DOI: 10.14529 /cmse230204

SOLVING GRID EQUATIONS
USING THE ALTERNATING-TRIANGULAR METHOD
ON A GRAPHICS ACCELERATOR}]

© 2023 A.L Sukhinov!, V.N. Litvinov'?, A.E. Chistyakov',
A.V. Nikitina'3, N.N. Gracheva?, N.B. Rudenko'?

YDon State Technical University (Gagarin Sq. 1, Rostov-on-Don, 344003 Russia),
2 Azov-Black Sea Engineering Institute of Don State Agrarian University
(Lenina 21, Zernograd, 347740 Russia),
3Southern Federal University (Bolshaya Sadovaya 105/42, Rostov-on-Don, 344006 Russia)
E-mail: |sukhinov@gmasl. com, |litvinovun@rambler.ru, cheese 05@mail.ru,
nikitina.vm@gmail. com, | 7928605137/ Qyandex.ru, nelli-rud@yandex.ru
Received: 15.03.2023

The paper describes a parallel-pipeline implementation of solving grid equations using the modified
alternating-triangular iterative method (MATM), obtained by numerically solving the equations of mathematical
physics. The greatest computational costs at using this method are on the stages of solving a system of linear
algebraic equations (SLAE) with lower triangular and upper non-triangular matrices. An algorithm for solving
the SLAE with a lower triangular matrix on a graphics accelerator using NVIDIA CUDA technology is presented.
To implement the parallel-pipeline method, a three-dimensional decomposition of the computational domain was
used. It is divided into blocks along the y coordinate, the number of which corresponds to the number of GPU
streaming multiprocessors involved in the calculations. In turn, the blocks are divided into fragments according
to two spatial coordinates — x and z. The presented graph model describes the relationship between adjacent
fragments of the computational grid and the pipeline calculation process. Based on the results of computational
experiments, a regression model was obtained that describes the dependence of the time for calculation one
MATM step on the GPU, the acceleration and efficiency for SLAE solution with a lower triangular matrix by the
parallel-pipeline method on the GPU were calculated using the different number of streaming multiprocessors.

Keywords: mathematical modeling, parallel algorithm, graphics accelerator.

FOR CITATION

Sukhinov A.IL., Litvinov V.N., Chistyakov A.E., Nikitina A.V., Gracheva N.N., Rudenko N.B.
Solving Grid Equations Using the Alternating-triangular Method on a Graphics Accelerator.
Bulletin of the South Ural State University. Series: Computational Mathematics and Software
Engineering. 2023. Vol. 12, no. 2. P. 78-92. DOI: 10.14529 /cmse230204.

Introduction

Modeling of any physical processes occurring in the environment and their mathematical
description leads to the necessity to solve differential equations in private derivatives. To
study dynamic processes in hydrophysics and hydrodynamics, the diffusion-convection-reaction
equation is used .

The solution to the equations of mathematical physics is based on the approximation of
equations of end-and-character schemes. In the case of the use of an implicit, non-exposure
scheme, the solution of equation is reduced to solving the system of linear algebraic equations of
a large dimension. The largest computational costs in solving differential equations are at solution
to the indicated SLAE, therefore, various iterative methods and algorithms are developed and

*The paper is recommended for publication by the Program Committee of the International Scientific Conference
“Parallel Computational Technologies (PCT) 2023”.

78 Bectauk FOYpI'Y. Cepus «BpruunciaurenpHas MmareMaTnKa 1 “”HOOPMaTAKA»

mailto:sukhinov@gmail.com
mailto:litvinovvn@rambler.ru
mailto:cheese_05@mail.ru
mailto:nikitina.vm@gmail.com
mailto:79286051374@yandex.ru
mailto:nelli-rud@yandex.ru

A.I. Sukhinov, V.N. Litvinov, A.E. Chistyakov, A.V. Nikitina, N.N. Gracheva un ap.

applied . One of the effective iterative methods for solving SLAE is the alternating-triangular
method. This method is applicable to the high-dimensional SLAE with self-adjoint and non-self-
adjoint operators, and has a high convergence rate. The iterative alternating-triangular method
is used to solve ill-conditioned SLAE.

The dimensions of resulting SLAE are such that they require large computing performance.
Problems of computing performance lack are solved in several ways, in particular, using graphic
accelerators (GPUs) for calculation the resources and computing processes .

Russian scientists applied computational grid decomposition in solving a three-dimensional
boundary value problem. The parallelization algorithm was implemented in a heterogeneous
computing environment. Due to the use of graphic accelerations, the calculation time was reduced
in 60 times, compared to the calculations on the CPU . The three-phase filtration problem was
also solved in heterogeneous computing environment using the decomposition of computational
domain. The parallel algorithm is performed on C++ with using the CUDA and MPI technology.
Due to the use of GPU for calculating the specified problem, the computational costs reduces in
several tens of times . Scientists of China University of Petroleum propose a parallel algorithm
for modeling hardening in two dimensions based on the domain decomposition. This algorithm
was implemented on GPU, which significantly reduces the calculation time . Researchers of
Altai State University have developed a parallel algorithm for a numerical solution to the problem
of electromagnetic impulse spreading in two-dimensional rectangular field. The algorithm was
implemented on the basis of CUDA technology. An analysis of the performance of the developed
algorithm showed that the GPU performance is several times higher than the CPU performance at
solving the problem @ The effectiveness of the use of graphic accelerators for numerical modeling
of the tasks of applied hydrodynamics has been proved. The calculation rate when solving the
problem of numerical modeling of the hydrodynamic characteristics of mushroom screws was
increased 1.4-3 times . The exact calculation of heat transfer coefficients requires powerful
computing resources that are not available. The parallelization algorithm for such calculations
with implementation in heterogeneous computing environment increases productivity, compared
to the CPU, more than ten times .

In this paper, the decomposition method of three-dimensional calculated circle to implement
the parallel algorithm on the GPU is proposed. The developed parallel-conveyor method for
SLAE solving allows to effectively use the GPU resources and reduce the calculation time.

