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INVESTIGATION OF DIFFERENT TOPOLOGIES
OF NEURAL NETWORKS FOR DATA ASSIMILATION

F.P. Hirter, H.F. Campos Velho

Neural networks have emerged as a novel scheme for a data assimilation process. Neural
network techniques are applied for data assimilation in the Lorenz chaotic system. A radial basis
function and a multilayer perceptron neural networks are trained employing 1000, 2000, and 4000
examples. Three different observation intervals are used: 0.01, 0.06 and 0.1 s. The performance of
the data assimilation technique is investigated for different architectures of these neural networks.

Keywords: data assimilation, Neural Network, Data Assimilation.

Introduction

Data assimilation is a very important process in the numerical weather forecast. It
permits the imbedding of observational data in the meteorological model. This data provides
a feedback during the generation of the forecast in a real time fashion. However, the process
of imbedding the observational data is not straightforward and it has to be done in a very
smooth manner in order to minimize the propagation of errors in the forecast model. Usually,
the assimilation process can be outlined as a two step iterative process:

f_pr.a
Forecast step: wi = Flwy]

Analysis step: wh = wi +d
where w, represents model state variable at time step n; F].| is the mathematical (forecast)
model, superscripts f and a denote forecast and analyzed values respectively, and d, is the
innovation of the observational data. Several methods of data assimilation have been
developed for air quality problems [1]|, numerical weather prediction [2|, and numerical
oceanic simulation [3]. In the case of atmospheric continuous data assimilation there are
many deterministic and probabilistic methods. Deterministic approaches include dynamic
relaxation, variational methods and Laplace transform, whereas probabilistic approaches
include optimal interpolation and Kalman Filtering. In the Kalman filtering, the analysis
innovation d, is computed as a linear function of the misfit between observation (superscript
0) and forecast (superscript f):

- o _ f
dn - Gn(Wn Han) (1)
G

observation matrix. The Kalman filter has been tested in strongly nonlinear dynamical

where is the weight (gain) matrix, Wi is the observed value of Wn and Hn is the
systems for assimilation procedure, such as the Lorenz chaotic system. Kalman filtering has
the advantage of minimizing the error in the assimilation plus propagating this minimized
error from one data insertion to the next. However, this process involves a heavy
computational load, in particular for large meteorological systems. A strategy to alleviate this
load is the use of artificial neural networks (ANN) to emulate the accuracy of the Kalman
filtering [4]. Neural networks can be efficiently applied to map two data sets [5]. Several
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architectures have been proposed for neural networks. The current work is based on the
application of neural networks with backpropagation learning for data assimilation.

This paper deals with two neural networks: radial basis function and multilayer
perceptron. These ANNs are employed for data assimilation for the Lorenz chaotic system
[6]. Three different sizes of training set are used: 1000, 2000, and 4000 examples (patterns).
Some numerical experiments are carried out for each training set, considering several time-
periods for inserting the observations: 0.01, 0.06, and 0.1 seconds. The quality in the
assimilation process is analyzed relating to the number of neurons, and different activation
functions in the out-put layer. ANNs with two hidden layers are also studied in a class of
experiments.

The next section provides a brief introduction to the neural network architecture used for
the data assimilation application, and an outline on Kalman filter is presented too. However,
it is not the aim of this paper to present an overview of ANNs. A further section discusses
some numerical results. The final section adds some comments and remarks.

1. Non-linear model and assimilation processes

The framework used to perform the numerical experiments for the data assimilation is
introduced.

A — The Lorenz Model

The Lorenz system [6] is a hard test for data assimilation, due to the fact it can present
a chaotic dynamics. The equations for the Lorenz system are given by

dx
P (X -Y),

RN )
Y _ry_v-xz, (3)
dt

92 _ xy_pz.

dt (4)

This system is integrated using the predictor-corrector method with Az =0.001, using
the following initial conditions (the subscript 0 denotes the initial condition): X, =1.508870,

Y, =-1.531271, Z, =25.460910. The parameters in the system are: o =10, b=8/3, and
R =28, so that the system is in the chaotic state.

