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В статье представлена новая версия масштабируемого итерационного метода линейного программи-
рования, получившего название «апекс-метод». Ключевой особенностью этого метода является построение
пути, близкого к оптимальному, на поверхности допустимой области от определенной начальной точки
до точного решения задачи линейного программирования. Оптимальный путь — это путь движения по
поверхности многогранника в направлении максимального увеличения или уменьшения значения целевой
функции в зависимости от того, ee максимум или минимум необходимо найти. Апекс-метод основан на
схеме предиктор-корректор и состоит из двух стадий: Quest (предиктор) и Target (корректор). На стадии
Quest вычисляется грубое начальное приближение задачи линейного программирования. Основываясь на
этом начальном приближении, на стадии Target вычисляется решение задачи линейного программирования
с заданной точностью. Основная операция, используемая в апекс-методе, — это операция, которая вычис-
ляет псевдопроекцию, являющуюся обобщением метрической проекции на выпуклое замкнутое множество.
Псевдопроекция используется как на стадии Quest, так и на стадии Target. Представлен параллельный
алгоритм, использующий фейеровское отображение для вычисления псевдопроекции. Получена аналитиче-
ская оценка ресурса параллелизма для этого алгоритма. Также приведен алгоритм, реализующий стадию
Target, и доказана его сходимость. Описаны вычислительные эксперименты на кластерной вычислительной
системе по применению апекс-метода для решения различных задач линейного программирования.
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Введение

Данная работа является дальнейшим развитием апекс-метода, предложенного нами в
статье [1] для решения задач линейного программирования (ЛП). Актуальность этой темы
основывается на следующих факторах. Одним из важных классов приложений ЛП явля-
ются нестационарные задачи, связанные с оптимизацией нестационарных процессов [2]. В
нестационарных задачах ЛП целевая функция и/или ограничения изменяются в течение
вычислительного процесса. В качестве примеров можно привести следующие нестационар-
ные задачи: поддержка принятия решений в высокочастотной торговле [3, 4], задачи гидро-
газодинамики [5], оптимальное управление технологическими процессами [6–8], транспорт-
ные задачи [9–11], оперативное планирование [12, 13].

Один из стандартных подходов к решению нестационарных задач оптимизации состоит
в том, чтобы рассматривать каждое изменение как появление новой задачи оптимизации,
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которую необходимо решать с нуля [2]. Однако такой подход часто непрактичен, поскольку
решение проблемы с нуля без повторного использования информации из прошлого может
занять слишком много времени. Таким образом, желательно иметь алгоритм оптимизации,
способный непрерывно адаптировать решение к изменяющейся среде, повторно используя
информацию, полученную в прошлом. Этот подход применим для процессов реального вре-
мени, если алгоритм достаточно быстро отслеживает траекторию движения оптимальной
точки. В случае больших задач ЛП последнее требует разработки масштабируемых методов
и параллельных алгоритмов ЛП.

До сих пор одним из наиболее распространенных способов решения задач ЛП был класс
алгоритмов, предложенных и разработанных Данцигом на основе симплекс-метода [14]. Бы-
ло установлено, что симплексный метод эффективен для решения большого класса задач
ЛП. В частности, симплексный метод легко использует преимущества любой гиперразре-
женности в задачах ЛП [15]. Однако симплекс-метод обладает некоторыми фундаменталь-
ными особенностями, которые ограничивают его использование для решения больших за-
дач ЛП. Во-первых, в определенных случаях симплексный метод должен выполнять ите-
рации по всем вершинам симплекса, что соответствует экспоненциальной временной слож-
ности [16–18]. Во-вторых, в большинстве случаев симплекс-метод успешно решает задачи
ЛП, содержащие до 50 000 переменных. Однако при решении задач бо́льших размерно-
стей часто наблюдается потеря точности ЛП [19], которая не может быть компенсирована
даже применением таких мощных вычислительных процедур, как «аффинное масштаби-
рование» или «итеративное уточнение» [20]. В-третьих, в общем случае последовательный
характер симплексного метода затрудняет распараллеливание в многопроцессорных систе-
мах с распределенной памятью [21]. Были предприняты многочисленные попытки создать
масштабируемую параллельную реализацию симплексного метода, но все они оказались
безуспешными [22]. Во всех случаях граница масштабируемости составляла от 16 до 32
процессорных узлов (см., например, [23]).

Хачиян доказал [24], используя вариант метода эллипсоидов (предложенный в 1970-х
годах Шором [25], Юдиным и Немировским [26]), что задачи ЛП могут быть решены за
полиномиальное время. Однако попытки применить этот подход на практике оказались
безуспешными, поскольку в подавляющем большинстве случаев метод эллипсоида демон-
стрировал гораздо худшую эффективность по сравнению с симплекс-методом. Позже Кар-
маркар [27] показал, что алгоритм внутренних точек, предложенный Дикиным [28], имеет
полиномиальную временную сложность и применим на практике. Этот алгоритм породил
целую область современных методов внутренних точек [29, 30], которые способны решать
большие задачи ЛП с миллионами переменных и миллионами уравнений [31–35]. Более того,
эти методы являются самокорректирующимися, а следовательно, обеспечивают высокую
точность вычислений. Общим недостатком методов внутренних точек является необходи-
мость найти некоторую допустимую точку, удовлетворяющую всем ограничениям задачи
ЛП, перед началом вычислений. Нахождение такой внутренней точки может быть сведе-
но к решению дополнительной задачи ЛП [36]. Еще одним методом нахождения внутрен-
ней точки является метод псевдопроекции [37], который использует фейеровские отображе-
ния [38]. Другим существенным недостатком метода внутренних точек является его плохая
масштабируемость в многопроцессорных системах с распределенной памятью. Существует
несколько успешных параллельных реализаций метода внутренних точек для частных слу-
чаев (см., например, [39]), но, в общем случае, эффективная параллельная реализация на
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многопроцессорных системах для этого метода не может быть построена. В соответствии с
этим разработка и исследование новых подходов к решению многомерных нестационарных
задач ЛП в режиме реального времени является актуальным направлением.

Одним из наиболее перспективных подходов к решению сложных задач в режиме ре-
ального времени является использование нейросетевых моделей [40]. Искусственные ней-
ронные сети — это мощный универсальный инструмент, который применим для решения
задач практически во всех областях. Самой популярной моделью нейронной сети являет-
ся нейронная сеть прямого распространения. Обучение и использование таких сетей могут
быть очень эффективно реализованы на графических процессорах [41]. Важным свойством
нейронной сети прямого распространения является то, что время решения задачи не зави-
сит от ее параметров. Это свойство необходимо для работы в режиме реального времени.
Новаторской работой по использованию нейронных сетей для решения задач ЛП являет-
ся статья Танка и Хопфилда [42]. В этой статье описывается двухслойная рекуррентная
нейронная сеть. Число нейронов в первом слое определяется количеством переменных за-
дачи ЛП. Количество нейронов во втором слое совпадает с количеством ограничений за-
дачи ЛП. Первый и второй слои являются полносвязными. Веса и смещения однозначно
определяются коэффициентами и правыми частями линейных неравенств, определяющих
ограничения, и коэффициентами линейной целевой функции. Таким образом, эта сеть не
требует обучения. Состояние нейронной сети описывается дифференциальным уравнением
\.x(t) = \nabla E(x(t)), где E(x(t)) — энергетическая функция специального типа. Первоначально
на вход нейронной сети подается произвольная точка допустимой области. Затем сигнал
второго слоя рекурсивно подается на первый слой. В итоге процесс приходит в стабильное
состояние, в котором выходной сигнал перестает изменяться. Такое состояние соответству-
ет минимуму энергетической функции, а выходной сигнал является решением задачи ЛП.
Подход Танка и Хопфилда был развит и усовершенствован в многочисленных работах (см.,
например, [43–47]). Основным недостатком этого подхода является непредсказуемое коли-
чество рабочих циклов нейронной сети. Следовательно, рекуррентная сеть, основанная на
энергетической функции, не может использоваться для решения больших задач ЛП в ре-
жиме реального времени.

В недавней статье [48] была предложена n-мерная математическая модель визуализа-
ции задач ЛП. Эта модель позволяет использовать нейронные сети прямого распростра-
нения, включая сверточные сети [49], для решения многомерных задач ЛП, допустимой
областью которых является замкнутое ограниченное непустое множество. Однако в науч-
ной литературе практически отсутствуют работы, посвященные использованию сверточных
нейронных сетей для решения задач ЛП [50]. Причина в том, что сверточные нейронные
сети ориентированы на обработку изображений, но до настоящего времени отсутствовали
методы построения обучающих наборов данных, основанные на визуальном представлении
многомерных задач ЛП.

В данной статье описывается новый масштабируемый итерационный метод для реше-
ния многомерных задач ЛП, получивший название «апекс-метод». Апекс-метод позволяет
генерировать обучающие наборы данных для разработки нейронных сетей прямого распро-
странения, способных находить решение многомерной задачи ЛП на основе ее визуального
представления. Апекс-метод основан на схеме предиктор/корректор. Предиктор вычисля-
ет точку, принадлежащую допустимой области задачи ЛП. Корректор вычисляет после-
довательность точек, сходящуюся к точному решению задачи ЛП. Статья организована
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следующим образом. В разделе 1 представлен обзор итерационных методов и алгоритмов
проекционного типа, ориентированных на решение выпуклых неравенств и задач ЛП. Раз-
дел 2 содержит теоретический базис, используемый в описании апекс-метода. В разделе 3
представлено формализованное описание апекс-метода. Раздел 3.1 посвящен разработке
алгоритма построения псевдопроекции и аналитическому исследованию масштабируемости
его параллельной версии. В разделе 3.2 описывается стадия Quest. Раздел 3.3 содержит
описание стадии Target. В разделе 4 представлены информация о программной реализа-
ции апекс-метода и результаты вычислительных экспериментов. В разделе 5 обсуждаются
научная и практическая значимость полученных результатов, преимущества и недостатки
апекс-метода, и способы его использования. В заключении суммируются представленные в
статье результаты и намечаются направления дальнейших исследований. В конце статьи
приведены основные Обозначения, используемые при описании апекс-метода.

1. Обзор работ по итерационным методам проекционного
типа

В этом разделе представлен обзор работ, посвященных итерационным методам проекци-
онного типа, используемым для решения задач совместности выпуклых неравенств и задач
ЛП. Задача совместности (допустимости) выпуклых неравенств заключается в нахожде-
нии некоторого решения системы выпуклых неравенств. Эта задача возникает в многочис-
ленных приложениях, таких как статистика, параметрическое оценивание, распознавание
образов, восстановление изображений, томография и других [51]. В случае линейных нера-
венств задача совместности может быть сформулирована следующим образом. Имеется
система линейных неравенств в матричном виде:

Ax \leqslant b, (1)

где A \in \BbbR m\times n, b \in \BbbR n. Во избежание вырожденности будем предполагать, чтоm > 1. Задача
линейной совместности, заключается в нахождении точки \~x \in \BbbR n, удовлетворяющей мат-
ричному неравенству (1). Везде далее мы будем предполагать, что такая точка существует,
то есть система (1) является совместной.

