Nudopmaruka, BbIYUCIUTE/IbHAS TEXHUKA U yIPaBJIEHUE

DOI: 10.14529/cmsel160403

SUPERCOMPUTER APPLICATION INTEGRAL
CHARACTERISTICS ANALYSIS FOR THE WHOLE
QUEUED JOB COLLECTION OF LARGE-SCALE
HPC SYSTEMS*

© 2016 D.A. Nikitenko, V.V. Voevodin, A.M. Teplov, S.A. Zhumatiy,
Vad.V. Voevodin, K.S. Stefanov, P.A. Shvets

Research Computing Center, M.V. Lomonosov Moscow State University (Leninskie
Gory 1, Moscow, 119991 Russia)
E-mail: dan@parallel.ru, alex-teplov@yandex.ru, serg@parallel.ru, vadim@parallel.ru,
cstef@parallel.ru, shvets.pavel.srcc@gmail.com
Received: 11.04.2016

Efficient use and high output of any supercomputer depends on a great number of factors. The problem
of controlling granted resource utilization is one of those, and becomes especially noticeable in conditions of
concurrent work of many user projects. It is important to provide users with detailed information on peculiarities
of their executed jobs. At the same time it is important to provide project managers with detailed information
on resource utilization by project members by giving access to the detailed job analysis. Unfortunately, such
information is rarely available. This gap should be eliminated with our proposed approach to supercomputer
application integral characteristics analysis for the whole queued job collection of large-scale HPC systems based
on system monitoring data management and study, building integral job characteristics, revealing job categories
and single job run peculiarities.

Keywords: supercomputer, efficiency, system monitoring, job categories, integral job characteristics, queued
job collection, job queue, resource utilization control.

FOR CITATION

Nikitenko D.A., Voevodin V.V., Teplov A.M., Zhumatiy S.A., Voevodin Vad.V.,
Stefanov K.S., Shvets P.A. Supercomputer Application Integral Characteristics Analysis for the
Whole Queued Job Collection of Large-Scale HPC Systems. Bulletin of the South Ural State
University. Series: Computational Mathematics and Software Engineering. 2016. vol. 5, no. 4.
pp. 32—45. DOI: 10.14529/cmsel60403.

Introduction

Securing efficient resource utilization of HPC systems is one of the most important and
challenging tasks at present trends of rapid growth of scales and capabilities of modern
supercomputers [1, 2]. There is a variety of approaches that are aimed at analysis of efficient
utilization of certain HPC system components or systems as a whole. Some of them are based on
system monitoring data analysis [3, 4]. This type of approaches sets especially strict requirements
on monitoring system implementation and configuration [5], as well as for the means of data
storage and access. At the same time these approaches possess a number of fundamental
advantages.

*The paper was recommended for publication by the program committee of the International Scientific Conference
"Parallel Computing Technologies — 2016”.

32 Becrauk FOYpI'Y. Cepus «BbruuciaurenbHasi MareMaTnka u nHOpPMaTUKa»

D.A. Nikitenko, V.V. Voevodin, A.M. Teplov, S.A. Zhumatiy, Vad.V. Voevodin u ap.

First, the analyzed data reflects physical, real levels of HPC system components and
appropriate resource utilization.

Second, filtering system monitoring data obtained from known set of components and period
of time allows binding this data to certain jobs. Thus, allowing analyzing resource utilization
history and trends by certain applications, users, projects, partitions, and so on.

Third, typically it is possible to configure monitoring systems obtaining data from the whole
system in such a way that it induces acceptable overhead. This allows collecting data with a
rougher granulation, when possible, but still sufficient for basic analysis of resource utilization by
any and every job. To have more detailed information on certain job, of course, used monitoring
system should likely support data acquisition rate reconfiguration on-the-fly for specified sensor
sets and sources. If not (of course, it is much less efficient way), most monitoring systems can be
started in a higher granularity mode to record certain job activity and restarted in a normal mode
afterwards. There are other options available, for example, data aggregation implementation that
is precise for first, say, 30 seconds of job execution (to study short jobs) that is later switches
to rough mode (for longer jobs). Anyhow, there are a number of techniques available to study
certain application behavior.