B — Artificial Neural Networks
ANNs are mathematical models useful for carrying out some learning tasks, such as

pattern recognition, function approximation, control, and filtering [5]. Figure 1 displays an
outline of an ANN.
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Fig.1. Sketch for neural networks used in this paper

The application of an ANN is done at two phases: learning and activation. The learning
phase (also calling training) consists to find out the connection synaptic weights and bias
associated with each neuron. Two strategies are possible for learning: supervised, and
unsupervised. The main difference between supervised and unsupervised learning is that the
latter uses only information contained in the input data, whereas the former requires both
input and output (desired) data, which allows the calculation of the network error as the
difference between the calculated output and the desired vector. In this paper the the
supervised backpropagation learning process (Widrow’s delta rule) [5] is used.

The activation is the process to obtain an output from an input for a given final
architecture of the ANN. The activation function depends on the ANN topology used, for
example:

av,
p(v;) = tanh(T") (with a=1) (5)

is employed in the multilayer perceptron, and

o(v,) = exp —u (c=1and u=0) (6)

is used for radial basis funcions.

Different activation functions can be used for the out-put layer. Functions as given by
equations (5) and (6) are tested, as well as linear function: @(v;)=v,.

Multilayer percentron (MP)

The multilayer perceptron with backpropagation learning, or backpropagation neural
network, is a feed-forward network composed of an input layer, an output layer, and a
number of hidden layers for extracting high order statistics from the input data. Each of

these layers may contain one or more neurons.
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Mathematically, a perceptron network simply maps input vectors of real values into
output vectors of real values. The connections in figure 1 have associated weights that are
adjusted during learning process, thus changing the performance of the network. Neurons in
the MP-NN are fully connected.

Radial Basis Functions (RBF)

Girosi and Poggio (1990) [7], based on Kolmogorov’s theorem, show that ANNs with
only one hidden layer are able to approximate any continuous function. The Girosi and
Poggio’s proof follows the Idea: a continuous and limited function can be consider as a
combination of a linear Gaussians. These Gaussians can be implemented in the hidden layer.
The accuracy of the approximation will depend on the number of Gaussian functions, i.e., the
number of the neurons in the hidden layer.

ANNs representing functions fitted around a region, whose activation functions,
implemented in the neurons of the hidden layer, are Gaussian ones, are examples of the
radial basis functions neural network. For this ANN, learning means to find a surface in a
multidimensional space, the best fit for the training data, where the agreement is measured
in a statistical sense [5].

C — Kalman Filter (KF)

The KF is usefully used in estimation and control problems. Since its first applications
on aerospace field [8], this technique has been employed in many applications. Recently, the
KF has been applied to meteorology, oceanography and hydrology [2]. A brief description of
the Kalman filter will be outlined here. Figure 2 shows an algorithm of the linear KF.

1. Previs&o a partir do modelo
f o o a
wn+1 - ann

P/, =F,PF/+0,

4. Célculo da matriz de covariancia 2. Célculo do ganho de Kalman

P =[1-G,H,.F., G,. =P, H,

[R.+H P/ HT

]—l
n+l n+l7 n+l 77 n+l

3. Célculo da estimativa
o f
z - Hn+lw

n+l n+l

a o f f
w, =W + Gn+l (Zn+l - Zn+l)

n+l n+l

Fig 2. An outline of the Kalman filter algorithm

Let the prediction model be as in equation (7), where the subscript n denotes time-
steps.
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wn+1 = ann + Iun (7)
being F, a mathematical description of the system, and pu, a stochastic forcing (called

dynamic modeling noise), and the observation model
Zl’l = Hnwn + Ul‘l (8)

where v, is a noise, and H, represents the observation system. The typical gaussianity,

zero-mean and ortogonality hypotheses for the noises are adopted. The term w is

n+l
estimated through the recursion

WZH = (I - G H}Hl )F Ca + G Zn+1 (9)

n+l n-n n+l

where wy, is the estimator and G, is the matrix that minimizes the trace of the

prediction error covariance matrix, that is, the sum of the squares of the prediction errors in
each component of Wy, ;

Jn+1 = E{(W:H - n+1)T (WZH - WIHI )} (10)

The algorithm of the KF is shown in figure 2, where Q, is the covariance of u, , P/ s

n

the covariance of the prediction errors, R, is the covariance of v, , and P is the covariance

n’
of the estimation error. The assimilation is done from the sampled.