Методы проекционного типа основаны на следующей геометрической интерпретации
задачи линейной совместности. Обозначим через ai \in \BbbR n вектор, состоящий из элементов
i-той строки матрицы A. Тогда матричное неравенство Ax \leqslant b может быть представлено в
виде системы неравенств

\langle ai, x\rangle \leqslant bi, i = 1, . . . ,m. (2)

Здесь \langle \cdot , \cdot \rangle обозначает скалярное произведение двух векторов. Везде далее мы предполагаем,
что

ai \not = \bfzero (3)

для всех i = 1, . . . ,m. Каждое неравенство \langle ai, x\rangle \leqslant bi определяет замкнутое полупростран-
ство

\^Hi = \{ x \in \BbbR n| \langle ai, x\rangle \leqslant bi\} (4)

и ограничивающую его гиперплоскость

Hi = \{ x \in \BbbR n| \langle ai, x\rangle = bi\} . (5)
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Для любой точки x \in \BbbR n ортогональная проекция \pi (x) на гиперплоскость Hi может быть
вычислена по формуле

\pi i(x) = x - \langle ai, x\rangle  - bi
\| ai\| 2

ai. (6)

Здесь и далее \| \cdot \| обозначает евклидову норму. Определим допустимый многогранник

M =

m\bigcap 

i=1

\^Hi, (7)

представляющий множество допустимых точек системы (1). Заметим, что M в этом случае
будет замкнутым выпуклым множеством. Мы будем предполагать, что M \not = \emptyset , то есть
система (1) имеет решение. С геометрической точки зрения задача линейной совместности
состоит в нахождении точки \~x \in M .

Первыми работами, посвященными задаче линейной совместности, были работы Кач-
марца (Kaczmarz) и Чиммино (Cimmino). Качмарц в работе [52] (английский перевод [53])
предложил следующий метод последовательных проекций для решения совместной систе-
мы линейных неравенств

\langle ai, x\rangle = bi, i = 1, . . . ,m. (8)

Начиная с произвольной точки x(0,m) \in \BbbR , этот метод строит последовательность групп
точек

x(k,1) = \pi 1

\Bigl( 
x(k - 1,m)

\Bigr) 
, x(k,2) = \pi 2

\Bigl( 
x(k,1)

\Bigr) 
, . . . , x(k,m) = \pi m

\Bigl( 
x(k,m - 1)

\Bigr) 
(9)

для k = 1, 2, 3, . . . Здесь \pi i (i = 1, . . . ,m) обозначает ортогональную проекцию на гипер-
плоскость Hi, вычисляемую по формуле (6). Качмарц показал, что последовательность (9)
сходится к решению системы (8). С геометрической точки зрения метод Качмарца может
быть описан следующим образом. На первом шаге строится ортогональная проекция на-
чальной точки x(0,m) на гиперплоскость H1. Полученная точка x(1,1), в свою очередь, про-
ецируется на H2, что дает нам точку x(1,2). Точка x(1,2) проецируется на H3, что дает нам
точку x(1,3), и так далее. Последней точкой в первой группе будет точка x(1,m), получаю-
щаяся в результате ортогональной проекция точки x(1,m - 1) на гиперплоскость Hm. Вторая
группа точек строится аналогичным образом, используя в качестве начальной точку x(1,m).
Процесс продолжается для k = 3, 4, 5 . . .

Чиммино в [54] (английское описание [55]) предложил метод одновременных проекций
для решения задачи линейной совместности. В своем методе вместо ортогональных проек-
ций Чиммино использует ортогональные отражения, вычисляемые по формуле

\rho i(x) = x - 2
\langle ai, x\rangle  - bi
\| ai\| 2

ai. (10)

Ортогональное отражение строит точку \rho i(x), симметричную точке x относительно гипер-
плоскости Hi. Для текущего приближения x(k) метод Чиммино вычисляет ортогональные
отражения сразу относительно всех гиперплоскостей Hi (i = 1, . . . ,m) и затем использует
выпуклую комбинацию полученных точек для формирования следующего приближения:

x(k+1) =

m\sum 

i=1

wi\rho i

\Bigl( 
x(k)

\Bigr) 
, (11)
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где wi > 0 (i = 1, . . . ,m),
m\sum 
i=1

wi = 1. При wi =
1
m (i = 1, . . . ,m) формула (11) принимает вид

x(k+1) =
1

m

m\sum 

i=1

\rho i

\Bigl( 
x(k)

\Bigr) 
. (12)

Агмон (Agmon) [56], Моцкин (Motzkin), Шенберг (Schoenberg) [57] предложили релак-
сационный метод, являющийся обобщением проекционного метода Качмарца на случай ли-
нейных неравенств. Для решения системы (1) они используют следующее релаксационное
отображение:

\pi \lambda i (x) = (1 - \lambda )x+ \lambda \pi i(x), (13)

где 0 < \lambda < 2. Очевидно, что \pi 1i (x) = \pi i(x), то есть при \lambda = 1 релаксационное отображе-
ние превращается в ортогональную проекцию. Для вычисления следующего приближения
релаксационный метод использует формулу

x(k+1) = \pi \lambda l

\Bigl( 
x(k)

\Bigr) 
, (14)

где
l = \mathrm{a}\mathrm{r}\mathrm{g}\mathrm{m}\mathrm{a}\mathrm{x}

i

\Bigl\{ \bigm\| \bigm\| \bigm\| x(k)  - \pi i
\Bigl( 
x(k)

\Bigr) \bigm\| \bigm\| \bigm\| 
\bigm| \bigm| \bigm| x(k) /\in \^Hi

\Bigr\} 
. (15)

С неформальной точки зрения, следующее приближение x(k+1) получается в результате ре-
лаксационного отображения предыдущего приближения x(k) относительно самой дальней
гиперплоскости Hl, ограничивающей полупространство \^Hl, не содержащее точку x(k). Аг-
мон в [56] показал, что последовательность x(k) сходится к граничной точке допустимого
многогранника M .

Цензор (Censor) и Эльфвинг (Elfving) в [58] обобщили метод Чиммино на случай линей-
ных неравенств. Они рассматривают ослабленную (relaxed) проекцию на полупространство,
определяемую формулой

\^\pi \lambda i (x) = (1 - \lambda )x - \lambda \mathrm{m}\mathrm{a}\mathrm{x} \{ 0, \langle ai, x\rangle  - bi\} 
\| ai\| 2

ai, (16)

и получают следующее итерационное уравнение

x(k+1) =

m\sum 

i=1

wi\^\pi 
\lambda 
i

\Bigl( 
x(k)

\Bigr) 
. (17)

Здесь 0 < \lambda < 2, wi > 0 (i = 1, . . . ,m),
m\sum 
i=1

wi = 1. Де Пьеро (De Pierro) в [59] предложил

схему доказательства сходимости этого метода, отличающуюся от схемы цензора и Эльф-
винга. Подход де Пьеро также применим для случая, когда исходная система линейных
неравенств несовместна. В этом случае при \lambda = 1 последовательность (17) сходится к точке
минимума функции f(x) =

\sum m
i=1wi\| \^\pi i (x) - x\| 2, являющейся взвешенным (с весами wi)

решением системы (1) методом наименьших квадратов.
Проекционные методы, основанные на подходе Чиммино, допускают эффективное рас-

параллеливание, поскольку ортогональные проекции/отражения могут вычисляться одно-
временно и независимо. Масштабируемость метода Чиммино на многопроцессорных систе-
мах с распределенной памятью была исследована в работе [60]. Применимость проекцион-
ных методов по схеме Чиммино для решения нестационарных систем линейных неравенств
рассматривалась в работе [61].
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Решение систем линейных неравенств тесно связано с задачами ЛП, поэтому мето-
ды проекционного типа могут быть эффективно использованы для решения этого класса
задач. Эквивалентность задачи линейной совместности и задачи ЛП основана на прямо-
двойственном методе решения задачи ЛП. Рассмотрим прямую задачу ЛП в матричной
форме:

\=x = \mathrm{a}\mathrm{r}\mathrm{g}\mathrm{m}\mathrm{a}\mathrm{x}
x
\{ \langle c, x\rangle | Ax \leqslant b, x \geqslant 0\} , (18)

где c, x \in \BbbR n, b \in \BbbR m, A \in \BbbR m\times n, c \not = \bfzero . Сформулируем двойственную задачу по отношению
к задаче (18):

\=u = \mathrm{a}\mathrm{r}\mathrm{g}\mathrm{m}\mathrm{i}\mathrm{n}
u

\bigl\{ 
\langle b, u\rangle | ATu \geqslant c, u \geqslant 0

\bigr\} 
, (19)

где u \in \BbbR m. Для прямой и двойственной задач ЛП справедливо следующее равенство:

\langle c, \=x\rangle = \mathrm{m}\mathrm{a}\mathrm{x}
Ax\leqslant b,x\geqslant 0

\langle c, x\rangle = \mathrm{m}\mathrm{i}\mathrm{n}
ATu\geqslant c,u\geqslant 0

\langle b, u\rangle = \langle b, \=u\rangle . (20)

Ерёмин в [38, 62] предложил следующий метод решения задачи ЛП, основанный на
прямо-двойственном подходе. Пусть система линейных неравенств

A\prime x \leqslant b\prime (21)

задает допустимую область прямой задачи (18). Указанная система получается из системы
Ax \leqslant b путем добавления векторного неравенства  - x \leqslant \bfzero . В данном случае A\prime \in \BbbR (m+n)\times n и
b\prime \in \BbbR m+n. Пусть a\prime i обозначает i-тую строку матрицы A\prime . Сопоставим каждому неравенству
\langle a\prime i, x\rangle \leqslant b\prime i закрытое полупространство

\^H \prime 
i =

\bigl\{ 
x \in \BbbR n

\bigm| \bigm| \bigl\langle a\prime i, x
\bigr\rangle 
\leqslant b\prime i

\bigr\} 
, (22)

и ограничивающую его гиперплоскость

H \prime 
i =

\bigl\{ 
x \in \BbbR n

\bigm| \bigm| \bigl\langle a\prime i, x
\bigr\rangle 
= b\prime i

\bigr\} 
. (23)

Обозначим через \pi \prime i(x) ортогональную проекцию точки x на гиперплоскость H \prime 
i:

\pi \prime i(x) = x - \langle a
\prime 
i, x\rangle  - b\prime i
\| a\prime i\| 2

a\prime i. (24)

Определим проекцию на полупространство \^H \prime 
i:

\^\pi \prime i(x) = x - \mathrm{m}\mathrm{a}\mathrm{x} \{ 0, \langle a\prime i, x\rangle  - b\prime i\} 
\| a\prime i\| 2

a\prime i. (25)

Указанная проекция обладает следующими двумя свойствами:

x \not \in \^H \prime 
i \Rightarrow \^\pi \prime i(x) = \pi \prime i(x); (26)

x \in \^H \prime 
i \Rightarrow \^\pi \prime i(x) = x. (27)

Определим отображение \varphi 1 : \BbbR n \rightarrow \BbbR n следующим образом:

\varphi 1(x) =
1

m+ n

m+n\sum 

i=1

\^\pi \prime i(x). (28)
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Аналогичным образом определим допустимую область двойственной задачи (19):

D\prime x \geqslant c\prime , (29)

где D = AT \in \BbbR n\times m, D\prime \in \BbbR (m+n)\times m, c\prime \in \BbbR n+m. Обозначим

\^\eta \prime j(u) = u - 
\mathrm{m}\mathrm{a}\mathrm{x}

\Bigl\{ 
0,
\Bigl\langle 
d\prime j , u

\Bigr\rangle 
 - c\prime j

\Bigr\} 

\bigm\| \bigm\| \bigm\| d\prime j
\bigm\| \bigm\| \bigm\| 
2 d\prime j , (30)

и определим отображение \varphi 2 : \BbbR m \rightarrow \BbbR m следующим образом:

\varphi 2(u) =
1

n+m

n+m\sum 

j=1

\^\eta \prime j(x). (31)

Далее, определим отображение \varphi 3 : \BbbR n+m \rightarrow \BbbR n+m, соответствующее равенству (20):

\varphi 3 ([x, u]) = [x, u] - \langle c, x\rangle  - \langle b, u\rangle 
\| c\| 2 + \| b\| 2

[c, - b]. (32)

Здесь [\cdot , \cdot ] обозначает конкатенацию двух векторов.
Наконец, определим \varphi : \BbbR n+m \rightarrow \BbbR n+m следующим образом:

\varphi ([x, u]) = \varphi 3 ([\varphi 1(x), \varphi 2(u)]) . (33)

Если допустимая область прямой задачи является ограниченным непустым множеством, то
последовательность, задаваемая формулой

\Bigl[ 
x(k+1), u(k+1)

\Bigr] 
= \varphi 

\Bigl( \Bigl[ 
x(k), u(k)

\Bigr] \Bigr) 
, (34)

будет сходиться к точке [\=x, \=u], где \=x является решением прямой задачи (18), а \=u является
решением двойственной задачи (19).