1. Method of Solving Grid Equations

Solving the equations of mathematical physics can be reduced to solving a system of linear
algebraic equations of the form:

Az =f, A:H — H, (1)

where A is the linear, positive definite operator.
For the grid equation , the iterative methods are used, which in canonical form can be

represented by the equation :

xm—l—l_xm
B——+Ax™=f, B:H— H, (2)

Tm+1

where m is the iteration number; 7,41 > 0 is the iteration parameter; B is the preconditioner.

2023, T. 12, Ne 2 79

Solving Grid Equations Using the Alternating-triangular Method on GPU

The resulting grid equations will be solved using the modified alternating-triangular method

of variational type. The preconditioner is formed as follows:
B=(D+wR) D' (D+wRy), D=D*">0, w>0, (3)

where D is the diagonal operator; R;, R are the lower- and upper-triangular operators,
respectively.
The calculation algorithm of grid equations by the modified alternating-triangular method

of the variational type is written in the form:
r’m = Az™ — f,

(D4 wRy)y™ =r™, (D + wRy)w™ = Dy™,

o = (Dw™, w™)
me (D—lewm, ngm) ’

82 —1— (Aowm7wm)2 2 _ (BilAlwm, Al’wm) (4)
m (B—lAme) (me7wm)> m (B—lewm7 Aqw™))

1— 75311]“7} Agw™ . w™
(1+52,) (Agw™, w™)
Om

- m - Hm ;
1+ k2 (1—s2) Tm+1 (B=1Aquw™, Agw™)

m

m—+1

_ m m [
T =" — T 1w, Wmt1 = O,

where r" is the residual vector; w™ is the correction vector; the parameter s,, describes the
convergence rate of the method; k,, describes the ratio of the norm of the skew-symmetric
operator part to the norm of the symmetric part.

The most labors part of the algorithm is the calculation of the correction vector w™ and
reduced to the solution of two SLAE with the lower-triangular and upper-triangular matrix:

(D +wRy)y™ =1™, (D +wRe)w™ = Dy™.

The algorithm fragment for solving SLAE with the lower-triangular matrix is given in
Algorithm 1. The residual vector is calculated in 14N arithmetic operations. The total number of

Algorithm 1 matm(IN: ny,ne, ns, ag, az, a4, ag,w; IN/OUT: r)
1. for k € [1;n3 — 2] do
for i € [1;n; — 2] do
for j € [1;n2 — 2] do

2

3

4 po—i+ni-j+ns-na-k

5: if ag[po] > 0 then

6 P2 < Ppo—1; pa < po—n1; pe < po —n1 - N2

7 r[po] < (w - (a2[po] - r[p2] + aalpo] - r[pa] + as[po] - rlps]) + 7[po])/((0.5 - w +
1) - ao[po])

arithmetic operations required to solve the SLAE with the seven-diagonal matrix using MATM
in the case of known iterative parameters 7,41, Wm+1 is 35N, where N = njingng is SLAE
dimension.

80 Bectauk FOYpI'Y. Cepus «BpruunciaurenpHas MmareMaTnKa 1 “”HOOPMaTAKA»

A.I. Sukhinov, V.N. Litvinov, A.E. Chistyakov, A.V. Nikitina, N.N. Gracheva un ap.

2. Decomposition Model of Computational Domain

Let @ be the set of technical characteristics of the video adapter, then we will present the
characteristics of the video adapter in the form of a tuple.

Q=1{d".a*), (5)

where ¢! is the amount of video memory of the video adapter, GB; ¢? is the number of streaming
multiprocessors.

If S is a set of program threads involved in the computational process, then

S:{sk,kZTq?}, (6)

where s, is a CUDA streaming block that implements the calculation process on GPU streaming
multiprocessor with index k.

Let us take the computational domain with the following parameters: [, is the characteristic
size on the axis Oz, I, — on the axis Oy, [, — on the axis Oz.

Let us compare the specified area with a uniform computational grid of the following type:

W = {x; = iha,y; = jhy, 21 = kh.;
t=0,n,—1,j=0,ny —1,k=0,n,—1;
(n:v - 1)h:r = l:}ca (ny - 1)hy = lyv (nz - 1>hz = lz}a (7)

where hg, hy, h, are the steps of computational grid at the corresponding spatial directions;
Ng, Ny, N are the number of grid nodes at the corresponding spatial directions.
Then the set of nodes of the computational grid can be represented as

G={9gijri=0mn;—1,j=0,n, —1,k=0,n, — 1},
ik = (i, Yjs 2k) 5 (8)

where g; ;1. is the grid node.

The number of nodes of the computational grid Ng is calculated by the formula:
Ng =ng -ny - n, (9)

Under the block of the computational grid G¥* ¢ G (further — the block) we will understand
the sub-set of nodes of the computational grid G.

G= | " ={"Brh ek, g cG”}, (| ¢" =0 (10)
kleKkl kleKkl

where K, = {1, ..., Ni, } is the set of block indices G¥* of the computational grid G ; Ny, is the
number of blocks Gy, , N, = d?; Ky, , Nk, C N; N is the set of natural numbers; k; is the block
index G*.

Since G* C G, then

G =g =0 1= 0 — Lk =01}, (1)

2023, T. 12, Ne 2 81

Solving Grid Equations Using the Alternating-triangular Method on GPU

where gfl, L block node k1; the ~ sign denotes belonging to the block; }is the block node index kq

Ty

at coordinate y; nzl is the number of nodes in block k; at coordinate y.

kl—l
gr = (@i 2) s @i = iha,yj = (Z ny, +j> by, 2 = khs, (12)
b=1
where ng is the number of nodes at coordinate y of the b-th block.

Under the fragment of the computational grid G* *2 (further — the fragment) we will
understand a subset of the nodes of the computational grid of block G*'.

le = U le’kz = {gkl’k2|3k‘2 € Kk17k2,gkl’k2 S le’kz},
ko€ Ky ks
m le,k2 =Q, (13)
k2 €Ky iy

where Ky, k, = {1,...Nk, k, } is a plurality of fragment indexes G**'¥2 of block G¥'; Ny, , is the
number of fragments GF1F2; Ky, kys Niy k, C N ko is the index of fragment GF1F2 of block GF1.
Since G*1*2 ¢ G* then

Ghks — {57237,;,2 =0, —1,j =0,y — 1,k =0,7, — 1} , (14)

where g;&,; is the fragment node; the sign — denotes belonging to a fragment; Z,lvf are indexes
of fragment node by coordinates x, z; Nz, 71, is the number of nodes of the computational grid in
the fragment along the coordinates =z, z.

