPOB U KBAHTOBOI HH-

dopmarukn, MockoBeknii rocymapersennsiii yuusepenrer nmenn M.B. Jlomonocosa (Mocksa,

Poccuiickast @enepanusi)

Hukwurenko JImurpuit AstekcaHapoBud, K..-M.H., C.H.C., JaDOpaTOpusi HapajjieIbHbIX HH-

dopMaInMoOHHBIX TexHojoruii, HayuHo-ucciienoBaTelbCKuil BBIUUCIUTENbHBIN 1eHTp, MockoB-

ckuii rocynapcreennbiii yausepcurer umenn M.B. Jlomonocosa (Mocksa, Poccuiickas @enepa-

1)

14

Bectuuk FOYpI'Y. Cepusi «BorauciauresbHasg mareMaTuka u nH(pOpMaTUKa»

http://dx.doi.org/10.14529/jsfi190201
https://opennebula.io/
https://docs.opennebula.io/6.0/management_and_operations/capacity_planning/quotas.html
https://docs.opennebula.io/6.0/management_and_operations/capacity_planning/quotas.html
https://opennebula.io/
https://docs.openstack.org/nova/rocky/user/flavors.html
http://dx.doi.org/10.1145/2903150.2903481
https://users.parallel.ru/
https://users.parallel.ru/
https://github.com/octoshell/octoshell-v2
https://github.com/apaokin/octoshell-v2/tree/cloud_computing_engine/engines/cloud_computing
https://github.com/apaokin/octoshell-v2/tree/cloud_computing_engine/engines/cloud_computing

	
	A.V. Paokin, D.A. Nikitenko