The existing methods and techniques that base on system monitoring data analysis, allow
both analysis of dynamic characteristics of certain application runs and peculiarities of resource
utilization within system partitions and systems as a whole [6]. With a project-oriented workflow,
when a number of users run jobs as a part of one applied research, it is very useful to let
administrator and system manager have a clear view of resource utilization distribution in the
workgroup to have a possibility to influence permissions or workflow inside the workgroup to
meet the granted resources limitation [7, 8]. Nevertheless there is still need for specialized tools
and techniques to analyze available system monitoring data. In a point of fact, the one is needed
as a valuable additional tool to the set of implemented approaches in every-day practice of MSU
Supercomputer Center [9-12] — a tool for job queue analysis based on system monitoring that
would allow revealing job categories, job grouping by some criteria, starting from belonging to
user or project domain and other resource manager specific characteristics, to categories by levels
and peculiarities of HPC system resource utilization or its combinations. As a basic technique for
such grouping implementing tagging system seems to be an adequate option — assigning special
tags to a job description as soon as each tag description criteria is met by job characteristics.
Tagging principles are widely successfully used for categorizing and search purposes managing
huge collections of data in Internet: news, videos, photos, notes, and so forth, that is quite close
to the challenge that is being tackled.

The paper is organized as follows. Section 1 is devoted to job categories and tagging
principles. Section 2 describes implementation. Section 3 provides examples and use cases.

Conclusion section includes summary as well as future work overview.

1. Job categories and tagging

The combined analysis of system monitoring data and resource manager log data, as was
already mentioned, allows binding raw system monitoring data to certain jobs. This provides
means to analyze job dynamics as far as data granularity allows. To analyze the average rate of
application resource utilization every dynamic characteristic can serve basis for the calculation of
minimum, maximum, average and median values. These types of values are often named integral

job characteristics.

2016, T. 5, Ne 4 33

Supercomputer Application Integral Characteristics Analysis for the Whole Queued Job...

When one takes a look at the whole scope of executed jobs for analysis of job queue structure,
application run sequences, jobs comparative analysis and even searching for outstanding single
job behavior it becomes obvious that it would be very useful to have tools that provide means
for revealing job categories based on various criteria.

This functionality can be implemented by introducing special tags. Every tag is based
on its own criteria, based on a single integral job characteristic or its combination, resource
manager job-related information and any other available info from used data sources. For example
tags can correspond to certain average rates of various resource utilization, job ownership, job
duration, resource utilization specifics, special execution modes, detailed system monitoring data
availability, and so forth.

The approach features means to make efficient grouping and filtration of whole job queue
history collection by any improvised combination of specified tags. Driven by experience of
application efficiency and scalability study based on system monitoring data analysis, the authors
propose introducing the following job categories on the first stage of implementation. Tag naming
is designed to give self-explanatory tag description, nevertheless, every tag must have a detailed
full-format description available.

1.1. System monitoring data based categories

CPU utilization

e Tag name: avg CPU_user LOW

Category: Low CPU user utilization.

Criteria: Average value of CPU _user doesn’t exceed 20%.
e Tag name: avg CPU_user HIGH

Category: High CPU user utilization.

Criteria: Average value of CPU _user exceeds 40%.
e Tag name: avg CPU _idle TOO HIGH

Category: CPU is idle for a considerable time.

Criteria: Average CPU _idle value exceeds 25%.

Competition of processes for CPU cores

e Tag name: avg LA LOW
Category: User job is almost out of action, almost no utilization of CPU.
Criteria: Average Load Average is below 1.
e Tag name: avg LA SINGLE CORE
Category: Only one process per node is active as an average.
Criteria: Average Load Average is approximately 1.
e Tag name: avg LA NORMAL
Category: Optimal competition of processes.
Criteria: Average Load Average is approximately equal to the number of cores per node.
e Tag name: avg LA HYPERTHREADED
Category: Normal process competition with hyperthreading is on.
Criteria: Average Load Average value is approximately equal to the double number of CPU
cores per node.

Floating point operations

e Tag name: avg Flops HIGH
Category: Intensive CPU floating point operations.