Each index ks of fragment G**2 is associated with a tuple of indices (ks, k4), designed to
store fragment coordinates in plane Oz, where k3 is the fragment index at coordinate x, k4 is

the fragment index at coordinate z.
ko = k3 + Ky, - ka, (15)

where k3 is the fragment index along the x coordinate; k4 is the fragment index along the
z coordinate; Ky, is the number of fragments along the Oz axis.
The number of fragments G¥**2 block G** is calculated by the formula

Ky, = K, - K, (16)
where K}, is the number of fragments at coordinate z.

97k = (@i Y 2)
ks—1 . ka1
T = (Z ﬁb+i> “hasyj = ghy, 2 = <Z iy +k> ~hz, (17)
b=1

where 7 is the number of nodes in the b-th fragment.
Let us introduce a set of comparisons of computational grid blocks with program currents M.

M = {mkl = <Gk1,sk1> k€ Kkl}, (18)

where s, € S — program flow, calculating block G*t.

82 Bectauk FOYpI'Y. Cepus «BpruunciaurenpHas MmareMaTnKa 1 “”HOOPMaTAKA»

A.I. Sukhinov, V.N. Litvinov, A.E. Chistyakov, A.V. Nikitina, N.N. Gracheva un ap.

For the domain decomposition, it is necessary to take into account the computing
performance of device, involved in calculations. Performance refers to the number of nodes of
the computational grid, calculated using a given algorithm, per unit of time.

To calculate the number of nodes along the coordinate y in the blocks of the computational
grid processed by GPU streaming multiprocessors, we use the formulas

Nkl—l
n

nyGT = L\%y—lJ S MYGTL = Ty — bzl noar, (19)
where nygr is the number of computational grid nodes along coordinate y in blocks processed
by GPU streaming multiprocessors, except for the last block; nygrr is the number of nodes
at coordinate y in the last block of the computational grid processed by GPU streaming
multiprocessors.

The number of the computational grid fragments along the coordinate y is equal to

NJ = Ng,. (20)

Let the number of fragments be N{ and NY at coordinates z and z, respectively. Then, the

number of nodes of the computational grid along the coordinate x is calculated by the formulas:

n L
ol = ||t =l vl), 1)
where n£ is the number of nodes of the computational grid along the coordinate x in all fragments

except the last one; n]xcL — the number of nodes of the computational grid along the coordinate x

in the last fragment.
Similarly, the number of nodes of the computational grid along the coordinate z is calculated

R J e | 22
n! = , it =mn, —nl -)
z \‘sz 1 z z z (z) ()
where nf is the number of nodes of the computational grid along the coordinate z in all fragments
except the last one; nf L' the number of nodes of the computational grid along the coordinate z

in the last fragment.

Let on M it is necessary to organize a parallel process for calculation some function F', and
the calculations in each fragment G**2 depend on the values in neighboring fragments, each of
which has at least one of the indices at coordinates x, ¥y and z one less than the current one.

To organize a parallel-pipelining method, let us introduce a set of tuples A that define
correspondences a between program flows s, processing fragments G¥*2 and the numbers of
steps of the parallel-pipelining method 7.

Vs €SJacA:a= <sk,Gk“k2,T>, (23)

where r = 1, N, is the step number of the parallel-pipeline method, N, is the number of steps of
the parallel-pipeline method, calculated by the formula

N, = N/N/+NJ - 1. (24)

Full download of all calculators in the proposed parallel-pipeline method starts from step
T100START = NJ and ends at the step rigosTop = N{sz. In this case, the total number of steps

2023, T. 12, Ne 2 83

Solving Grid Equations Using the Alternating-triangular Method on GPU

with a full load of N,pagr calculators will be
Nypar = roostop — roosTarr + 1= NN — NJ + 1. (25)

The calculation time of some function F by the parallel-pipeline method can be written in

the form
N,
Ty =Y max(Ty), (26)
r=1
where Ty is a vector of time values for fragment processing in parallel mode.

3. Parallel Implementation

The numerical implementation of the MATM for solving SLAE with the high dimension is
based on the developed parallel algorithms that implement the pipeline computing process. The
use of these algorithms allows to fully utilize all available streaming multiprocessors of graphics
accelerator.

A class library was developed in C++ for describing the domain decomposition. The class
library contains the following classes:

e Grid3D, describes the parameters of the computational grid (number of nodes n,, ny, n.,
and step sizes hg, hy, h, in spatial coordinates) and contains an array of objects of the
GridBlock3D class.

e GridBlock3D, describes the parameters of the computational grid block and contains an
array of objects of the GridFragment3D class.

e GridFragment3D, describes the parameters of a computational grid fragment and contains
data arrays.

The organization of calculations is performed by an algorithm that controls all available
streaming multiprocessors of GPU (calculators). Each calculator performs calculations only for
its own block of the computational domain. For this, the computational domain is divided into
blocks that are assigned to individual calculators (Fig. . Next, each block is divided into
fragments. Notations in Fig. SMy, SMsy, SM; are streaming multiprocessors of GPU.

A graph model was used to describe the relationships between adjacent fragments of the
computational grid and the organization of the pipeline calculation process (Fig.. Each graph
node is an object of a class GridFragment3D that describes a fragment of the computational
domain. This class contains the following fields: the dimensions of the fragment along the Oz,
Oy, and Oz axes; the index of the zero node of the fragment in the global computational domain;
pointers to adjacent fragments of the computational grid; pointers to objects that describe the
parameters of calculators. The computational process is a graph traversal from the root node
with parallel launch of calculators that process the graph nodes in accordance with the value of
the calculation step counter r.