В статье [63] предлагается метод решения невырожденных задач ЛП, основанный на вы-
числении ортогональной проекции некоторой специальной точки, не зависящей от основной
части исходных данных, описывающих задачу ЛП, на проблемно-зависимый конус, порож-
даемый ограничивающими неравенствами. Фактически, этот метод решает симметричную
положительно определенную систему линейных уравнений специального вида. Автор опи-
сывает конечный алгоритм на основе метода активных множеств, способный вычислять
ортогональные проекции для задач с тысячами строк и столбцов. Основным недостатком
этого метода является существенное увеличение размерности исходной задачи.

Цензор в работе [64] описывает применение метода линейной супериоризации (LinSup)
для решения задач ЛП. Метод LinSup направляет используемый итерационный алгоритм
проекционного типа в сторону точек с увеличивающимся значением целевой функции. При
этом LinSup не гарантирует нахождение точного оптимума задачи ЛП. Этот процесс не
идентичен тому, который используется ЛП-решателями, но это возможная альтернатива
симплекс-методу для решения задач очень большого размера. Основная идея LinSup со-
стоит в том, чтобы добавить дополнительный терм, называемый возмущающим термом, в
итерационное уравнение проекционного метода. Возмущающий терм направляет алгоритм
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поиска допустимой точки в сторону увеличения значения целевой функции. В контексте за-
дачи ЛП (18) целевая функция имеет вид f(x) = \langle c, x\rangle , и LinSup добавляет в итерационное
уравнение (17) возмущающий терм вида

\Bigl( 
 - \eta c

\| c\| 

\Bigr) 
:

x(k+1) =

\biggl( 
 - \eta c

\| c\| 

\biggr) 
+

m\sum 

i=1

wi\^\pi 
\lambda 
i

\Bigl( 
x(k)

\Bigr) 
. (35)

Здесь 0 < \eta < 1 — величина возмущения, являющаяся настраиваемым параметром алго-
ритма.

В статье [48] предлагается математическая модель для визуального представления мно-
гомерных задач ЛП. Для визуализации задачи ЛП вводится целевая гиперплоскость Hc,
нормаль к которой совпадает с градиентом целевой функции f(x) = \langle c, x\rangle . В случае поиска
максимума целевая гиперплоскость располагается так, чтобы значение целевой функции
во всех ее точках было больше значения целевой функции в любой точке допустимого мно-
гогранника M . Для любой точки g \in Hc определяется целевая проекция этой точки на
многогранник M в соответствии со следующей формулой:

\gamma M (g) =

\Biggl\{ 
\mathrm{a}\mathrm{r}\mathrm{g}\mathrm{m}\mathrm{i}\mathrm{n}

x
\{ \| x - g\| | x \in M,\pi Hc

(x) = g\} , если \exists x \in M : \pi Hc
(x) = g;

+\infty , если \neg \exists x \in M : \pi Hc
(x) = g.

(36)

Здесь, \pi Hc
(x) обозначает ортогональную проекцию точки x на гиперплоскость Hc. На целе-

вой гиперплоскости Hc строится прямоугольная решетка точек \frakG \in \BbbR n \times \BbbR K(n - 1) , где K —
число точек по одному измерению. Каждой точке g \in \frakG сопоставляется вещественное число
\| \gamma M (g) - g\| . В результате получается матрица размерности (n - 1), представляющая собой
образ задачи ЛП. Этот подход открывает возможность использования нейронных сетей
прямого распространения, включая сверточные, для решения многомерных задач ЛП. Ос-
новной проблемой для реализации такого подхода на практике является проблема постро-
ения обучающего набора данных. Обзор литературы показывает, что в настоящее время
не существует методов, позволяющих построить обучающий набор данных, совместимый с
представленным подходом. В следующих разделах мы опишем такой метод.

2. Теоретический базис

Данный раздел содержит необходимый теоретических базис, используемый для описа-
ния апекс-метода. Рассмотрим задачу ЛП в следующем виде:

\=x = \mathrm{a}\mathrm{r}\mathrm{g} max
x\in \BbbR n

\{ \langle c, x\rangle | Ax \leqslant b\} , (37)

где c \in \BbbR n, b \in \BbbR m, A \in \BbbR m\times n, m > 1, c \not = \bfzero . Мы предполагаем, что ограничение

 - x \leqslant \bfzero (38)

также включено в матричное неравенство Ax \leqslant b. Обозначим через \scrP множество индексов,
нумерующих строки матрицы A:

\scrP = \{ 1, \cdot \cdot \cdot ,m\} . (39)

Пусть ai \in \BbbR n обозначает вектор, представляющий i-тую строку матрицы A. Мы пред-
полагаем, что ai \not = \bfzero для всех i \in \scrP . Обозначим через \^Hi замкнутое полупространство,
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определяемое неравенством \langle ai, x\rangle \leqslant bi, а через Hi — его ограничивающую гиперплоскость:

\^Hi = \{ x \in \BbbR n| \langle ai, x\rangle \leqslant bi\} ; (40)

Hi = \{ x \in \BbbR n| \langle ai, x\rangle = bi\} . (41)

Определение 1. Полупространство \^Hi называется доминантным, если

\forall x \in \^Hi,\forall \lambda \in \BbbR >0 : x+ \lambda c \in \^Hi. (42)

Геометрический смысл данного определения состоит в том, что луч, исходящий из любой
точки доминантного полупространства в направлении вектора c, принадлежит этому полу-
пространству.

Определение 2. Полупространство \^Hi называется рецессивным, если оно не является
доминантным, то есть

\forall x \in \^Hi,\exists \lambda \in \BbbR >0 : x+ \lambda c /\in \^Hi. (43)

Геометрический смысл этого определения состоит в том, что луч, исходящий из любой
точки рецессивного полупространства в направлении вектора c, выходит за пределы этого
полупространства.

Утверждение 1. Следующее условие является необходимым и достаточным для того,
чтобы полупространство \^Hi было рецессивным:

\langle ai, c\rangle > 0. (44)

Доказательство. Сначала докажем необходимость. Пусть условие (43) имеет место. Обо-
значим

x\prime =
\beta ai
\| ai\| 2

. (45)

Имеем \bigl\langle 
ai, x

\prime \bigr\rangle =
\biggl\langle 
ai,

\beta ai
\| ai\| 2

\biggr\rangle 
= \beta 
\langle ai, ai\rangle 
\| ai\| 2

= \beta , (46)

то есть x\prime \in \^Hi в силу (40). Согласно условию (43) существует \lambda \prime \in \BbbR >0 такое, что

x\prime + \lambda \prime c /\in \^Hi, (47)

то есть \bigl\langle 
ai, x

\prime + \lambda \prime c
\bigr\rangle 
> \beta . (48)

Подставляя сюда правую часть равенства (45) вместо x\prime , получаем
\biggl\langle 
ai,

\beta ai
\| ai\| 2

+ \lambda \prime c
\biggr\rangle 
> \beta . (49)

Поскольку \lambda \prime > 0, отсюда следует, что

\langle ai, c\rangle > 0. (50)

Это доказывает необходимость.
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Теперь докажем достаточность. Пусть условие (44) имеет место, но полупространство
\^Hi при этом не является рецессивным, то есть

\forall x \in \^Hi,\forall \lambda \in \BbbR >0 : x+ \lambda c \in \^Hi. (51)

Так как x\prime , вычисляемый по формуле (45), принадлежит \^Hi, отсюда следует

x\prime + \lambda c \in \^Hi (52)

для всех \lambda \in \BbbR >0, что равносильно

\bigl\langle 
ai, x

\prime + \lambda c
\bigr\rangle 
\leqslant \beta . (53)

Поставляя сюда правую часть равенства (45) вместо x\prime , получаем
\biggl\langle 
ai,

\beta ai
\| ai\| 2

+ \lambda c

\biggr\rangle 
\leqslant \beta . (54)

Поскольку \lambda > 0, отсюда следует
\langle ai, c\rangle \leqslant 0. (55)

Получили противоречие с (44). Таким образом, достаточность также доказана.

Обозначим
ec =

c

\| c\| . (56)

Другими словами, ec обозначает единичный вектор, сонаправленный с вектором c.

Утверждение 2. Пусть полупространство \^Hi является рецессивным. Тогда для любой
точки x\prime \in \BbbR n и любого положительного числа \eta > 0 точка

z = x\prime +
\biggl( 
\eta +

bi  - \langle ai, x\prime \rangle 
\langle ai, ec\rangle 

\biggr) 
ec (57)

не принадлежит полупространству \^Hi, то есть

\langle ai, z\rangle > bi. (58)

Доказательство. Так как полупространство \^Hi является рецессивным, то в соответствии
с утверждением 1 справедливо следующее неравенство:

\langle ai, c\rangle > 0. (59)

В силу (57) мы имеем

\langle ai, z\rangle =
\biggl\langle 
ai, x

\prime +
\biggl( 
\eta +

bi  - \langle ai, x\prime \rangle 
\langle ai, ec\rangle 

\biggr) 
ec

\biggr\rangle 
= \eta \langle ai, ec\rangle + bi. (60)

Подставляя в (60) правую часть равенства (56) вместо ec, получаем

\langle ai, z\rangle =
\eta 

\| c\| \langle ai, c\rangle + bi. (61)

Поскольку \eta > 1, из (59) следует \eta 
\| c\| \langle ai, c\rangle > 0. Это означает, что из (61) следует \langle ai, z\rangle > bi,

то есть z /\in \^Hi. Утверждение доказано.
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Определим
\scrI = \{ i \in \scrP | \langle ai, c\rangle > 0\} , (62)

то есть \scrI представляет множество индексов, для которых полупространство \^Hi является
рецессивным. Поскольку допустимый многогранник M представляет собой ограниченное
множество, имеем

\scrI \not = \emptyset . (63)

Следствие 1. Пусть имеется произвольная допустимая точка x\prime задачи ЛП (37):

\forall i \in \scrP :
\bigl\langle 
ai, x

\prime \bigr\rangle \leqslant bi. (64)

Тогда для любого положительного числа \eta \in \BbbR >0 точка

z = x\prime +
\biggl( 
\eta +\mathrm{m}\mathrm{a}\mathrm{x}

\biggl\{ 
bi  - \langle ai, x\prime \rangle 
\langle ai, ec\rangle 

\bigm| \bigm| \bigm| \bigm| i \in \scrI 
\biggr\} \biggr) 

ec (65)