34 Becrauk FOYpI'Y. Cepus «BbruuciaurenbHasi MareMaTnka u nHOpPMaTUKa»

D.A. Nikitenko, V.V. Voevodin, A.M. Teplov, S.A. Zhumatiy, Vad.V. Voevodin u ap.

Criteria: Average value of floating point operations number exceeds 10% of theoretical
CPU peak.

Interconnect activity

Tag name: avg IB packages num LOW

Category: Low number of inter-node data transmissions.

Criteria: Average package send rate does not exceed 103 packages per second.

Tag name: avg_ IB packages size TOO LOW

Category: Small size of packages.

Criteria: Average package send rate exceeds 103 packages per second while average data
transmission rate is below 2 kilobytes per second.

Tag name: avg IB speed HIGH

Category: High data transmission intensity.

Criteria: Average data transmission rate is over 0,2 Gigabytes per second and up to 1
Gigabytes per second.

Tag name: avg IB speed TOO HIGH

Category: Very high data transmission intensity.

Criteria: Average data transmission rate is over 1 Gigabytes per second.

Memory utilization

1.2,

Tag name: avg_cache L1/L3 TOO LOW

Category: Very low efficiency of cache stack utilization.

Criteria: Ratio of the number of L1 misses to the number of L3 misses is below 5.
Tag name: avg cache L1/L3 LOW

Category: Reduced efficiency of cache stack utilization.

Criteria: Ratio of the number of L1 misses to the number of L3 misses is below 10.
Tag name: avg cache L1/L3 HIGH

Category: Good efficiency of cache stack utilization.

Criteria: Ratio of the number of .1 misses to the number of L3 misses exceeds 10.
Tag name: avg_mem/cache L1 LOW

Category: Reduced efficiency of cache L1 utilization.

Criteria: Ratio of the number of total memory operations to the number of .1 misses does
not exceed 15.

Tag name: avg memload HIGH

Category: Intensive memory operations.

Criteria: Average number of memory operations exceeds 109 operations per second.

Resource manager based categories

Job execution status

Tag name: job_ status COMPLETED

Category: Job is successfully finished.

Tag name: job status FAILED

Category: Job is finished with an error in program.
Tag name: job_status CANCELED

Category: Job was cancelled by user.

Tag name: job_status TIMEOUT

Category: Job was cancelled by exceeding time limit.

2016,

T. 5, Ne 4 35

Supercomputer Application Integral Characteristics Analysis for the Whole Queued Job...

e Tag name: job_ status NODE FAIL
Category: Job is finished with system error.

Job submission details

e Tag name: job time limit CUSTOM
Category: Requested time limit is custom.
e Tag name: job_start script CUSTOM
Category: Job batch file is custom.
e Tag name: job_cores requested FEW
Category: Not all available CPU cores per node requested.
e Tag name: job_cores requested SINGLE
Category: Just a single CPU core per node requested.
e Tag name: job MPI INTEL
Category: MPI type used: Intel MPL.
e Tag name: job MPI OpenMPI
Category: MPI type used: OpenMPL.
e Tag name: job_ nnodes SINGLE
Category: Job used a single node.
e Tag name: job nnodes FEW
Category: Job used from 2 up to 8 nodes.
e Tag name: job nnodes MANY
Category: Job used 8 nodes and above.

System-dependent peculiarities and partition usage

Illustrated by the example of “Lomonosov” supercomputer partitions.

e Tag name: job_partition REGULARA4
Category: Job allocated to REGULARA4 partition.
e Tag name: job partition REGULARG6
Category: Job allocated to REGULARS6 partition.
e Tag name: job partition HDD4
Category: Job allocated to HDD4 partition.
e Tag name: job_partition HDD6
Category: Job allocated to HDD6 partition.
e Tag name: job_partition SMP
Category: Job allocated to SMP partition.
e Tag name: job_partition GPU
Category: Job allocated to GPU partition.
e Tag name: job_ partition TEST
Category: Job allocated to TEST partition.
e Tag name: job partition GPUTEST
Category: Job allocated to GPUTEST partition.
e Tag name: job_partition EXCEPT TEST
Category: Job allocated to regular or high priority partition.
e Tag name: job priority HIGH
Category: Job allocated to partitions with a higher priority (queues regdprio, gpu_p,
dedicated6)