An algorithm and its program implementation in the CUDA C language are developed to
improve the calculation efficiency of the computational grid fragments assigned to the graphics
accelerator .

We present an algorithm for searching the solution for the system of equations with the
lower-triangular matrix (straight line) on CUDA C.

The input parameters of the algorithm are the vectors of the coefficients of grid equations
ao, a2, a4, ag and the constant w. The output parameter is the vector of the water flow velocity v.
Before running the algorithm, it is necessary to programmatically set the dimensions of the

84 Bectauk FOYpI'Y. Cepus «BpruunciaurenpHas MmareMaTnKa 1 “”HOOPMaTAKA»

A.I. Sukhinov, V.N. Litvinov, A.E. Chistyakov, A.V. Nikitina, N.N. Gracheva un ap.

G

GIGZ G3 e le o GM{I .“sz,Nkz
5| 8 Ss’ Skz{ [qu
SMy My (SM | - (M| |SM2 _
GPU e
| e k
G|~ GI
Gk,,z/
Gk,,l/

Fig. 1. Decomposition of the third-dimensional computational domain

CUDA computing block blockDim.x, blockDim.z according to the spatial coordinates z, z,
respectively. The CUDA framework runs this algorithm for each thread, and the variable values
threadldx.x, threadldx.z, blockIdx.x, blockIdx.z are automatically initialized by the indexes
of the corresponding threads and blocks. Global thread indexes are calculated in rows 1 and 2.
The row index ¢ and the layer index k£ that the current thread processes are calculated in row 3.
A variable j is initialized that represents a counter by coordinate y. The calculation pipeline is
organized as a loop in line 4. The indexes of the central node of the grid pattern py and the
surrounding nodes pa, p4, pg are calculated in line 8. The two-dimensional array cache is located
in the GPU shared memory and designed to store the calculation results on the current layer by
the coordinate y. This allows us to reduce the number of reads from slow global memory and
accelerate the calculation process by up to 30 %.

The performed researches show a significant dependence of the algorithm implementation
time for calculation the preconditioner on the ratio of threads in spatial coordinates. A series
of experiments is preperformed to calculate the performance of calculators, which is the 95th
percentile of the calculation time in terms of 1000 nodes of the computational grid.

GeForce GTX 1650 video adapter was used in experimental researches. The GeForce GTX
1650 video adapter has 4 GB of video memory, core and memory clock frequency of 1485 MHz
and 1665 MHz, and a video memory bus bit rate of 128 bits. The computing part consists of
14 streaming multiprocessors (SM).

The purpose of the experiment is to determine the distribution of flows along the Ox and
Oz axes of the computational grid at different values of its nodes along the Oy axis so that
the implementation time on the GPU of one MATM step is minimal. Two values are taken as
factors: k = X/Z is the ratio of the number of threads on the Ox (X) axis to the number of
threads on the Oz (Z) axis; Y is the number of threads on the axis Oy. Values of the objective

2023, T. 12, Ne 2 85

Solving Grid Equations Using the Alternating-triangular Method on GPU

s, 5, 5, Seq 82

AN N N N

Fig. 2. A graph model that describes the relationships between adjacent fragments of the
computational grid and the process of pipeline calculation

function: T py is the calculation time of one MATM step on the GPU in terms of 1000 nodes
of the computational grid, ms.
The regression equation was obtained as a result of the experimental data processing (Fig.:

Tepuy =a—1b-Y —c-In(k) —d-In(Y), (27)

where T py is the implementation time of one MATM step on the GPU in terms of 1000 nodes
of the computational grid, ms. The determination coefficient was 0.86; a = 0.026; b =2-107";
c=16-107% d="77-107".

To evaluate the effectiveness of the parallel-pipeline method for solving SLAE with a
lower triangular matrix, a numerical experiment was performed. The dimensions of the three-
dimensional uniform computational grid along the spatial coordinates x, y, and z were
respectively set equal to 640, 224, and 448, respectively. The amount of video memory was 3.8 GB.
In the course of experimental researches, we changed the number of streaming multiprocessors
N,

, involved in the calculations and fixed the computation time T}y.

86 Bectauk FOYpI'Y. Cepus «BpruunciaurenpHas MmareMaTnKa 1 “”HOOPMaTAKA»

A.I. Sukhinov, V.N. Litvinov, A.E. Chistyakov, A.V. Nikitina, N.N. Gracheva un ap.

Algorithm 2 matmKernel(IN: ag, ag, as, ag,w IN/OUT: v;)
1: thX < blockDim.x - blockIdx.x 4+ threadldz.x
2: thZ < blockDim.z - blockldx.z 4+ threadldz.z
i+ thX+1;j« 1, k< thzZ+1
4: for s € [3;n1 +na +n3 — 3] do
5: if (i+j+k=5)A(s<i+ng+k)then

6: po < i + (blockDim.x + 1) - j+mny -ng - k

7 if a0[p0] > 0 then

8: P2 <= Po — L;ps <= po —n1;pe < po — N1 - N2
9: vpd < 0

10: if (s >3+ thX +thZ) then

11: vpd < cachelthX|[thZ]

12: else

13: vpd < v[p4]

14: vp2 <0

15: if (thX #0) A (s >3 +thX +thZ) then
16: vp2 < cache[thX — 1][thZ]

17: else

18: vp2 < v[p2]

19: vpb — 0;
20: if (thZ #0) A (s>3+thX +thZ) then
21: vpb < cache[thX|[thZ — 1]
22: else
23: vp6 < v[pg]
24: vp0 = (w-(a2[po]-vp2+ad[po]-vpd+ablpo]-vp6)+v(po])/((0.5-w+1)-ao[po])
25: cache[thX][thZ] < vp0
26: v[po] < vp0
27: jJ+1

For each experiment, the computational grid was divided into three-dimensional blocks
and fragments. In this case, the number of blocks was set equal to the number of streaming
multiprocessors. The number of fragments in blocks along spatial coordinates x, y, and z was
set equal to 4, 1, and 7, respectively. The sizes of fragments along spatial coordinates x (nf:l)

and 7 (n¥') were set equal to 160 and 64, respectively. The acceleration S, = Tyr(1)/Ta(i)
and efficiency E, = Sp(i)/Ng, (i) were calculated from the experimental data. The results of

numerical experiments are shown in Tab.