S
Zyn T Zpn

-H w/ (11)

n+l*®

r(t, +At)y=r,,, =z, —
2. Results and discussion

As mentioned before, the goal of this paper is to investigate the assimilation system
based on ANN with different architectures (MP and RBF). Following this purpose, 396
experiments are performed.

For generating the training sets, the Lorenz system is integrated for 150000 time-steps
(0.15 s), sampled at each 30 (0.003 s) producing 5000 examples. The first 4000 examples are
applied in the training phase of the ANNs, and the rest of 1000 examples are used for the
activation phase. The use of inputs that do not belong to the training set characterizes the
generalization capacity of the ANN.

Following figure-1, the ANN inputs are normalized matrices w=w(X,Y,Z) of the

Lorenz system and z=2z(X,,Y,,Z,) is the observation matrix. The desired output is the

normalized matrix: w, =w, (X, Y, Zp ), resulting from the assimilation with KF. The

observations are synthetic ones, adding a Gaussian white noise, with variance 2, to the fields
computed from the Lorenz system.

In the back-propagation algorithm, the synaptic weights are initialized according to the
Gaussian distribution, and the training patterns are presented in the sequence as generated
by the numerical model. ANNs were trained with learning ratio constant and equal to 0.1,
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without momentum constant. One difference between MP-ANN and RBF-ANN is in the
activation functions of the hidden layer: hyperbolic-tangent — equation (5) — for the former
NN, and Gaussian function for the latter one — equation (6).

Figure 3 shows the relevance of the observation system. If there is no assimilation
scheme, the disagreement between the computed dynamics (green curve) and true dynamics
(observations — blue curve) becomes greater and greater.

Considering the large numbers of experiments, few results are shown. However,
comments about our simulations are done.

The ANNs are trained with 1000, 2000, and 4000 examples, with data insertion
(assimilation) performed at different time period: 0.01, 0.06, and 0.1 s. The number of
neurons in the ANN varies from 3 up to 40, for both ANN. The activation function
implemented for the hidden layer of the MP-NN is the hyperbolic-tangent for all
experiments, while in the output layer the activation function is linear in the experiments 1
to 11 (C1 set), and hyperbolic-tangent in the experiments 12 to 22 (C2 set). For the RBF-
NN the Gaussian function was implemented as activation function in the hidden layer for all
experiments, while in the output layer the activation function is linear in the experiments 23
to 33 (C3 set), and Gaussian function in the experiments 34 to 44 (C4 set). Activation
functions used here are summarized in the Table I.

10 T T T T T T T T T
—— Observation
—— Model
5 _ KF i
0 L
5 observation insertion
X
observation insertion
10 - \ 4
obsen@ﬁoninseﬂbn//
15+ 4
20+ 4
observation insertion —»
-25 -

0 50 100 150 200 250 300 350 400 450 500
Time (s)

Fig. 3. Importance of the assimilation process

Table 1
Summary of experiments

Experiment ANN Output

function
EXP1 to EXP11-C1 MP linear
EXP12 to EXP22-C2 MP tanh
EXP23 to EXP33-C3 RBF linear
EXP34 to EXP44-C4 RBF Gaussian
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The quality of an assimilation system can be measured by the quadratic error, after the
activation phase. This quantity is computed by the following equation:

1 1000 2

=000 2% ) (12)

i=1

RMS

It was observed that when the error reached the value 0.0002 the ANN did not improve
the solution. In fact, in many cases the output of the ANN with an error less than 0.0002
degraded the output. Therefore, the error equal 0.002 was defined as the target for training
phase. Sometimes, the ANN did not reach this target.

Using 1000 patterns in the training set, with observation sampled at each 0.01 s, both
ANNs with one hidden layer produce good results. For some architectures, the assimilation is
better than that obtained with KF, whose the error 5.5764. The error for the best result
using ANN for the C1 training set is 6.4610 (5 neurons), for o C2 training set is 4.6468 (3
neurons), for C3 training set is 4.5547 (8 neurons), and for C4 training set is 4.7280 (40
neurons). The MP-NN is defined having a linear activation function in the output layer.
However, our experiments use hyperbolic-tangent in the output layer, the results are similar
or even better when linear function is employed.