Matching partition specifics

36

Becrauk FOYpI'Y. Cepus «BbruuciaurenbHasi MareMaTnka u nHOpPMaTUKa»

D.A. Nikitenko, V.V. Voevodin, A.M. Teplov, S.A. Zhumatiy, Vad.V. Voevodin u ap.

e Tag name: job_accell GPU
Category: User application uses accelerators. Accelerator type: GPU.
e Tag name: job_accel GPU UNUSED
Category: Job is run on GPU partition, but never uses GPUs.
e Tag name: job disks UNUSED
Category: Job is run on HDD-equipped partition, but never uses local 1/0.
e Tag name: job disks TOO LOW
Category: Job is run on HDD-equipped partition, but I/O rate is very low.

1.3. Other categories

Beyond the tags that can be assigned automatically, it is possible to introduce manually-set
tags. This is useful when the criteria is cannot be automatically determined. There are now
different manual setting options available. First, most typical, selecting the one from known tags
lost or introducing new one with human-read and formal description. Second, is pushing some
tags like “higher system monitoring rate for the job” via the command line when submitting a
job.

This applies for instance to general job description characterizing type of data processing
as it is usually known a priori or determined in the course of job behavior study by
a specialist: job_behavior DATA MINING, job_ behavior MASTER-SLAVE, job_behavior
COMMUNICATION, job_behavior ITERATIVE, etc.

In the same manner typical anomalies encountered during analysis course can be specified:
job_bug DEADLOCK, job_bug DATA RACE;, etc.

It is very useful to specify if a widely used algorithm implementation or software package is
used. Just in case, this can provide a great contribution to scalability and algorithms-studying
projects, like AlgoWiki [13]: job_sw VASP, job_sw FIREFLY, job sw GROMACS, etc.

If detailed reports on job efficiency analysis or issues is available, or specific standard report
like JobDigest is available, it is useful to mark such a feature with another tag, for example:
job_analized, job_analized JobDigest.

2. Implementation

We keep to the basis of building a tool that might be deployed at any supercomputer center
with minimal efforts. We currently support Slurm [14], Cleo [15] resource managers and Ganglia
[16], Collectd [17], Clustrx [18], DiMMon [5] (most promising) monitoring systems.

As for integral job characteristics derivation and tagging, PostgreSQL is used as data storage
for coarsened system monitoring data and saved job information from resource managers. The
saved job info is processed by JavaScript, jQuery with jQuery UI [19] and Taglt [20].

The tag can be assigned to a job only if it is already declared in tag description table.
Such a table includes tag id, name, human-readable description, criteria (a specification of SQL
request for automatic processing), comments, and a flag of availability that can be set only by
administrator. Any user can suggest introducing a new tag, but it will be available only after
administrator approval. Information on new tag author is saved in the comments attribute, added
the user tag description suggestion and motivation.

All tags can be assigned in two ways: automatically and manually. Any tag set by mistake
or error can be manually removed from a job.

Automatic mode. In this mode, the tags are automatically assigned:

2016, T. 5, Ne 4 37

Supercomputer Application Integral Characteristics Analysis for the Whole Queued Job...

e to all finished jobs according to SQL-based criteria regarding saved integral job
characteristics data, information from resource manager and other available saved data;
e as a result of running a special script that processes whole saved job collection info.
In this mode a special attribute would indicate that the tag was set in package (automatic) mode
of tag assignment.
Manual mode. Manual tag assignment is usually done by user, project manager or
administrator in the following cases:
e as a result of certain job analysis (specifying algorithm implemented, etc.);
e as a result of specifying the tag via command line when submitting a job;
e any tag in a user-specific tag space (marking out important job runs as a part of the project,
etc.).
In this mode an attribute addressing tag author is set, that also allows finding jobs, marked as
a part of a certain project or by a certain user.
User-specific tag space consists of regular tags and custom user tags. Any manually assigned
tags by a user are seen only in the scope of the project and system administrators. The members
of other project see their own tag spaces and the general tag space is available for all of the users.