не принадлежит ни одному рецессивному пространству \^Hi, то есть

\forall i \in \scrI : \langle ai, z\rangle > bi. (66)

Доказательство. Условие (64) равносильно условию

\forall i \in \scrI : bi  - 
\bigl\langle 
ai, x

\prime \bigr\rangle \geqslant 0. (67)

Из (62) и (56) получаем
\forall i \in \scrI : \langle ai, ec\rangle > 0. (68)

Отсюда с учетом (67) следует, что

\mathrm{m}\mathrm{a}\mathrm{x}

\biggl\{ 
bi  - \langle ai, x\prime \rangle 
\langle ai, ec\rangle 

\bigm| \bigm| \bigm| \bigm| i \in \scrI 
\biggr\} 

\geqslant 0 (69)

для всех i \in \scrI . Зафиксируем произвольный j \in \scrI и определим

\eta \prime = \eta +\mathrm{m}\mathrm{a}\mathrm{x}

\biggl\{ 
bi  - \langle ai, x\prime \rangle 
\langle ai, ec\rangle 

\bigm| \bigm| \bigm| \bigm| i \in \scrI 
\biggr\} 
 - bj  - \langle aj , x\prime \rangle 

\langle aj , ec\rangle 
, (70)

где \eta > 0. Принимая во внимание (69), отсюда следует \eta \prime > 0. Из (65) и (70) получаем

z = x\prime +
\biggl( 
\eta +\mathrm{m}\mathrm{a}\mathrm{x}

\biggl\{ 
bi  - \langle ai, x\prime \rangle 
\langle ai, ec\rangle 

\bigm| \bigm| \bigm| \bigm| i \in \scrI 
\biggr\} \biggr) 

ec = x\prime +
\biggl( 
\eta \prime +

bj  - \langle aj , x\prime \rangle 
\langle aj , ec\rangle 

\biggr) 
ec. (71)

В силу утверждения 2 это означает, что \langle aj , z\rangle > bj , то есть точка z, вычисляемая по
формуле (65), не принадлежит полупространству \^Hj для всех j \in \scrI . Следствие доказано.

Следующее утверждение определяет область, где может находиться решение задачи
ЛП (37).

Утверждение 3. Пусть \=x является решением задачи ЛП (37). Тогда найдется индекс i\prime \in \scrI 
такой, что

\=x \in Hi\prime , (72)

то есть существует рецессивное полупространство \^Hi\prime такое, что ограничивающая его ги-
перплоскость Hi\prime содержит \=x.
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Доказательство. Обозначим через \scrJ множество индексов, для которых полупространство
\^Hj является доминантным:

\scrJ = \scrP \setminus \scrI . (73)

Так как \=x принадлежит допустимой области задачи ЛП (37), справедливы следующие вклю-
чения:

\=x \in 
\bigcap 

j\in \scrJ 

\^Hj , (74)

\=x \in 
\bigcap 

i\in \scrI 

\^Hi. (75)

Определим луч Y следующим образом:

Y = \{ \=x+ \lambda c | \lambda \in \BbbR \geqslant 0 \} . (76)

В соответствии с определением 1 имеем

Y \subset 
\bigcap 

j\in \scrJ 

\^Hj , (77)

то есть луч Y принадлежит всем доминантным полупространствам. В силу определения 2

\forall i \in \scrI , \exists \lambda \in \BbbR >0 : \=x+ \lambda c /\in \^Hi. (78)

Принимая во внимание (75), это означает, что

\forall i \in \scrI : Y \cap Hi = yi \in \BbbR n, (79)

то есть луч Y пересекает любую гиперплоскость Hi, ограничивающую рецессивное полу-
пространство \^Hi, в единственной точке yi \in \BbbR n. Положим

i\prime = \mathrm{a}\mathrm{r}\mathrm{g}min
i\in \scrI 
\{ \| \=x - yi\| | yi = Y \cap Hi \} , (80)

то есть гиперплоскость Hi\prime является ближайшей к точке \=x для всех i \in \scrI . Обозначим через
\=y пересечение луча Y и гиперплоскости Hi\prime :

\=y = Y \cap Hi\prime . (81)

В соответствии с (75), (76) и (80)
\=y \in 

\bigcap 

i\in \scrI 

\^Hi, (82)

то есть точка \=y принадлежит всем рецессивным полупространствам. В силу (77) отсюда
следует, что

\=y \in 
\bigcap 

i\in \scrP 

\^Hi. (83)

Это означает, что \=y принадлежит допустимой области задачи ЛП (37).
Положим

\lambda \prime = \| \=x - \=y\| . (84)
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Тогда в силу (76) имеем

\langle c, \=y\rangle =
\bigl\langle 
c, \=x+ \lambda \prime ec

\bigr\rangle 
= \langle c, \=x\rangle + \lambda \prime 

\langle c, c\rangle 
\| c\| = \langle c, \=x\rangle + \lambda \prime \| c\| . (85)

Поскольку \=x является решением задачи ЛП (37), следующее условие имеет место:

\forall y \in 
\bigcap 

i\in \scrP 

\^Hi : \langle c, y\rangle \leqslant \langle c, \=x\rangle . (86)

Сопоставляя это с (83), получаем
\langle c, \=y\rangle \leqslant \langle c, \=x\rangle . (87)

Принимая во внимание, что \lambda \prime \geqslant 0 и c \not = \bfzero , в силу (85) и (87) имеем \lambda \prime = 0. В соответствии
с (84) отсюда следует, что \=x = \=y. В силу (81) это означает, что \=x \in Hi\prime , где \^Hi\prime является
рецессивным полупространством. Утверждение доказано.

Определение 3. Пусть M \not = \emptyset — выпуклое замкнутое множество. Однозначное отображе-
ние \varphi : \BbbR n \rightarrow \BbbR n называется M-фейеровским отображением [38], если

\forall x \in M : \varphi (x) = x, (88)

и
\forall x /\in M,\forall y \in M : \| \varphi (x) - y\| < \| x - y\| . (89)

Утверждение 4. Пусть M \not = \emptyset — выпуклое замкнутое множество, x(0) — произвольная
точка в \BbbR n. Если \varphi (\cdot ) является непрерывным M -фейеровским отображением, то последо-
вательность \Bigl\{ 

x(k) = \varphi k
\Bigl( 
x(0)

\Bigr) \Bigr\} \infty 

k=1
,

порождаемая этим отображением, сходится к точке, принадлежащей M :

x(k) \rightarrow \~x \in M. (90)

Доказательство. Сходимость непосредственно следует из теоремы 6.1 и следствия 6.1
в [38]. Утверждение доказано.

Обозначим через \pi i(x) ортогональную проекцию точки x на гиперплоскость Hi:

\pi i(x) = x - \langle ai, x\rangle  - bi
\| ai\| 2

ai. (91)

Следующее утверждение дает нам непрерывноеM -фейеровское отображение, которое будет
использоваться в апекс-методе.

Утверждение 5. Пусть M \not = \emptyset — допустимый многогранник задачи ЛП (37):

M =

m\bigcap 

i=1

\^Hi. (92)

Известно, что в этом случае M является выпуклым замкнутым множеством. Для произ-
вольной точки x \in \BbbR n определим множество индексов

\scrJ x = \{ i | \langle ai, x\rangle > bi; i \in \scrP \} . (93)
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Другими словами, \scrJ x — множество индексов полупространств \^Hi, которые не содержат
точку x. Однозначное отображение \psi : \BbbR n \rightarrow \BbbR n, задаваемое формулой

\psi (x) =

\left\{ 
 
 

x, если x \in M ;
1

| \scrJ x| 
\sum 
i\in \scrJ x

\pi i(x), если x /\in M, (94)

является непрерывным M -фейеровским отображением.

Доказательство. Очевидно, что отображение \psi (\cdot ) является непрерывным. Покажем, что
выполняется условие (89). Доказательство проведем по общей схеме, представленной в [38].
Пусть y \in M и x /\in M . Это означает, что

\scrJ x \not = \emptyset . (95)

В силу (93) для всех i \in \scrJ x справедливо неравенство

\| \pi i(x) - x\| > 0. (96)

Согласно лемме 3.2 в [38] для всех i \in \scrJ x также выполняется следующее неравенство:

\| \pi i(x) - y\| 2 \leqslant \| x - y\| 2  - \| \pi i(x) - x\| 2. (97)

Отсюда следует

\| y  - \psi (x)\| 2 =
\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| y  - 

1
| \scrJ x| 

\sum 

i\in \scrJ x

\pi i(x)

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 

2

=

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
1

| \scrJ x| 
\sum 

i\in \scrJ x

(y  - \pi i(x))
\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 

2

\leqslant 1
| \scrJ x| 2

\sum 

i\in \scrJ x

\| y  - \pi i(x)\| 2 \leqslant 

\leqslant 1
| \scrJ x| 

\sum 

i\in \scrJ x

\| y  - \pi i(x)\| 2 \leqslant 1
| \scrJ x| 

\sum 

i\in \scrJ x

\Bigl( 
\| x - y\| 2  - \| \pi i(x) - x\| 2

\Bigr) 
\leqslant 

\leqslant \| x - y\| 2  - 1
| \scrJ x| 

\sum 

i\in \scrJ x

\| \pi i(x) - x\| 2.

В соответствии с (95) и (96) следующее неравенство имеет место:

1
| \scrJ x| 

\sum 

i\in \scrJ x

\| \pi i(x) - x\| 2 > 0. (98)

Отсюда
\forall x /\in M, \forall y \in \BbbR n : \| \psi (x) - y\| < \| x - y\| .

Утверждение доказано.

Определение 4. Пусть M \not = \emptyset — допустимый многогранник задачи ЛП (37), \psi (\cdot ) — отобра-
жение, определяемое формулой (94). Псевдопроекцией \rho M (x) точки x на допустимый много-
гранник M называется предельная точка последовательности [x, \psi (x), \psi 2(x), . . . , \psi k(x), . . .]:

\mathrm{l}\mathrm{i}\mathrm{m}
k\rightarrow \infty 

\bigm\| \bigm\| \bigm\| \rho M (x) - \psi k(x)
\bigm\| \bigm\| \bigm\| = 0. (99)

Корректность этого определения вытекает из утверждений 4 и 5.
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3. Описание апекс-метода

В этом разделе мы опишем новый масштабируемый итерационный метод решения за-
дачи ЛП (37), получивший название «апекс-метод». Апекс-метод построен по схеме предик-
тор/корректор и включает в себя две последовательные стадии: Quest (предиктор) и Target
(корректор). Стадия Quest находит грубое начальное приближение для задачи ЛП (37).
Стадия Target уточняет это начальное приближение с определенной точностью. Основной
операцией, используемой как на стадии Quest, так и на стадии Target, является операция
вычисления псевдопроекции (см. определение 4). Следующий раздел посвящен описанию и
исследованию алгоритма вычисления псевдопроекции.