Figures 4-5 display the best results for MP-NN with 3 neurons (hyperbolic-tangent as the
activation function in the output layer), and RBF-NN with 8 neurons (linear function in the
output layer).

The experiments EXP37 (6 neurons) and EXP43 (30 neurons) do not show convergence.
Figures 4-5 display the best results for MP-NN with 3 neurons (hyperbolic-tangent as the
activation function in the output layer), and RBF-NN with 8 neurons (linear function in the
output layer), respectively EXP12 and EXP28 experiments.

Figures 4 and 5 show assimilation results using ANNs (black line) and KF (blue line).
Both procedures follow the dynamics of the system. However, one can not see from the
figures which ANN produces the best result (smaller RMS). Computing RMS with equation
(12) , the best result is obtained for the MP-NN (3 neurons), with RMS a little bit smaller
than the best result for the RBF-NN. Experiments also show that ANNs with linear
activation function in the output layer present worse results when hyperbolic-tangent and
Gaussian functions are used as activation functions in the output layer for the MP-NN and
RBF-NN, respectively.

For assimilation with sampled observation 0.06 s the estimative error with is 6.2377, i.e.,
increasing the time-period of observation the estimative is degraded. However, this conclusion
does not apply to the assimilation for some architecture of ANNs. For example, in the C1
training set with sampled observation at 0.06 s, the experiment with 30 neurons presents
RMS a thin smaller than same experiment sampled observation equal 0.01 s. The same
occurs for experiments using C2 training set.
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Fig. 4. Assimilation with MP-NN using 3 neurons. Hyperbolic-tangent was used in the

output layer
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Fig. 5. Assimilation with RBF-NN using 8 neurons. Linear function was used in the

output layer

The best results of the MP-NN for sampled observation at 0.06 and 0.01 s were obtained
using 3 neurons, with hyperbolic-tangent in the output layer. For RBF-NN, the best
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architecture was obtained with linear function in the output layer using 7 neurons and 8
neurons for sampled observation at 0.06 and 0,01 s, respectively.

The analysis of experiments with observations at each 0.1 s, the best architecture was
obtained using 7 neurons in the hidden layer, with hyperbolic-tangent in the output layer.
For RBF-NN, the best arrangement was gotten using 7 neurons, with linear function in the
output layer.

Assimilation observations at each 0.1 s, the error of the estimative by KF increased,
related to the experiments in which the assimilation was done at each 0.01 and 0.06 s,
showing a RMS=9.4537. For the ANNs, the assimilation at each 0.1 s was degraded related
to the experiments with observations inserted at 0.01 s, but this tendency is not verified for
the most experiments in the C1 and C3 training sets.

It is hard to identify some pattern from the experiments discussed, but as a general
conclusion one can say that having more observations (the frequency of the observations
sampled) better assimilation can be obtained. Another point is that for MP-NN the use of
hyperbolic-tangent in the output layer improves the assimilation. Similar feature is found
related to the RBF-NN, using Gaussian function in the output layer. Finally, an obvious
point is that architectures with smaller number of neurons are preferred, from computational
point of view.

For next, the experiments where ANNs were trained using 2000 examples, with the
sampled observations at 0.01 s using 3, up to 40 neurons for both ANNs. The activation
function implemented in the hidden layer is the hyperbolic-tangent, for all experiments, while
in the output layer the activation function could be linear or hyperbolic-tangent, as shown in
Table 1. As before, the Gaussian function was used as activation function for the RBF-NN,
while linear and Gaussian functions were used in the output layer — see Table 1.

The experiments detect overfiting using 2000 patterns for training. The estimation
presents a large RMS value, related to the experiments with 1000 patterns. Estimates with
greater period of sampled observation result in a RMS greater than those obtained with
sampled observation at 0.01 s.

Finally, results obtained using 4000 examples for training are analyzed. The same
architecture for MP-NN and RBF-NN used before with 1000 and 2000 examples.

The overfiting problem was expected. However, estimations with 4000 examples produce
better results than those obtained using 2000 patterns, but the assimilation is worse than
1000 patterns are used. Sampled observations at 0.1 s are indicating better results than those
sampled at 0.01 s, for MP-NN.