3. Use cases

Of course, real life use cases are very diverse. It this section we would like to share
our experience of every-day usage of the proposed technique as a part of the developed tool
approbation at Supercomputer Center of Moscow State University on a few examples just to
give a general idea of it.

3.1. Revealing jobs, users and projects that practice inappropriate resource
utilization

One of the problems of every-day practice of large-scale supercomputer center with a number
of heterogeneous resources and considerable number of users concurring for the resources is a
problem of inacceptable efficiency or inappropriate resource utilization. This is of a higher priority
for specific limited resources, like compute nodes equipped with specialized accelerators, local
disks, extra memory or other hardware and software that is critical for some applications and
at the same time these nodes can still be used by applications that do not need that specific
type of resources that the nodes possess. Such nodes usually have a high potential for resource-
demanding specific applications and for the large systems like “Lomonosov” are usually managed
as a separate partition with a special queuing options to allow submitting jobs to the appropriate
partition. This is vital for projects that perform computations only due to the advantages of such
partitions, so by queuing to the desired partition user get a guarantee that their application would
have all necessary resources at disposal.

Nevertheless, when analyzing the whole job collection for such partitions it appears that there
are numerous job runs that do not use any partition facilities benefits. Of course, sometimes
algorithm peculiarities can use resources with totally different intensity, but further analysis
usually shows that the majority of suspicious jobs never use any benefit of such partitions. The
reasons can be different, but usually it is a shorter wait time in a queue.

This can be seen on GPU partitions with user job runs that never use GPUs. A slightly
different situation is seen on HDD-equipped nodes with absent or extreme low disk usage rate

38 Becrauk FOYpI'Y. Cepus «BbruuciaurenbHasi MareMaTnka u nHOpPMaTUKa»

D.A. Nikitenko, V.V. Voevodin, A.M. Teplov, S.A. Zhumatiy, Vad.V. Voevodin u ap.

and finally, single-process application that don’t benefit from multiple CPU cores can be seen
almost on any partition regardless of hardware and software.

It is important to find the root cause of such applications behavior and as soon as the reason
is found and changes by user or administrator are applied, the ratio of such jobs can be lowered
that would immediately raise HPC system efficiency and overall throughput.

The most popular reasons are:

e Problems inside the application, program or algorithm. The user is sure that he needs

resources, but in practice application doesn’t utilize any or utilizes at extremely low rates.

e Problems of HPC system. The declared resources are not available on the nodes.

e Inappropriate job allocation. This can be both a mistake, and cheating for lower job waiting

time.
Regardless of real reason, these job runs lead to a higher wait time for the jobs that really need
specific resources.

The search for such jobs can be automated using integral job characteristics and some of
introduced tags.

For example, to filter the jobs allocated to GPU partition with no usage of accelerator one
can use tags job partition GPU and job accel GPU UNUSED at the same time. Next, one
can cut off jobs allocated to the test partition as of no interest. The rest jobs that are assigned
job_status COMPLETED tag probably do not need GPUs at all, as finished successfully with
no registered GPU usage. At this point two options are available whether it is a mistake (user
or system) or it was done by user intentionally, trying to reduce job wait time as wait time in
specific partitions is sometimes less than in regular.

A very similar situation is seen for HDD-equipped nodes. Jobs that are tagged with
job_partition HDDA4, job partition HDD®6, job disks UNUSED or job disks TOO LOW can
potentially be successfully executed at regular partitions. Note that there appears an option of
very low resource utilization. This means that disk operations might be easily replaced with
network file system operations with minimal additional overhead or even without it.

For those jobs that are tagged with job nodes SINGLE and avg LA SINGLE CORE or
avg LA LOW, it is quite reasonable to inquire what for it was submitted to the supercomputer.
Such jobs use a single node and a single core (or just few processes per node) and can potentially
run well on a desktop. Unfortunately such jobs are met very often.

Users who submit types of jobs mentioned above must be contacted to figure out the reasons
of the revealed facts of inappropriate and inefficient resource utilization. The problems found
should be resolved. If cheating is met or it is proved that the executed jobs do not really need
HPC resources, quotas for corresponding user accounts and projects can be reduced to the extent
of blocking.