3.1. Алгоритм вычисления псевдопроекции

Базовой операцией, используемой в апекс-методе, является операция псевдопроекти-
рования, заключающаяся в последовательном применении отображения \psi (\cdot ), задаваемого
формулой (94), к исходной точке. В данном разделе мы рассмотрим реализацию опера-
ции псевдопроектирования в виде последовательного и параллельного алгоритмов. Соглас-
но определению 4 операция псевдопроектирования \rho M (\cdot ) отображает произвольную точку
x \in \BbbR n в точку \rho M (x), принадлежащую допустимому многограннику M , представляющему
допустимую область задачи ЛП (37). Вычисление \rho M (x) организуется в виде итерационно-
го процесса с использованием формулы (94). Последовательная реализация этого процесса
представлена в виде алгоритма 1. Кратко прокомментируем шаги этого алгоритма. Основ-
ной итерационный процесс, вычисляющий последовательность фейеровских приближений,
представлен в виде цикла repeat–until (шаги 4–20). На шагах 5–10 строится множество \scrJ ,
содержащее индексы полупространств \^Hi, которым не принадлежит текущее приближе-
ние x(k). На шагах 14–18 вычисляется следующее приближение x(k+1) по формуле (94).
Алгоритм завершает свою работу, когда расстояние между соседними приближения станет
меньше малой положительной константы \epsilon .

Известно, что в случае больших задач ЛП проекционный метод может потребовать
значительных временных затрат [65]. Потому мы разработали параллельную версию алго-
ритма 1, представленную в виде алгоритма 2. Параллельный алгоритм построен на основе
модели параллельных вычислений BSF [66], ориентированной на кластерные вычислитель-
ные системы. Модель BSF использует схему распараллеливания «мастер–рабочие» и тре-
бует представление алгоритма в виде операций над списками с использованием функций
высшего порядка Map и Reduce. В качестве второго параметра функции высшего порядка
Map в алгоритме 2 используется список \scrL map = [1, . . . ,m], содержащий порядковые номера
ограничений задачи ЛП (37), а в качестве первого параметра фигурирует параметризован-
ная функция

\mathrm{F}x : \scrP \rightarrow \BbbR n \times \BbbZ \geqslant 0,

определенная следующим образом:

\mathrm{F}x(i) = (ui, \sigma i) ;

ui =

\Biggl\{ 
\pi i(x), если \langle ai, x\rangle > bi;

\bfzero , если \langle ai, x\rangle \leqslant bi;

\sigma i =

\Biggl\{ 
1, если \langle ai, x\rangle > bi;

0, если \langle ai, x\rangle \leqslant bi.

(100)
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Алгоритм 1 Последовательное вычисление псевдопроекции \rho M (x)

Require: \^Hi = \{ x \in \BbbR n| \langle ai, x\rangle \leqslant bi\} , M =
\bigcap m

i=1
\^Hi, M \not = \emptyset 

1: function \rho M (x)
2: k :=0

3: x(0) :=x

4: repeat
5: \scrJ := \emptyset 
6: for i = 1 . . .m do
7: if

\bigl\langle 
ai, x

(k)
\bigr\rangle 
> bi then

8: \scrJ :=\scrJ \cup \{ i\} 
9: end if

10: end for
11: if \scrJ = \emptyset then
12: return x(k)

13: end if
14: S :=0

15: for all i \in \scrJ do
16: S :=S +

\bigl( \bigl\langle 
ai, x

(k)
\bigr\rangle 
 - bi

\bigr) 
ai/ \| ai\| 2

17: end for
18: x(k+1) :=x(k)  - S/ | \scrJ | 
19: k := k + 1

20: until
\bigm\| \bigm\| x(k)  - x(k - 1)

\bigm\| \bigm\| < \epsilon 

21: return x(k)

22: end function

Таким образом, функция высшего порядка Map (\mathrm{F}x,\scrL map) преобразует список номеров
ограничений \scrL map в список пар (ui, \sigma i):

Map (\mathrm{F}x,\scrL map) = [\mathrm{F}x(1), . . . ,\mathrm{F}x(m)] = [(u1, \sigma 1), . . . , (um, \sigma m)] . (101)

Здесь ui является ортогональной проекцией точки x на гиперплоскость Hi в том случае,
когда x /\in \^Hi, и нулевым вектором в противном; \sigma i соответственно принимает значение 1
или 0. Обозначим \scrL reduce = [(u1, \sigma 1), . . . , (um, \sigma m)]. Определим бинарную ассоциативную
операцию

\oplus : \BbbR n \times \BbbZ \geqslant 0 \rightarrow \BbbR n \times \BbbZ \geqslant 0,

являющуюся первым параметром функции высшего порядка Reduce:

\bigl( 
u\prime , \sigma \prime 

\bigr) 
\oplus 
\bigl( 
u\prime \prime , \sigma \prime \prime 

\bigr) 
=
\bigl( 
u\prime + u\prime \prime , \sigma \prime + \sigma \prime \prime 

\bigr) 
. (102)

Функция высшего порядка Reduce (\oplus ,\scrL reduce) редуцирует список \scrL reduce к одной паре путем
последовательного применения операции \oplus ко всем элементам списка:

Reduce (\oplus ,\scrL reduce) = (u1, \sigma 1)\oplus . . .\oplus (um, \sigma m) = (u, \sigma ), (103)
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Алгоритм 2 Параллельное вычисление псевдопроекции \rho M (x)

мастер l-тый рабочий (l = 0, . . . , L - 1)

1: input n, x(0)

2:

3: k :=0

4: repeat
5: Bcast x(k)

6:

7:

8: Gather \scrL reduce
9: (u, \sigma ) :=Reduce(\oplus ,\scrL reduce)

10: x(k+1) :=u/\sigma 

11: k := k + 1

12: exit :=
\bigm\| \bigm\| x(k)  - x(k - 1)

\bigm\| \bigm\| < \epsilon 

13: Bcast exit
14: until exit
15: output x(k)

16: stop

1: input n,m,A, b, c
2: L :=\mathrm{N}\mathrm{u}\mathrm{m}\mathrm{b}\mathrm{e}\mathrm{r}\mathrm{O}\mathrm{f}\mathrm{W}\mathrm{o}\mathrm{r}\mathrm{k}\mathrm{e}\mathrm{r}\mathrm{s}

3: \scrL map(l) :=[lm/L, . . . , ((l + 1)m/L) - 1]

4: repeat
5: RecvFromMaster x(k)

6: \scrL reduce(l) :=Map(\mathrm{F}x(k) ,\scrL map(l))

7: (ul, \sigma l) :=Reduce(\oplus ,\scrL reduce(l))
8: SendToMaster (ul, \sigma l)

9:

10:

11:

12:

13: RecvFromMaster exit
14: until exit
15:

16: stop

где

u =

m\sum 

i=1

ui; (104)

\sigma =

m\sum 

i=1

\sigma i. (105)

Параллельная работа алгоритма 2 организована по схеме «мастер–рабочие» и включает в
себя L+1 процесс: один процесс–мастер и L процессов–рабочих. Процесс–мастер осуществ-
ляет общее управление вычислениями, распределяет работу между процессами–рабочими,
получает от них результаты и формирует итоговый результат. Для простоты будем пред-
полагать, что количество ограничений m в задаче ЛП (37) кратно количеству рабочих L.
На шаге 1 мастер вводит исходные данные: размерность пространства n и начальную точ-
ку x(0). На шаге 3 мастер присваивает счетчику итераций k значение 0. Шаги 4–14 ре-
ализуют основной цикл repeat–until, вычисляющий псевдопроекцию. На шаге 5 мастер
рассылает текущее приближение x(k) всем рабочим. На шаге 8 он получает от рабочих
частичные результаты, которые на шаге 9 редуцируются в пару (u, \sigma ). Последняя исполь-
зуется на шаге 10 для вычисления следующего приближения x(k+1). На шаге 11 мастер
увеличивает на единицу счетчик итераций k. На шаге 12 мастер проверяет условие завер-
шения и присваивает результат проверки логической переменной exit. На шаге 13 мастер
рассылает всем рабочим значение логической переменной exit. Если логическая переменная
exit принимает значение «истина», цикл repeat–until завершается на шаге 14. На шаге 15

О новой версии апекс-метода для решения задач линейного программирования

22 Вестник ЮУрГУ. Серия «Вычислительная математика и информатика»



мастер выводит последнее приближение x(k) в качестве результата псевдопроекции. Шаг 16
завершает работу процесса–мастера.

Все рабочие выполняют один и тот же код, но над различными данными. На шаге 1
l-тый рабочий вводит исходные данные задачи ЛП. Затем он формирует подсписок своих
номеров ограничений для обработки (шаги 2–3). Для удобства программирования нумера-
ция ограничений начинается с нуля. Подсписки различных рабочих не пересекаются, и их
объединение дает полный список номеров ограничений:

\scrL map = \scrL map(0) ++ . . .++ \scrL map(L - 1). (106)

Символ ++ здесь обозначает операцию конкатенации списков. Цикл repeat–until рабочего
соответствует циклу repeat–until мастера (шаги 4–14). На шаге 5 рабочий получает от ма-
стера текущее приближение x(k). На шаге 6 рабочий вызывает функцию высшего порядка
Map, которая, в свою очередь, применяет параметризованную функцию \mathrm{F}x(k) , определен-
ную по формуле (100), ко всем элементам подсписка \scrL map(l), формируя на выходе подспи-
сок пар \scrL reduce(l). Этот подсписок на шаге 7 редуцируется рабочим в единственную пару
(ul, \sigma l) с помощью функции высшего порядка Reduce, которая последовательно применя-
ет бинарную операцию \oplus , определенную по формуле (102), ко всем элементам подсписка
\scrL reduce(l). На шаге 13 рабочий получает от мастера значение логической переменной exit.
Если эта переменная принимает значение «истина», то рабочий процесс завершается. В
противном случае продолжает выполняться цикл repeat–until. Операторы обмена Bcast,
Gather, RecvFromMaster и SendToMaster обеспечивают неявную синхронизацию ра-
боты процесса–мастера и процессов–рабочих.

Выполним оценку границы масштабируемости описанного параллельного алгоритма,
используя стоимостную метрику модели BSF [66]. Под границей масштабируемости парал-
лельного алгоритма понимается максимальное число процессорных узлов, до которого на-
блюдается рост ускорения. Стоимостная метрика модели BSF включает в себя следующие
параметры.

m : длина списка \scrL map;
D : латентность (время, необходимое мастеру, чтобы послать одному рабочему

сообщение длиной в один байт);
tc : время, необходимое мастеру, чтобы переслать одному рабочему текущее

приближение x(k) и получить от него пару (ul, \sigma l) с учетом латентности;
tMap : время, требуемое одному рабочему, чтобы выполнить функцию высшего порядка

Map для всех элементов списка \scrL map;
ta : время, необходимое для выполнения бинарной операции \oplus , определяемой

по формуле (102).

Согласно формуле (14) из [66], граница масштабируемости Lmax параллельного алгоритма 2
может быть оценена следующим образом:

Lmax =
1

2

\sqrt{} \biggl( 
tc

ta \mathrm{l}\mathrm{n} 2

\biggr) 2

+
tMap

ta
+ 4m - tc

ta \mathrm{l}\mathrm{n} 2
. (107)

Вычислим временные параметры в формуле (107). Введем следующие обозначения для
одной итерации цикла repeat–until (шаги 4–14 алгоритма 2):
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cc : количество чисел, пересылаемых от мастера рабочему и обратно в ходе одной
итерации;

cF : количество арифметических операций и операций сравнения, необходимых для
вычисления функции \mathrm{F}x, определяемой по формуле (100);

c\oplus : количество арифметических операций и операций сравнения, необходимых для
выполнения бинарной операции \oplus , определяемой по формуле (102).