Conclusions

To solve grid equations using the MPTM method on the graphics accelerator, the
decomposition model of computational domain has been developed. The computational domain is
divided into blocks along the spatial coordinate y, and then the blocks are divided into fragments
along the spatial coordinates and z. This model allows each GPU streaming multiprocessor
to map a computational domain block and organize a parallel-pipelined computational process.
The graph model was proposed that describes the relationship between adjacent fragments of

2023, T. 12, Ne 2 87

Solving Grid Equations Using the Alternating-triangular Method on GPU

0.0207

0.018T

%1

sw ‘nd

0.020

0.015

ARAAAN u

AN AN

NAARAN
\&&\\\\\\\\\

400

30000 600 500

Fig. 3. Surface of the response function Tgpy = f(k,Y)

Table 1. Results of SLAE calculations with a lower triangular matrix by a parallel-pipeline
method on GPU

Nk, ni N, Tv Sy E,
224 - 580 1.0 1.00

2 112 29 304 1.9 0.95
7 32 34 102 5.7 0.81
14 16 41 61 9.5 0.68

the computational grid and the process of conveyor calculation. The algorithm for solving the
system of equations with a lower triangular matrix in the CUDA C language was described.

As a result of the experiment, a regression model was obtained: it describes the dependence
of the time for calculation one step of the MATM on the GPU. According to the regression
model, at £ < 10 and Y < 1000, the calculation velocity slows down, which is explained by the
inefficient use of the distributed memory of the graphics accelerator.

The results of calculations of SLAE with the lower triangular matrix by the parallel-pipeline
method on the GPU with using the different number of streaming multiprocessors are presented.
At Nj, = 14, the acceleration S, was 9.5, and the efficiency £, was 0.668.

The reported study was funded by the Russian Science Foundation (project No. 21-71-20050).

References

1. Sukhinov A.IL., Atayan A.M., Belova Y.V., et al. Data processing of field measurements of
expedition research for mathematical modeling of hydrodynamic processes in the Azov Sea.
Computational Continuum Mechanics. 2020. Vol. 13, no. 2. P. 161-174. DOI: 10.7242/1999-
6691/2020.13.2.13.

2. Sukhinov A.l., Litvinov V.N., Chistyakov A.E., et al. Computational aspects of solving grid

88 Bectauk FOYpI'Y. Cepus «BpruunciaurenpHas MmareMaTnKa 1 “”HOOPMaTAKA»

http://dx.doi.org/10.7242/1999-6691/2020.13.2.13
http://dx.doi.org/10.7242/1999-6691/2020.13.2.13

A.I. Sukhinov, V.N. Litvinov, A.E. Chistyakov, A.V. Nikitina, N.N. Gracheva un ap.

equations in heterogeneous computing systems. Parallel Computing Technologies. Vol. 12942 /
ed. by V. Malyshkin. Springer, 2021. P. 166-177. Lecture Notes in Computer Science.
DOI: 10.1007/978-3-030-86359-3 13.

3. Lyupa A., Morozov D., Trapeznikova M., et al. Three-phase filtration modeling by explicit
methods on hybrid computer systems. Mathematical Models and Computer Simulations. 2014.
Vol. 6. P. 551-559. DOI: 10.1134/S2070048214060088.

4. Mat Ali N.A., Rahman R., Sulaiman J., Ghazali K. Solutions of reaction-diffusion equations
using similarity reduction and HSSOR iteration. Indonesian Journal of Electrical Engineering
and Computer Science. 2019. Vol. 16, no. 3. P. 1430-1438. DOI: 10.11591 /ijeecs.v16.13.pp1430-
1438.

5. Kittisopaporn A., Chansangiam P. The steepest descent of gradient-based iterative method
for solving rectangular linear systems with an application to Poisson’s equation. Advances in
Difference Equations. 2020. Vol. 2020. Article number 259. DOI: 10.1186/s13662-020-02715-9.

6. Yifen K., Ma C. Adaptive parameter based matrix splitting iteration method for the large and
sparse linear systems. Computers & Mathematics with Applications. 2022. Vol. 122. P. 19-27.
DOI: 10.1016/j.camwa.2022.07.010.

7. Klimonov [.A., Korneev V.D., Sveshnikov V.M. Parallelization technologies for solving three-
dimensional boundary value problems on quasi-structured grids using the CPU+GPU hybrid
computing environment. Numerical Methods and Programming. 2016. Vol. 17, no. 1. P. 65-71.
DOI: 10.26089 /NumMet.v17r107.

8. Ding P., Liu Z. Accelerating phase-field modeling of solidification with a parallel adaptive
computational domain approach. International Communications in Heat and Mass Transfer.
2020. Vol. 111. P. 104452. DOI: 10.1016/j.icheatmasstransfer.2019.104452.

9. Molostov 1., Scherbinin V. Application of NVIDIA CUDA Technology for Numerical
Simulation of Electromagnetic Pulses Propagation. Izvestiya of Altai State University. 2015.
Vol. 1, no. 1/1(85). DOI: 10.14258 /izvasu(2015)1.1-06.

10. Krasnopolsky B., Medvedev A., Chulyunin A. On application of GPUs for modelling of
hydrodynamic characteristics of screw marine propellers in OpenFOAM package. Proceedings
of the Institute for System Programming of RAS. 2014. Vol. 26, no. 5. P. 155-172.
DOI: 10.15514 /ISPRAS-2014-26(5)-8.

11. Egorov M., Egorov S., Egorov D. Using graphics accelerator to improve computing
performance in the numerical modeling of complex technical systems functioning. Perm
National Research Polytechnic University Aerospace Engineering Bulletin. 2015. No. 40. P. 81—
91. DOI: 10.15593/2224-9982/2015.40.05.

12. Szenasi S. Solving the inverse heat conduction problem using NVLink capable Power
architecture. PeerJ Computer Science. 2017. Vol. 3. P. 138. DOI: 10.7717/peerj-cs.138.