Let us take a look at one of real-life examples. Figure 1 illustrates the filtered job list
allocated to regular partitions with automatically avg LA SINGLE CORE tag assigned. It is
clearly seen that the jobs have a low LoadAverage close to 1 as filtered by the tag, at the same
time having very low CPU _user. Note, that it is not a test partition and all jobs are run on a
single node, grabbing 8 cores on regular4 and hdd4 partitions!

A close look at the longest job owner that was cancelled by timeout illustrates that the user
always runs such single-node, even single-process jobs regardless of partitions (Figure 2).

2016, T. 5, Ne 4 39

Supercomputer Application Integral Characteristics Analysis for the Whole Queued Job...

auto_avg_LA_SINGLE_CORE x Add tags to filter the table

Lquery|
Short table Long table

id ¢ account

¢ tstart

2016-02-04
06:25:13

2016-02-03
05:54.57

2016-02-03
00:59:36
2016-02-02
22:01:55
2016-02-02
18:53:35
2016-02-02
16:58:39

2016-01-28
14:51:53

2016-01-31
02:07:46
2016-01-24
08:28:31

2016-01-23
09:14:31

2016-01-23
03:22:49

2016-01-24
13:02:31

2016-01-23
34:42

2016-01-23
09:14:31

2016-01-22
21:52:12

2016-01-23
00:16:42
2016-01-23
00:07:12

2016-01-22
13:03:29

2016-01-21
12:44:15

tstart ®
2016-02-01 11:38:57
2016-02-03 05:54:57
2016-01-28 14:51:53
2016-01-28 05:26:13
2016-01-28 05:26:13
2016-01-28 03:02:12
2016-01-28 02:58:55
2016-01-28 05:26:13
2016-01-28 14:51:53
2016-01-23 11:07:01
2016-01-23 11:07:01
2016-01-23 11:07:01
2016-01-23 09:14:31
2016-01-23 01:13:21
2016-01-23 09:14:31
2016-01-23 01:42:10
2016-01-23 09:14:31
2016-01-14 22:18:39
2016-01-14 10:33:03
2016-01-14 10:29:03
2016-01-14 10:27:03
2016-01-14 10:21:03
2016-01-14 10:19:03
2016-01-14 10:17:03
2016-01-14 10:35:03
2016-01-14 10:14:03
2016-01-11 10:36:07
2016-01-13 00:13:04

Fig.

¢ tend

2016-02-04
07:51:49

2016-02-03
07:58:22

2016-02-03
04:24:47
2016-02-02
22:22:17
2016-02-02
19:54:02
2016-02-02
17:33:38
2016-01-31
14:52:04
2016-01-31
05:33:30
2016-01-27
08:28:33
2016-01-25
05:
2016-01-24
18:48:44
2016-01-24

132852
2016-01-23
1
2016-01-23
09:46:39
2016-01-23
0252:32
2016-01-23
00:53:46
2016-01-23
00:49:11
2016-01-22
14:43:45
2016-01-21
15:25:46

tend
2016-02-04 11:40:05
2016-02-03 07:58:22
2016-01-31 14:52:04
2016-01-3105:26:26
2016-01-3105:26:26
2016-01-31 03:02:18
2016-01-3102:59:18
2016-01-29 14:47:57
2016-01-28 21:38:14
2016-01-26 11:07:01
2016-01-26 11:07:01
2016-01-26 11:07:01
2016-01-26 09:15:01
2016-01-26 01:13:31
2016-01-25 05:30:34
2016-01-24 19:09:57
2016-01-23 09:46:39
2016-01-17 22:18:58
2016-01-17 10:33:28
2016-01-17 10:29:28
2016-01-17 10:27:28
2016-01-17 10:21:28
2016-01-17 10:19:28
2016-01-17 10:17:28
2016-01-15 21:11:48
2016-01-14 12:55:14
2016-01-14 09:32:41
2016-01-14 09:32:40