На шаге 5 мастер посылает l-тому рабочему вектор размерности n. Затем на шаге 8
мастер получает от l-того рабочего пару, состоящую из вектора размерности n и одного
вещественного числа. Кроме этого, на шаге 13 мастер посылает l-тому рабочему одно ло-
гическое значение. Последняя пересылка состоит в пересылке одного бита и равносильна
одному добавлению латентности D, что будет сделано позже. Следовательно,

cc = 2n+ 1. (108)

Принимая во внимание формулы (91), (100) и предполагая, что значения \| ai\| 2 для всех
i = 1, . . . ,m вычислены заранее, получаем

cF = 3n+ 2. (109)

Исходя из (102), для c\oplus справедлива следующая формула:

c\oplus = 2n+ 1. (110)

Обозначим через \tau op время выполнения одной арифметической операции или операции
сравнения. Обозначим через \tau tr время пересылки одного вещественного числа без учета
латентности. Тогда на основе (108), (109) и (110) имеем

tc = cc\tau tr + 3D = (2n+ 1)\tau tr + 3D; (111)

tMap = cFm\tau op = (3n+ 2)m\tau op; (112)

ta = c\oplus \tau op = (2n+ 1)\tau op. (113)

Подставляя правые части этих формул в (107) и добавляя латентность D, получаем

Lmax =
1

2

\sqrt{} \biggl( 
(2n+ 1)\tau tr + 3D

(2n+ 1)\tau op \mathrm{l}\mathrm{n} 2

\biggr) 2

+

\biggl( 
n+ 1

2n+ 1
+ 5

\biggr) 
m - (2n+ 1)\tau tr + 3D

(2n+ 1)\tau op \mathrm{l}\mathrm{n} 2
,

где n — размерность пространства, m — количество ограничений. Для больших значений
n и m отсюда вытекает следующая приближенная оценка:

Lmax \approx O(
\surd 
m). (114)

Полученная оценка свидетельствует о том, что параллельный алгоритм 2 обладает слабой
масштабируемостью1.
1Если граница масштабируемости определяется формулой Lmax = O (m\alpha ), то мы полагаем, что параллель-
ный алгоритм обладает сильной масштабируемостью при \alpha \geqslant 1, слабой масштабируемостью при 0 < \alpha < 1,
и масштабируемость отсутствует при \alpha \leqslant 0.
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3.2. Стадия Quest

Стадия Quest играет роль предиктора и состоит из следующих шагов.
1. Найти допустимую точку \~x \in M .
2. Вычислить точку апекса z.
3. Построить начальное приближение u(0), являющееся псевдопроекцией точки апекса z

на допустимый многогранник M .

Допустимая точка \~x на шаге 1 может быть вычислена с помощью формулы

\~x =

\Biggl\{ 
\bfzero , если \bfzero \in M ;

\rho M (\bfzero ), если \bfzero /\in M,
(115)

где \rho M (\cdot ) — операция псевдопроектирования на допустимый многогранник M (см. опреде-
ление 4).

Точка апекса z на шаге 2 может быть вычислена следующим образом:

z = \~x+

\biggl( 
\eta +\mathrm{m}\mathrm{a}\mathrm{x}

\biggl\{ 
bi  - \langle ai, x\prime \rangle 
\langle ai, ec\rangle 

\bigm| \bigm| \bigm| \bigm| i \in \scrI 
\biggr\} \biggr) 

ec, (116)

где \scrI — множество индексов, для которых полупространство \^Hi является c-рецессивным;
\eta \in \BbbR >0 — положительный параметр, определяющий удаление точки z от точки \~x. След-
ствие 1 гарантирует, что при любом \eta > 0 точка z, вычисленная по формуле (116), не
принадлежит никакому рецессивному полупространству \^Hi. Подобный выбор точки апек-
са z основывается на эвристике, согласно которой псевдопроекция такой точки будет на-
ходиться «не очень далеко» от точного решения задачи ЛП. Данная эвристика основана
на утверждении 3, в котором говорится, что решение задачи ЛП (37) лежит на некоторой
гиперплоскости Hi, ограничивающей рецессивное полупространство \^Hi. При этом значение
параметра \eta может существенно влиять на близость точки \rho M (z) к точному решению. Опти-
мальное значение \eta может быть получено путем нахождения максимума целевой функции
с использованием метода последовательной дихотомии.

На шаге 3 вычисляется точка u(0) по формуле

u(0) = \rho M (z). (117)

Эта точка служит начальным приближением на стадии Target. Многочисленные вычисли-
тельные эксперименты, выполненные нами на искусственных и реальных невырожденных
задачах ЛП, показывают, что итерационный процесс вычисления псевдопроекции, стартуя
с произвольной внешней точки, всегда сходится к точке на границе допустимого много-
гранника M . Однако, в настоящий момент у нас отсутствует строгое доказательство этого
факта.

3.3. Стадия Target

Стадия Target играет в апекс-методе роль корректора и вычисляет последовательность
точек \Bigl\{ 

u(0), u(1), . . . , u(k), . . .
\Bigr\} 
, (118)

обладающую следующими свойствами:

u(k) \in \Gamma M ; (119)
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Алгоритм 3 Стадия Target
Require: \^Hi = \{ x \in \BbbR n| \langle ai, x\rangle \leqslant bi\} , M =

\bigcap m
i=1

\^Hi, M \not = \emptyset 
1: input u(0)

2: k :=0

3: v :=u(k) + \delta ec

4: w := \rho M (v)

5: while
\bigl\langle 
c, w  - u(k)

\bigr\rangle 
> \epsilon f do

6: assert \exists i \in \scrI : w, u(k) \in Hi  \triangleleft Если не выполняется, уменьшить \delta 
7: d :=w  - u(k)
8: \lambda \prime = \mathrm{m}\mathrm{a}\mathrm{x}

\bigl\{ 
\lambda \in \BbbR >0| u(k) + \lambda d \in M

\bigr\} 

9: u(k+1) :=u(k) + \lambda \prime d
10: k := k + 1

11: v :=u(k) + \delta ec

12: w := \rho M (v)

13: end while
14: output u(k)

15: stop

\Bigl\langle 
c, u(k)

\Bigr\rangle 
<
\Bigl\langle 
c, u(k+1)

\Bigr\rangle 
; (120)

\mathrm{l}\mathrm{i}\mathrm{m}
k\rightarrow \infty 

\bigm\| \bigm\| \bigm\| u(k)  - \=x
\bigm\| \bigm\| \bigm\| = 0 (121)

для всех k \in \{ 0, 1, 2, . . .\} . Здесь \Gamma M обозначает множество граничных точек допустимого
многогранникаM . Условие (119) означает, что все точки последовательности (118) лежат на
границе допустимого многогранника M . Условие (120) говорит о том, что значение целевой
функции в каждой точке последовательности (118) больше, чем в предыдущей. Согласно
условию (121) последовательность (118) сходится к точному решению задачи ЛП (37).

Реализация стадии Target приведена в виде алгоритма 3. Дадим краткие комментарии
по шагам алгоритма 3. На шаге 1 осуществляется ввод начального приближения u(0), по-
лученного на стадии Quest. На шаге 2 счетчику итераций k присваивается значение 0. На
шаге 3 вычисляется внешняя точка v как сумма векторов \delta ec и u(k). Здесь ec обозначает
единичный вектор, сонаправленный с вектором c. На шаге 4 вычисляется точка w, явля-
ющаяся псевдопроекцией точки v на допустимый многогранник M . Шаги 5–13 реализуют
основной цикл стадии Target, проиллюстрированный на рис. 1. Этот цикл выполняется,
пока справедливо условие \Bigl\langle 

c, w  - u(k)
\Bigr\rangle 
> \epsilon f . (122)

Здесь \epsilon f — малый положительный параметр. На шаге 6 проверяется требование, в соответ-
ствии с которым точки w и u(k) должны лежать на некоторой гиперплоскости Hi, ограничи-
вающей рецессивное полупространство \^Hi. Это необходимо для того, чтобы перемещение от
точки u(k) к точке u(k+1) происходило по поверхности многогранникаM , а не через его внут-
реннюю часть. Если это требование не выполняется, необходимо уменьшить параметр \delta . На
шаге 7 вычисляется вектор d, задающий направление перемещения. На шаге 8 вычисляется
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Рис. 1. Итерация основного цикла стадии Target

максимальное положительное число \lambda \prime , для которого точка
\bigl( 
u(k) + \lambda \prime d

\bigr) 
принадлежит мно-

гограннику M . На шаге 9 вычисляется следующее приближение u(k+1). На шаге 10 счетчик
итераций k увеличивается на 1. На шагах 11 и 12 вычисляются новая внешняя точка v и ее
псевдопроекция w, используемые на следующей итерации основного цикла. После выхода
из основного цикла на шаге 14 точка u(k) выводится в качестве приближенного решения
задачи ЛП (37).

Следующее утверждение гарантирует сходимость алгоритма 3.

Утверждение 6. Пусть допустимый многогранник M задачи ЛП (37) является непустым
ограниченным множеством. Тогда последовательность

\bigl\{ 
u(k)

\bigr\} 
, генерируемая алгоритмом 3,

завершается через конечное число итераций K \geqslant 0 в некоторой допустимой точке, причем

\Bigl\langle 
c, u(0)

\Bigr\rangle 
<
\Bigl\langle 
c, u(1)

\Bigr\rangle 
<
\Bigl\langle 
c, u(2)

\Bigr\rangle 
< . . . <

\Bigl\langle 
c, u(K)

\Bigr\rangle 
. (123)

Доказательство. Случай K = 0 является тривиальным. Пусть K > 0, либо K = \infty .
Сначала покажем, что для любого k < K выполняется следующее неравенство:

\Bigl\langle 
c, u(k)

\Bigr\rangle 
<
\Bigl\langle 
c, u(k+1)

\Bigr\rangle 
. (124)

Действительно, из (122) следует, что

\Bigl\langle 
c, u(k)

\Bigr\rangle 
< \langle c, w\rangle . (125)

Принимая во внимание шаг 7 алгоритма 3, это означает, что

d \not = \bfzero . (126)

В соответствии с шагами 8, 9 имеем

u(k+1) = u(k) + \lambda \prime d, (127)

где \lambda \prime > 0. Принимая во внимание неравенство (122) и шаг 7 алгоритма 3, отсюда следует

\Bigl\langle 
c, u(k+1)

\Bigr\rangle 
=
\Bigl\langle 
c, u(k) + \lambda \prime d

\Bigr\rangle 
=
\Bigl\langle 
c, u(k) + \lambda \prime 

\Bigl( 
w  - u(k)

\Bigr) \Bigr\rangle 
=

=
\Bigl\langle 
c, u(k)

\Bigr\rangle 
+ \lambda \prime 

\Bigl\langle 
c, w  - u(k)

\Bigr\rangle 
>
\Bigl\langle 
c, u(k)

\Bigr\rangle 
.
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Теперь покажем, что K <\infty . Предположим противное, то есть алгоритм 3 генерирует
бесконечную последовательность точек. В таком случае мы получаем бесконечную моно-
тонно возрастающую числовую последовательность

\Bigl\langle 
c, u(0)

\Bigr\rangle 
<
\Bigl\langle 
c, u(1)

\Bigr\rangle 
<
\Bigl\langle 
c, u(2)

\Bigr\rangle 
< . . . (128)

Поскольку допустимый многогранник M является ограниченным множеством, последова-
тельность (128) ограничена сверху. Согласно теореме Вейерштрасса монотонно возрастаю-
щая ограниченная числовая последовательность имеет конечный предел, равный ее супре-
муму. Это означает, что существует K \prime \in \BbbN такой, что

\forall k > K \prime :
\Bigl\langle 
c, u(k+1)

\Bigr\rangle 
 - 
\Bigl\langle 
c, u(k)

\Bigr\rangle 
< \epsilon f . (129)

Отсюда следует

\forall k > K \prime : \langle c, w\rangle  - 
\Bigl\langle 
c, u(k)

\Bigr\rangle 
< \epsilon f , (130)

что равносильно

\forall k > K \prime :
\Bigl\langle 
c, w  - u(k)

\Bigr\rangle 
< \epsilon f . (131)

Получили противоречие с условием (122) выполнения цикла, используемом на шаге 5 ал-
горитма 3. Утверждение доказано.