13. Zheng L., Gerya T., Knepley M., et al. GPU Implementation of Multigrid Solver for
Stokes Equation with Strongly Variable Viscosity. GPU Solutions to Multi-scale Problems in
Science and Engineering. Springer, 2013. P. 321-333. Lecture Notes in Earth System Sciences.
DOI: 10.1007/978-3-642-16405-7 21

14. Konovalov A. The steepest descent method with an adaptive alternating-triangular
preconditioner. Differential Equations. 2004. Vol. 40. P. 1018-1028.

2023, T. 12, Ne 2 89

http://dx.doi.org/10.1007/978-3-030-86359-3_13
http://dx.doi.org/10.1134/S2070048214060088
http://dx.doi.org/10.11591/ijeecs.v16.i3.pp1430-1438
http://dx.doi.org/10.11591/ijeecs.v16.i3.pp1430-1438
http://dx.doi.org/10.1186/s13662-020-02715-9
http://dx.doi.org/10.1016/j.camwa.2022.07.010
http://dx.doi.org/10.26089/NumMet.v17r107
http://dx.doi.org/10.1016/j.icheatmasstransfer.2019.104452
http://dx.doi.org/10.14258/izvasu(2015)1.1-06
http://dx.doi.org/10.15514/ISPRAS-2014-26(5)-8
http://dx.doi.org/10.15593/2224-9982/2015.40.05
http://dx.doi.org/10.7717/peerj-cs.138
http://dx.doi.org/10.1007/978-3-642-16405-7_21

Solving Grid Equations Using the Alternating-triangular Method on GPU

15. Sukhinov A.l., Chistyakov A.E., Litvinov V.N., et al. Computational Aspects of
Mathematical Modeling of the Shallow Water Hydrobiological Processes. Numerical methods
and programming. 2020. Vol. 21, no. 4. P. 452-469. DOI: 10.26089 /NumMet.v21r436.

16. Samarskii A.A., Vabishchevich P.N. Numerical methods for solving convection-diffusion
problems. Moscow: URSS, 2009. (in Russian).

17. Browning J.B., Sutherland B. C+-+20 Recipes. A Problem-Solution Approach. Berkeley, CA:
Apress, 2020. 630 p.

YK 519.6 DOI: 10.14529 /cmse230204

PEIIIEHUE CETOYHBIX YPABHEHIN
ITOIIEPEMEHHO-TPEYI'OJIbBHBIM METO/I0M
HA TPAONYECKOM YCKOPUTEJIE

© 2023 A.I1. Cyxunos', B.H. JIursunos!?, ®.E. Uncrakos!,
A.B. Hukuruna'3, H.H. T'pauesal?, H.B. Pymenko'-?

L Toncxoti 2ocydapemesenmoili mexruveckuti yrusepcumem
(844003 Pocmos-na-/lony, na. Tazapuna, 0. 1),
2 Azoe60- Yepromopcrkuti umnarceneprviti uncmumym PIBEOY BO Hdownckoti TAY
(847740 Beproepad, ya. Jlenuna, 0. 21),
3 FOoicnmiti dhedeparvniti yrusepcumem
(844006 Pocmos-ra-/lony, ya. Boavwas Cadosan, 0. 105/42)
E-mail: | sukhinov@gmail.com, |litvinovun@rambler.ru, \cheese 05@mail.ru,
nikitina. om@gmazil. com, | 79286051374 Qyandex.ru, |nelli-rud @Qyandez.ru
[Tocrynuna B pemaknuio: 15.03.2023

B crarpe ommcana mnapasiieslbHO-KOHBeilepHasl peajin3aliisl PeIIeHNs] CETOYHBIX YPaBHEHMI MOJu@UINpO-
BAHHBIM TIOIIEPEMEHHO-TPEYTOIbHBIM uTeparmoHHbiM MerogoMm (MIITM), noxy9aeMbIx pu YUCAEHHOM DElleHUr
ypaBHeHHIT MaTemarudeckoil dusuku. Hanbospinme BbIMUCIUTEIBHBIE 3aTPAThl IPU HCIIOJIH30BAHUY yKa3aHHO-
r0 MEeTOJ[a IPUXOAATCS Ha JTAIbl PEIIEHHUs] CUCTEMbl JHHEHHbIX anrebpamdeckux ypasuenuit (CJIAY) ¢ Hmxk-
HETPEYTrOJbHON M BepXHeTpeyroabHoi Marpuramu. [Ipencrasien ajsropurm pemennsi CJIAY ¢ HuKHETpPEYTrOJIb-
HO# Marpuiell Ha rpadudeckoM yckopuresie ¢ ucnoib3osanueMm texuoysorun NVIDIA CUDA. g peanusanuu
napaJiIeIbHO-KOHBEIePHOI'O MeTO/1a UCII0JIb30BaIach TPEXMEPHas JJEKOMITO3UI:A pacdeTHOi obnactu. OHa JAesnT-
CsI 110 KOOp/JIMHATE Y Ha OJIOKU, KOJIMIECTBO KOTOPBIX COOTBETCTBYET KOJIMYIECTBY ITOTOKOBBIX MYJIBTUIIPOIECCOPOB
GPU, 3aeiicTBOBaHHBIX B BEIUUCICHUAX. B CBOIO 0uepeib, 6uI0KH pa3aessioTcs Ha parMeHThI [0 ABYM IIPOCTPaH-
CTBEHHBIM KoOpJanrHaTaM — ¥ 2. IIpejcraBiienHast rpadoBasi MOJIEJIb OIUCHIBACT B3ANMOCBSI3b MEXKJLY COCEIHIMEI
dbparmeHTaMn pacueTHOl CETKHU U IIPOIIECCOM KOHBefiepHOro pactera. Ilo pe3ynbraraM IPOBEIEHHBIX BBIYHCIIH-
TeIbHBIX SKCIIEPUMEHTOB IIOJIyYeHa PEIPECCHOHHAS MOJENb, OIMUCHIBAIOMIAA 3aBUCUMOCTh BPEMEHH PAacIeTa OJTHOTO
mara MIITM na GPU, Beraucnens! yckopenne n sddexkrusaocts pacderoB CJIAY ¢ HHKHETpPEyrosbHON MaT-
purei napaJuebHO-KoHBeilepHbIM MeTosioM Ha GPU npwu 3a/1eiicTBOBAHUE PA3JINIHOIO KOJIMYECTBA [IOTOKOBBIX
MyJIBTHIIPOIIECCOPOB.