Results for MP-NN with 2 hidden layers, having sampled observations at 0.01 s, present
similar answer to those obtained with only one hidden layer. But, the computational cost for
the NN with 2 hidden layer is greater than for a NN with one hidden layer. RBF-NN has one
hidden layer, by definition, but some tests using 2 hidden layers were done with this
topology, but bad results were obtained.

Conclusion
Artificial neural networks were applied in a assimilation process during the time
integration of the Lorenz system in chaotic regime. Tests are done varying the size of the

training set, and the time-period of the sampled observations inserted in the integration. The
ANNs applied in the assimilation are the MP-NN and RBF-NN with different number of
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neurons in the hidden layer(s). The performance of these NNs were also verified related to
the use of linear and non-linear activation functions in the output layer.

It is a hard task to find out the optimum architecture for a given NN. However, this is not
a constrain for its use, since the problem can be solved with a desired accuracy with simple
architecture (few neurons and 1 or 2 layers), implying in a smaller computational cost related
to the more complex (bigger) NNs. In few words, having good results, it is not necessary to
find the optimum architecture.

The goal of the present study is not to do a formal analysis for each architecture, and the
learning strategy employed, instead, the focus here is to show some general tendencies. From
these general aspect, we can pointed out that for this application, the use of 1000 examples
for training is clearly better than use 2000 or 4000 patterns. The result is better and the
computational cost is smaller.

Concerning the time-period for sampled observations, it is important to note that greater
time-period do not imply in a worse result, differently of the KF and other traditional
schemes. In this work, the best results are obtained inserting observations at each 0.001 s,
but greater or less quantity of observational data is characteristic for a given application. In
meteorology, observational data are available at 12 and 24 h by the operational
meteorological centers, such as NCEP (National Centers for Environmental Prediction) and
ECMWF (European Certer for Medium-Range Weather Forecasts). Satellite data have also
high interest for data assimilation.

Our experiments suggest that the use of hyperbolic-tangent in the output layer as the
activation function of the MP-NN produces better results. The same strategy and conclusion
can be applied to the RBF-NN, using the Gassian function in the output layer, since it
present smaller sum of the square error.

A future work is to use recurrent neural network for data assimilation. This type of ANN
is a system with memory, while the ANNs used in the present paper are memoryless system.
Other features that motivate the study of the ANN for data assimilation is that ANNs are
essentially parallel algorithms, and they can be implemented in hardware devices.
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NCCJIEJOBAHUE PA3JINMYHBIX BN/10B TOIIOJIOT'N
HENPOHHBIX CETEN AJISI ACCUMMNJILIINNT JAHHBIX

@.11. Xapmep, I'.P. de Kamnoc Beavo

Meto/pl HEHPOHHBIX CeTeil pAcCMaTPUBAIOTCS KaK aJbTEPHATUBA JJIA CYIIECTBYIOIINX CXEM
yCBOEHUsT HAOJIIONEHNI B reopU3nIecKne YUCACHHbIE MOJIETH. AJITOPUTMBI PaIHAIBHBIX OA3MCHBIX
byHKIMI 1 MHOTOCJIOHHOI'O HEPIENTPOHA BbIOPAHBL JJIs SKCIEPUMEHTOB 110 ACCUMUJISIINU JAHHBIX
B IIPOCTEHNIYIO0 JBYMEPHYIO TI'HAPOJMHAMAYECKYIO MOJIC/b, T.H. CUCTEMY JAHAMUYECKOIO XaoCa
Jlopenra. O6ydenne 060uX TUIIOB AJITOPUTMOB IIPOU3BOAMIOCH Ha BbiOopke u3 1000, 2000 u 4000
HabJTioIeHnit moBeeHust mapamerpos cucrembl ¢ muaTepsagamu B 0.01, 0.06 u 0.1 cex, u 3arem B
pexuMe pacClo3HaBaHUs IIPOU3BE/IEHa CpaBHUTE/IbHasd OIEHKa Ka4deCTBa YCBOCHUA JIAHHBIX
Pa3IMYHbIMUI APXUTEKTYyPaAMU HEHPOHHBIX CEeTEH.

Karouesvie caosa: ACCUMUNAAUUA (%LHH?)L.’L‘, Heﬁponnme cemu.
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