Покажем, что последовательность
\bigl\{ 
u(k)

\bigr\} 
, генерируемая алгоритмом 3, сходится к точ-

ному решению задачи ЛП (37) при \epsilon f \rightarrow 0. Для этого заметим, что при \delta \rightarrow 0 псевдо-
проекция сводится к метрической проекции. Следуя [38], дадим определение метрической
проекции.

Определение 5. Пусть Q является замкнутым выпуклым множеством в \BbbR n, и Q \not = \emptyset .
Метрическая проекция PQ(x) точки x \in \BbbR n на множество Q определяется формулой

PQ(x) = \mathrm{a}\mathrm{r}\mathrm{g}\mathrm{m}\mathrm{i}\mathrm{n} \{ \| x - q\| | q \in Q\} . (132)

Следующее утверждение имеет место.

Утверждение 7. Последовательность
\bigl\{ 
u(k)

\bigr\} 
, генерируемая алгоритмом 3 с метрической

проекцией PM (\cdot ) вместо псевдопроекции \rho M (\cdot ), завершается через конечное число итераций
K \geqslant 0 в некоторой допустимой точке, причем

\Bigl\langle 
c, u(0)

\Bigr\rangle 
<
\Bigl\langle 
c, u(1)

\Bigr\rangle 
<
\Bigl\langle 
c, u(2)

\Bigr\rangle 
< . . . <

\Bigl\langle 
c, u(K)

\Bigr\rangle 
. (133)

Доказательство. Данное утверждение доказывается по той же схеме, что и утверждение 6.

Следующее утверждение доказывает сходимость алгоритма 3 к точному решению за-
дачи ЛП (37) для случая метрической проекции.

Утверждение 8. При замене псевдопроекции \rho M (\cdot ) метрической проекцией PM (\cdot ) алго-
ритм 3 завершается через конечное число итераций в точке \=x, являющейся точным реше-
нием задачи ЛП (37).
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Доказательство. Обозначим через \=u конечную точку последовательности
\bigl\{ 
u(k)

\bigr\} 
, генери-

руемой алгоритмом 3 с использованием метрической проекции PM (\cdot ). Такая точка суще-
ствует в силу утверждения 7. Предположим противное, то есть \=u \not = \=x. Это равносильно

\langle c, \=u\rangle < \langle c, \=x\rangle . (134)

Обозначим с помощью S\delta (v) открытый n-мерный шар радиуса \delta с центром в точке v, где

v = \=u+ \delta ec. (135)

В силу (134) имеем
S\delta (v) \cap M \not = \emptyset . (136)

Положим
w = \mathrm{a}\mathrm{r}\mathrm{g}\mathrm{m}\mathrm{i}\mathrm{n} \{ \| x - v\| | x \in S\delta (v) \cap M \} . (137)

Последнее эквивалентно
w = PM (v). (138)

Легко видеть, что справедливо неравенство

\langle c, w\rangle > \langle c, \=u\rangle . (139)

Сопоставляя формулу (135) с шагом 11 алгоритма 3, формулу (138) с шагом 12 (где псев-
допроекция заменена на метрическую проекцию), и формулу (139) с условием на шаге 5,
мы видим, что \=u не может быть конечной точкой последовательности

\bigl\{ 
u(k)

\bigr\} 
, генерируемой

алгоритмом 3. Получили противоречие. Утверждение доказано.

На практике заменить псевдопроекцию \rho M (v) в алгоритме 3 на метрическую проек-
цию PM (v) не представляется возможным, так как неизвестен алгоритм вычисления мет-
рической проекции на выпуклый замкнутый многогранник в общем случае. Таким образом,
утверждение 8 в строгом смысле не доказывает сходимость алгоритма 3 к точному решению
задачи ЛП (37), хотя на практике такая сходимость наблюдалась нами во всех случаях.

4. Программная реализация и вычислительные эксперименты

Мы реализовали параллельную версию апекс-метода на языке C++ с использовани-
ем программного BSF-каркаса [67], базирующегося на модели параллельных вычислений
BSF [66]. BSF-каркас инкапсулирует все аспекты, связанные с распараллеливанием про-
граммы на основе библиотеки MPI. Исходные коды апекс-метода свободно доступны в ре-
позитории GitHub по адресу https://github.com/leonid-sokolinsky/Apex-method. С по-
мощью этой программы мы исследовали масштабируемость апекс-метода. Масштабные вы-
числительные эксперименты проводились на вычислительном кластере «Торнадо ЮУр-
ГУ» [68], характеристики которого представлены в табл. 1. В качестве тестов мы использо-
вали искусственные задачи, полученные с помощью генератора случайных задач линейно-
го программирования FRaGenLP [69]. Верификация решений, выдаваемых апекс-методом,
осуществлялась программой VaLiPro [70]. Была выполнена серия вычислительных экспери-
ментов, в которой для задач ЛП различной размерности исследовались ускорение и парал-
лельная эффективность в зависимости от количества используемых рабочих узлов. Резуль-
таты этих экспериментов представлены на рис. 2. В данном контексте ускорение \alpha (L) опре-
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Таблица 1. Характеристики кластера «Торнадо ЮУрГУ»

Параметр Значение
Количество процессорных узлов 480
Процессоры Intel Xeon X5680 (6 cores, 3.33 GHz)
Число процессоров на узел 2
Память на узел 24 GB DDR3
Соединительная сеть InfiniBand QDR (40 Gbit/s)
Операционная система Linux CentOS

делялось как отношение времени T (1) решения задачи на конфигурации с узлом-мастером
и единственным узлом-рабочим ко времени T (L) решения той же задачи на конфигурации
с узлом-мастером и L узлами-рабочими:

\alpha (L) =
T (1)

T (L)
. (140)

Параллельная эффективность \epsilon (L) вычислялась как отношение ускорения \alpha (L) к числу L
используемых узлов-рабочих:

\epsilon (L) =
\alpha (L)

L
. (141)

Вычисления проводились для следующих размерностей: 5 000, 7 500 и 10 000. Число огра-
ничений соответственно составило 10 002, 15 002 и 20 002.

Эксперименты показали, что граница масштабируемости параллельной реализации
апекс-метода существенно зависит от размера задачи. Для n = 5000 граница масштаби-
руемости составила приблизительно 55 рабочих узлов. Для задачи размерности n = 7500

эта граница увеличилась до 80 узлов, а для задачи размерности n = 10 000 она оказалась
близкой к 100 узлам. Дальнейшее увеличение размерности задачи приводило к ошибке
компилятора «недостаточно памяти». Необходимо отметить, что вычисления проводились
с двойной точностью, при которой число с плавающей точкой занимает в оперативной памя-
ти 64 бита. Попытка использовать одинарную точность, требующую 32 бита для хранения
числа с плавающей точкой, оказалась неудачной, так как при этом апекс-метод переставал
сходиться к точному решению задачи ЛП.
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Рис. 2. Ускорение и параллельная эффективность апекс-метода
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Параллельная эффективность также продемонстрировала существенную зависимость
от размера задачи ЛП. При n = 5000 эффективность показала падение ниже 50% уже
на 70 рабочих узлах. Для n = 7500 и n = 10 000 падение на 50% наблюдалось на 110 и
130 рабочих узлах соответственно.

Кроме этого, эксперименты показали, что параметр \eta в формуле (116), используемой
на стадии Quest для вычисления точки апекса z, оказывает незначительное влияние на
общее время решения задачи ЛП в случае, когда этот параметр принимает большие значе-
ния (более 100 000). Если точка апекса располагается недостаточно далеко от допустимого
многогранника, то ее псевдопроекция может оказаться на одной из его граней. Если же
точка апекса располагается далеко от допустимого многогранника (в экспериментах ис-
пользовалось значение \eta = 20000n), то ее псевдопроекция всегда оказывается в одной из
его вершин. Также стоит отметить, что для искусственных задач, сгенерированных про-
граммой FRaGenLP, все точки последовательности

\bigl\{ 
u(k)

\bigr\} 
оказывались на пути, близком к

оптимальному2.
Проведенные вычислительные эксперименты на искусственных задачах показали, что

более 99% времени апекс-метод тратил на вычисление псевдопроекций (шаг 18 алгоритма 3).
При этом вычисление одного приближения u(k) для задачи размерности n = 10 000 на
100 рабочих узлах занимало 44 минуты.

Мы также протестировали апекс-метод на задачах из репозитория Netlib-LP [71],
доступного по адресу https://netlib.org/lp/data. Набор задач линейной оптимизации
Netlib-LP включает в себя множество реальных приложений, таких как оценка лесных ре-
сурсов, задачи нефтепереработки, проектирование закрылков самолетов, модели пилотиро-
вания, планирование работы аудиторского персонала, расчет мостовых ферм, планирование
расписаний авиакомпаний, расчет моделей промышленного производства и распределения
ресурсов, восстановление изображений и задачи многосекторального экономического пла-
нирования. Netlib-LP содержит задачи ЛП размером от 32 переменных и 27 ограничений
до 15 695 переменных и 16 675 ограничений [72]. Точные решения (оптимальные значения
целевых функций) для всех задач были заимствованы из работы [73]. Результаты представ-
лены в табл. 2. Эксперименты показали, что относительная ошибка грубого приближения,
вычисляемого на стадии Quest, не превосходила 0.2 для всех задач, кроме adlittle, blend, и
fit1d. Относительная ошибка уточненного приближения, получаемого на стадии Target, ока-
залась менее 10 - 3, за исключением задач kb2 и sc105, для которых ошибка составила 0.035

и 0.007 соответственно. Время решения указанных задач варьировалось от нескольких се-
кунд для afiro до десятков часов для blend. Одним из главных параметров, влияющих на
скорость сходимости апекс-метода, был параметр \epsilon , используемый на шаге 12 параллельно-
го алгоритма 2, вычисляющего псевдопроекцию. Прогоны всех задач доступны на GitHub
по адресу https://github.com/leonid-sokolinsky/Apex-method/tree/master/Runs.

5. Обсуждение полученных результатов

В этом разделе мы обсудим научную и практическую значимость апекс-метода, его
сильные и слабые стороны, и дадим ответы на следующие вопросы.
1. В чем состоит научная значимость полученных результатов?
2. В чем заключается практическое значение апекс-метода?