Karouesvie crosa: mamemamuveckoe Moaenupoeanue, napa/me/wnma anzopumm, epaﬁuuecnuﬁ ycrkopumenv.

OBPASEIIl INTUPOBAHUA
Sukhinov A.I., Litvinov V.N., Chistyakov A.E., Nikitina A.V., Gracheva N.N., Rudenko N.B.
Solving Grid Equations Using the Alternating-triangular Method on a Graphics Accelerator //

Bectuuk FOVpI'Y. Cepusi: Borauciurenvnas maremarnka u nndopmaruka. 2023. T. 12, Ne 2.
C. 78-92. DOI: 10.14529/cmse230204.

90 Bectauk FOYpI'Y. Cepus «BpruunciaurenpHas MmareMaTnKa 1 “”HOOPMaTAKA»

http://dx.doi.org/10.26089/NumMet.v21r436
mailto:sukhinov@gmail.com
mailto:litvinovvn@rambler.ru
mailto:cheese_05@mail.ru
mailto:nikitina.vm@gmail.com
mailto:79286051374@yandex.ru
mailto:nelli-rud@yandex.ru

A.I. Sukhinov, V.N. Litvinov, A.E. Chistyakov, A.V. Nikitina, N.N. Gracheva un ap.

This paper is distributed under the terms of the Creative Commons Attribution-Non

Commercial 4.0 License which permits non-commercial use, reproduction and distribution of

the work without further permission provided the original work is properly cited.

JImreparypa

1.

Sukhinov A.I., Atayan A.M., Belova Y.V., et al. Data processing of field measurements of
expedition research for mathematical modeling of hydrodynamic processes in the Azov Sea //
Computational Continuum Mechanics. 2020. Vol. 13, no. 2. P. 161-174. DOI: 10.7242/1999-
6691/2020.13.2.13.

Sukhinov A.I., Litvinov V.N., Chistyakov A.E., et al. Computational aspects of solving
grid equations in heterogeneous computing systems // Parallel Computing Technologies.
Vol. 12942 / ed. by V. Malyshkin. Springer, 2021. P. 166-177. Lecture Notes in Computer
Science. DOI: 10.1007/978-3-030-86359-3 13.

Lyupa A., Morozov D., Trapeznikova M., et al. Three-phase filtration modeling by explicit
methods on hybrid computer systems // Mathematical Models and Computer Simulations.
2014. Vol. 6. P. 551-559. DOI: 10.1134/S2070048214060088.

Mat Ali N.A., Rahman R., Sulaiman J., Ghazali K. Solutions of reaction-diffusion
equations using similarity reduction and HSSOR iteration // Indonesian Journal of
Electrical Engineering and Computer Science. 2019. Vol. 16, no. 3. P. 1430-1438S.
DOI: 10.11591 /ijeecs.v16.13.pp1430-1438.

Kittisopaporn A., Chansangiam P. The steepest descent of gradient-based iterative method
for solving rectangular linear systems with an application to Poisson’s equation // Advances in
Difference Equations. 2020. Vol. 2020. Article number 259. DOI: [10.1186/s13662-020-02715-9.

Yifen K., Ma C. Adaptive parameter based matrix splitting iteration method for the large
and sparse linear systems // Computers & Mathematics with Applications. 2022. Vol. 122.
P. 19-27. DOI: 10.1016/j.camwa.2022.07.010.

Klimonov [.A., Korneev V.D., Sveshnikov V.M. Parallelization technologies for solving three-
dimensional boundary value problems on quasi-structured grids using the CPU+GPU hybrid
computing environment // Numerical Methods and Programming. 2016. Vol. 17, no. 1. P. 65—
71. DOI: 10.26089/NumMet.v17r107.

Ding P., Liu Z. Accelerating phase-field modeling of solidification with a parallel adaptive
computational domain approach // International Communications in Heat and Mass Transfer.
2020. Vol. 111. P. 104452. DOI: |10.1016/j.icheatmasstransfer.2019.104452.

Moutoctos W.I1., lepbunun B.B. [Ipumenerune Texuosiorun NVIDIA CUDA jist ancjieHHOTO
MOJIEJIMPOBAHNS PACIPOCTPAHEHNS 3JIEKTPOMATHUTHBIX UMITYJIbcoB // M3Bectust Asraiickoro
rocyaapcreenroro yauepcurera. 2015. T. 1, Ne 1/1(85). DOI: 10.14258 /izvasu(2015)1.1-06.

10. Kpacuomnonwckuit B.U., Mensenes A.B., Uymrorun A.1O. IIpumenenue rpaduieckux ycko-

puresieil Jis pacdeTa THAPOJUHAMUYECKUX XapPAKTEPUCTUK TI'PEOHBIX BUHTOB B IIAKETE
OpenFOAM // Tpynbt Uncruryra cucremuoro nporpamvuposanust PAH. 2014. T. 26, Ne 5.
C. 155-172. DOI: 10.15514 /ISPRAS-2014-26(5)-8.

11. Eropos M.IO., Eropos C.M., Eropos .M. [Ipumenenue rpadudeckux ycKOpUTEJEH s

IIOBBIIICHU A IIPON3BOJAUTEJIBHOCTHI BBIYHCJIEHUIA IIPU 9UCJI€HHOM MOJIE/JIMPOBaHNN beHKHI/IOHI/I—

2023, T. 12, Ne 2 91

http://dx.doi.org/10.7242/1999-6691/2020.13.2.13
http://dx.doi.org/10.7242/1999-6691/2020.13.2.13
http://dx.doi.org/10.1007/978-3-030-86359-3_13
http://dx.doi.org/10.1134/S2070048214060088
http://dx.doi.org/10.11591/ijeecs.v16.i3.pp1430-1438
http://dx.doi.org/10.1186/s13662-020-02715-9
http://dx.doi.org/10.1016/j.camwa.2022.07.010
http://dx.doi.org/10.26089/NumMet.v17r107
http://dx.doi.org/10.1016/j.icheatmasstransfer.2019.104452
http://dx.doi.org/10.14258/izvasu(2015)1.1-06
http://dx.doi.org/10.15514/ISPRAS-2014-26(5)-8

Solving Grid Equations Using the Alternating-triangular Method on GPU

pOBaHUsT CIOKHBIX TexHnmdeckux cucreM // Becrumk ITHUITY. AspokocMmudeckasi TeXHHKA.

2015. Ne 40. C. 81-91. DOI: 10.15593/2224-9982/2015.40.05.

12. Szenasi S. Solving the inverse heat conduction problem using NVLink capable Power
architecture // PeerJ Computer Science. 2017. Vol. 3. P. 138. DOI: [10.7717 /peerj-cs.138.

13. Zheng L., Gerya T., Knepley M., et al. GPU Implementation of Multigrid Solver for Stokes
Equation with Strongly Variable Viscosity // GPU Solutions to Multi-scale Problems in
Science and Engineering. Springer, 2013. P. 321-333. Lecture Notes in Earth System Sciences.
DOI: 10.1007/978-3-642-16405-7 21

14. Konovalov A. The steepest descent method with an adaptive alternating-triangular
preconditioner // Differential Equations. 2004. Vol. 40. P. 1018-1028.

15. Sukhinov A.l., Chistyakov A.E., Litvinov V.N., et al. Computational Aspects of
Mathematical Modeling of the Shallow Water Hydrobiological Processes // Numerical
methods and programming. 2020. Vol. 21. P. 452-469. DOI: 10.26089 /NumMet.v21r436.

16. Camapckuit A.A., Babumesuua [1.H. HYucienaple MeTO/bI pellleHUsI ypaBHEHN KOHBEKIIUN-
s dysuu. Mocksa: YPCC, 2009.

17. Browning J.B., Sutherland B. C++20 Recipes. A Problem-Solution Approach Berkeley, CA:
Apress, 2020. 630 p.

Cyxunos Anekcanjap VMpanosud, wi.-kopp. PAH, g.d.-M.H., npodeccop, Kadeapa mareMa-
Tuku u uHdopmaTuku, JJoHCKOI rocymapcTBeHHblil Texandeckuit yausepceurer (Pocros-ua-/lony,
Poccuiickast Qenepanust)

Jlureuros Baamuvmup HukosaeBud, K.T.H., JONEHT, KadeIpa MaTeMaTUKd U HHPOPMATUKH,
Houckoit rocynapersennbiit Texauueckuii yausepeurer (Pocros-na-/lony, Poccuiickass @enepa-
st) ; Kadenapa maremaTuku u 6nonadopmaruku, A30Bo-1epHOMOPCKUIT MHKEHEPHBIH HHCTUTYT
®I'BOY BO Houckoit I'AY (3epuorpaj, Poccniickas Penepariust)

Yuctsaros Anekcanap Eprenbesud, m.d.-M.H., Kadeapa MTPOrPAMMHOTO 00ECTIeIeHNsT BHIUNC-
JINTETbHON TEXHUKHA W aBTOMATH3UPOBAHHBIX cUCTeM, /IOHCKOI TocyJapCcTBEHHBI TEXHUYECKUHI
yuusepcurer (Pocros-ua-/lony, Poccuiickas Peneparst)

Huxuruna Asuia BajiepbeBHa, 1.T.H., JOLEHT, Kadeapa IPOrpaMMHOI0 00eCIIeYeHHsI BHIYUC-
JINTEJILHON TEXHUKM W aBTOMATU3MPOBAHHBIX cucTeM, JIOHCKOI rocyIapCTBeHHBIN TeXHUIECKUit
yuusepcurer (Pocros-na-ony, Poccniickass @eneparnust); kadenapa MHTEIIEKTYaJIbHBIX U MHO-
romporeccopubix cucrem, FOxubiit dbegepanbubiii yausepcurer (Pocros-ua-/lony, Poccuiickast
Denepartust)

I'paueBa Haranbs HukonaeBna, K.T.H., JOIEHT, Kadeapa mMaTeMaTUKu U OnomHpOpMaTU-
ki, Asoo-Uepnomopckuii uuzkenepubiii uacruryr @TBOY BO onckoit [AY (3epuorpag,
Poccuiickast @egnepaiiusi); kadepa IPOEKTUPOBAHUS M TEXHUIECKOI'O CEPBUCA TPAHCIOPTHO-
TeXHOJIOrnYecKux cucreM, JoHckoil rocymapcerBennblii Texuundeckuii yuusepcurer (Pocros-ma-
Hony, Poccuiickast @enepariust)

Pynenko Hemm BopucoBna, K.T.H., joreHT, Kadeapa MareMaTUKd U OMOMHMOPMATHKH,
AzoBo-Hepuomopckuii nrzkenepusiit nacturyr PIBOY BO Houckoit 'AY (3epuorpas, Poccwmii-
ckasg Denepanus); Kadeapa MeauaTexuogoruit, JJoHCKOI TOCYIapCTBEHHBIN TEXHIYECKUiT YHI-

Bepcuter (Pocros-na-lony, Poccuiickas ®enepariis)

92 Bectauk FOYpI'Y. Cepus «BpruunciaurenpHas MmareMaTnKa 1 “”HOOPMaTAKA»

http://dx.doi.org/10.15593/2224-9982/2015.40.05
http://dx.doi.org/10.7717/peerj-cs.138
http://dx.doi.org/10.1007/978-3-642-16405-7_21
http://dx.doi.org/10.26089/NumMet.v21r436

	
	A.I. Sukhinov, V.N. Litvinov, A.E. Chistyakov, A.V. Nikitina, N.N. Gracheva, N.B. Rudenko