2Под оптимальным путем понимается путь движения по поверхности допустимого многогранника в направ-
лении максимального, в данном случае, увеличения значения целевой функции.
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Таблица 2. Применение апекс-метода для решения задач из Netlib-LP

№ Задача из Netlib-LP Стадия Quest Стадия Target
Наиме-
нование

Точное решение Грубое
приближение

Ошибка Уточненное
приближение

Ошибка

1 adlittle 2.25494963E5 3.67140280E5 6.28E-1 2.2571324E5 9.68E-4
2 afiro -4.64753142E2 -4.55961488E2 1.89E-2 -4.6475310E2 8.61E-9
3 blend -3.08121498E1 -3.60232513E0 8.83E-1 -3.0811018E1 3.19E-5
4 fit1d -9.14637809E3 -3.49931014E3 6.17E-1 -9.1463386E3 8.77E-7
5 kb2 -1.74990012E3 -1.39603193E3 2.02E-1 -1.6879152E3 3.54E-2
6 recipe -2.66616000E2 -2.66107349E2 1.91E-3 -2.6660404E2 2.23E-5
7 sc50a -6.45750770E1 -5.58016335E1 1.36E-1 -6.4568167E1 1.06E-4
8 sc50b -7.00000000E1 -6.92167246E1 1.12E-2 -6.9990792E1 1.32E-4
9 sc105 -5.22020612E1 -4.28785710E1 1.79E-1 -5.1837995E1 6.97E-3
10 share2b -4.15732240E2 -4.28792528E2 3.14E-2 -4.1572001E2 2.40E-5

3. На сколько мы можем быть уверены, что апекс-метод всегда сходится к точному реше-
нию задачи ЛП?

4. Как мы можем ускорить сходимость апекс-метода в целом и выполнение операции псев-
допроектирования в частности?

Основной научный вклад этой работы заключается в том, что разработан апекс-метод,
впервые позволяющий построить на поверхности допустимого многогранника близкий к
оптимальному путь от начальной точки до точки решения задачи ЛП. Под оптимальным
путем мы понимаем путь движения по поверхности многогранника в направлении макси-
мального увеличения или уменьшения значения целевой функции в зависимости от того,
ee максимум или минимум необходимо найти.

Практическая значимость апекс-метода состоит в том, что он открывает возможность
использования искусственных нейронных сетей прямого распространения, включая свер-
точные нейронные сети, для решения многомерных задач ЛП. В недавней работе [48] был
предложен оригинальный метод визуализации n-мерных задач ЛП. Этот метод строит образ
допустимого многогранника M в виде матрицы I размерности (n  - 1) на основе техники
растеризации. В качестве луча зрения используется вектор, противоположно направлен-
ный вектору градиента целевой функции. Каждый пиксель представляется в матрице I
вещественным числом, пропорциональным значению целевой функции в соответствующей
точке на поверхности допустимого многогранника M . Подобные образы подаются на вход
нейронной сети прямого распространения для нахождения оптимального пути к решению
задачи ЛП. Более точно, нейронная сеть прямого распространения непосредственно вычис-
ляет вектор d в алгоритме 3, делая ненужным ресурсоемкие вычисления псевдопроекций.
Главным преимуществом такого подхода является то, что нейронная сеть прямого распро-
странения работает в режиме реального времени, актуальном для задач робототехники.
В настоящее время нам не известны другие методы решения задач ЛП, работающие в ре-
жиме реального времени. Однако применение нейронных сетей прямого распространения
для решения задач ЛП предполагает подготовку обучающих наборов данных. Апекс-метод
впервые предоставляет возможность конструировать такие обучающие наборы.
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В утверждении 6 говорится, что алгоритм 3 сходится за конечное число итераций к
некоторой точке на поверхности допустимого многогранника M , однако вопрос о том, бу-
дет ли эта точка решением задачи ЛП, остается открытым. Согласно утверждению 8 ответ
на этот вопрос оказывается положительным, если в алгоритме 3 заменить псевдопроекцию
на метрическую проекцию. Однако не существует методов построения метрической проек-
ции для произвольного выпуклого замкнутого многогранника. Поэтому мы вынуждены ис-
пользовать псевдопроекцию. Многочисленные эксперименты показывают, что апекс-метод
всегда сходится к решению задачи ЛП, однако этот факт нуждается в формальном до-
казательстве. Мы планируем получить такое доказательство в рамках наших дальнейших
исследований.

Основным недостатком апекс-метода является его медленная сходимость к решению за-
дачи ЛП. Задача ЛП, которая занимает несколько секунд для нахождения оптимального ре-
шения с использованием одного из стандартных решателей, может потребовать нескольких
часов для нахождения решения с помощью апекс-метода. Вычислительные эксперименты
показывают, что более 99% времени, затрачиваемого апекс-методом на решение задачи ЛП,
приходится на вычисление псевдопроекций. Поэтому вопрос ускорения процесса вычисле-
ния псевдопроекций является актуальным. В апекс-методе псевдопроекции вычисляются с
помощью алгоритма 1, принадлежащего к семейству проекционных методов, рассмотрен-
ных в разделе 1. Известно [74], что в случае, когда выпуклое замкнутое множество является
многогранником M \not = \emptyset , методы проекционного типа имеют низкую линейную скорость схо-
димости: \bigm\| \bigm\| \bigm\| x(k+1)  - \rho M

\Bigl( 
x(0)

\Bigr) \bigm\| \bigm\| \bigm\| \leqslant Cqk, (142)

где 0 < C < \infty — некоторая константа, а q \in (0, 1) — параметр, зависящий от углов
между гиперплоскостями, соответствующими граням многогранника M . Это означает, что
расстояние между соседними приближениями с каждой итерацией уменьшается в геомет-
рической прогрессии со знаменателем, меньшим единицы. Для малых углов скорость схо-
димости может падать до значений, близких к нулю. Это фундаментальное ограничение
методов проекционного типа не может быть преодолено. Однако, мы можем уменьшить
количество гиперплоскостей, вовлекаемых в вычисление псевдопроекции. В соответствии
с утверждением 3 решение задачи ЛП (37) находится на границе некоторого рецессивного
полупространства. Следовательно, при вычислении псевдопроекции с помощью алгорит-
ма 1, нам достаточно использовать только гиперплоскости, ограничивающие рецессивные
полупространства. Это уменьшает количество ограничений в среднем в два раза. Другой
способ сократить время вычисления псевдопроекций — распараллелить алгоритм 1, как это
было сделано в алгоритме 2. Однако в этом случае степень параллелизма будет ограничена
теоретической оценкой (114).

Заключение

В статье предложен новый масштабируемый итерационный метод линейного програм-
мирования, получивший название «апекс-метод». Ключевой особенностью этого метода
является построение максимального пути на поверхности допустимого многогранника от
начальной токи к решению задачи линейного программирования. Под максимальным пу-
тем понимается путь движения по поверхности допустимого многогранника в направлении
максимального увеличения значения целевой функции. Практическая значимость предло-
женного метода состоит в том, что он открывает возможность применения искусственных
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нейронных сетей прямого распространения для решения многомерных задач линейного про-
граммирования.

В работе описан оригинальный теоретический базис, лежащий в основе апекс-метода.
Рассмотрены полупространства, порождаемые ограничениями задачи линейного програм-
мирования. Пересечение этих полупространств образует замкнутый выпуклый многогран-
ник M , называемый допустимым. Указанные полупространства делятся на две группы,
в зависимости от градиента c линейной целевой функции: доминантные и рецессивные.
Получено достаточное и необходимое условие для того, чтобы полупространство было ре-
цессивным.

Доказано, что решение задачи линейного программирования всегда лежит на границе
некоторого рецессивного полупространства. Получена формула вычисления точки апекса,
которая не принадлежит ни одному рецессивному полупространству. Точка апекса исполь-
зуется для получения начального приближения на поверхности допустимого многогранни-
ка M . Для построения оптимального пути к решению задачи линейного программирования
апекс-метод использует параллельный алгоритм построения псевдопроекции, являющей-
ся обобщением метрической проекции. Для параллельного алгоритма построения псевдо-
проекции получена аналитическая оценка границы его масштабируемости на кластерной
вычислительной системе. Эта граница не превышает O (

\surd 
m) процессорных узлов, где m —

количество ограничений задачи линейного программирования. Описан алгоритм, строящий
на границе допустимого многогранника оптимальный путь от начального приближения до
точки решения задачи линейного программирования. Доказана сходимость этого алгорит-
ма.

Параллельная версия апекс-метода реализована на языке C++ с использованием про-
граммного BSF-каркаса, основанного на модели параллельных вычислений BSF. Проведе-
ны эксперименты по исследованию масштабируемости апекс-метода на кластерной вычис-
лительной системе. Вычислительные эксперименты показали, что для задачи линейного
программирования с 10 000 переменными и 20 002 ограничениями граница масштабируе-
мости не превышает 100 процессорных узлов. В то же время эксперименты показали, что
более 99% времени, затрачиваемого на решение задачи линейного программирования апекс-
методом, приходилось на вычисление псевдопроекций.

В дополнение, апекс-метод был протестирован на 10 задачах из репозитория Netlib-LP.
Относительная ошибка на этих задачах составила от 3.5\cdot 10 - 3 до 8.6\cdot 10 - 9. Время вычислений
варьировалось от нескольких секунд до нескольких десятков часов. Точность вычисления
псевдопроекции оказалась основным параметром, влияющим на скорость сходимости апекс-
метода.

В качестве направлений дальнейших исследований выделим следующие. Мы планируем
разработать новый, более эффективный метод вычисления псевдопроекций на допустимый
многогранник. Основная идея состоит в сокращении количества полупространств, исполь-
зуемых в рамках одной итерации. В то же время количество оставшихся в рассмотрении
полупространств должно быть достаточным для эффективного распараллеливания. Мы
рассчитываем, что новый метод превзойдет алгоритм 2 по скорости сходимости. Также мы
собираемся доказать, что новый метод сходится к точке, лежащей на границе допусти-
мого многогранника. Кроме этого мы планируем исследовать полезность использования в
апекс-методе техники линейной супериоризации, предложенной в работе [64].
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Обозначения

\BbbR n вещественное евклидово пространство
\| \cdot \| евклидова норма
\langle \cdot , \cdot \rangle скалярное произведение двух векторов
[\cdot , \cdot ] конкатенация двух векторов
f(x) линейная целевая функция
c градиент целевой функции f(x)
ec единичный вектор, сонаправленный с вектором c

\=x решение задачи ЛП
M допустимый многогранник
\Gamma M множество граничных точек допустимого многогранника M
ai i-тая строка матрицы A
\^Hi полупространство, определяемое формулой \langle ai, x\rangle \leqslant bi

Hi гиперплоскость, определяемая формулой \langle ai, x\rangle = bi

\scrP множество индексов строк матрицы A

\scrI множество индексов, для которых полупространство \^Hi является рецессивным
\pi i(\cdot ) ортогональная проекция на гиперплоскость Hi

\rho M (\cdot ) псевдопроекция на допустимый многогранник M
PM (\cdot ) метрическая проекция на допустимый многогранник M

Исследование выполнено при финансовой поддержке РНФ (проект №23-21-00356).
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The article presents a new scalable iterative method for linear programming, called the apex method. The
key feature of this method is constructing a path close to optimal on the surface of the feasible region from
a certain starting point to the exact solution of the linear programming problem. The optimal path refers to
a path of minimum length according to the Euclidean metric. The apex method is based on the predictor-
corrector framework and proceeds in two stages: Quest (predictor) and Target (corrector). The Quest stage
calculates a rough initial approximation of the linear programming problem. The Target stage refines the initial
approximation with a given precision. The main operation used in the apex method is an operation that calculates
the pseudoprojection, which is a generalization of the metric projection to a convex closed set. This operation is
used both in the Quest stage and in the Target stage. A parallel algorithm using a Fejér mapping to compute the
pseudoprojection is presented. An analytical estimation of the parallelism degree of this algorithm is obtained.
Also, an algorithm implementing the Target stage is given. The convergence of this algorithm is proven. The
results of applying the apex method for solving various linear programming problems are presented.

Keywords: linear programming, apex method, iterative method, projection-type method, Fejér mapping, parallel
algorithm, scalability evaluation.
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