state ®
COMPLETED

FAILED

COMPLETED

COMPLETED

TIMEOUT

FAILED

TIMEOUT

COMPLETED

COMPLETING

COMPLETED

COMPLETING

FAILED

COMPLETING

FAILED

TIMEOUT

COMPLETED

COMPLETED

TIMEOUT

FAILED

single node

CPU_user

«cores_houedl num_corell duratioh partitions il avg_cpu_u: avg_cpu_flops & avg_cpu_perf_I1d_repl
155 fs 8 | regulard - 183216.0
Y B 123 |regulard 28813500.0 | 1132060.0
PE B 205 |hdd4 30833.7
272 8 20 | reguiard 166478.0
8.06 8 60 |regulard 153599.0
466 8 34 |regulard 56315.4
57602 |8 reguiar4| 287333.0
27.43 Up to 3 days 177844.0
576.00 duration!!! 36771700.0 | 323722.0
w414 s 2656 | regulard 29631700.0 | 1163360.0
31546 |8 2365 | regulard - 6483.29
351 8 26 | hddd 2007430.0
A B 274 | regulard 863637
428 8 32 | regulard 22515000.0 | 1447870.0
w004 8 300 | regular4 - 1877160.0
494 8 37 |hddd 2285050.0
560 8 41 hdd4 2304560.0
1337 8 100 |regulard - 1941090.0
2154 8 161 regular4 1954350.0

1. Filtered single-process jobs

found in real job queue

single node

4 state ®

TIMEOUT
FAILED
TIMEOUT
TIMEOUT
TIMEOUT
TIMEOUT
TIMEOUT
COMPLETED
COMPLETED
COMPLETING
COMPLETING
COMPLETING
TIMEOUT
COMPLETING
COMPLETED
COMPLETED
FAILED
TIMEOUT
TIMEOUT
TIMEOUT
TIMEOUT
TIMEOUT
TIMEOUT
TIMEOUT
CANCELLED
CANCELLED
FAILED
FAILED

CPU_user

cores_houre|
86423
16.46
576.02
86404
864.04
864.02
864.08
40035
5418
864.00
864.00
864.00
576.07
864.03
35414
49756
428
864.06
864.08
576.06
864.08
864.08
576.06
576.06
41535
3224
567.54

399.92

18580900.0 |617467.0
28813500.0 | 1132060.0
287333.0
1282790.0
642886.0

hdd6 16865000.0 ' 512477.0
hddé. 17714600.0 ' 596533.0
14801900.0 | 549469.0

[G1888I00N 1674760.0

11653100.0 ' 430194.0
12887500.0 | 464008.0
12865600.0 ' 490842.0
204065.0
556017.0
1163360.0
671697.0
1447870.0
729143.0
736184.0
1051800.0
725574.0
723350.0
903650.0
1019160.0
697625.0

15536600.0
29631700.0
17882200.0
22515000.0

28706300.0
194447000
19613900.0
26716300.0
28269100.0
19663500.0
19690100.0 ' 715612.0
22211700.0 |761182.0

8034250060 2756150

avg_cpu_flops$ avg_cpu_perf_i1d_repk

avg_lic miss ¢ avg_mem_load ¢ | avg_mem_store ¢ avg_ib_fcy.

37346000.0 | 22979700.0 -

118759.0
101059.0
1890.64
124506.0
96245.3
202209
327701
46266.7
876.039
110499.0
4096
539.793
420.936
83310.4
702457
3309.51
425329
5203.37

1676.62

30475200.0

37970300.0

37148900.0

36315500.0

8116410.0

19580800.0

25520100.0

29963900.0

114895000.0

51266300.0

39045500.0

33935100.0

49070900.0

42122700.0

42744700.0

50921000.0

49992900.0

In various

avg_ic_mise.
489284
101059.0
327701
111023.0
571244
39170.0
449371
36831.0
426.425
33646.2
407345
44162.1
23269.9
46465.0
110499.0
52291.5
83310.4
68086.3
69529.3
105584.0
647345
65947 4
85406.0
96569.8
651446
64964.6
765571
25363.3

avg_mem_joad ¢
19568700.0
30475200.0
8116410.0
36844200.0
18246300.0
17881700.0
17912600.0
16487800.0
44143200.0
12861800.0
13325100.0
13322300.0
5665850.0
15998200.0
29963900.0
19600100.0
33935100.0
20612200.0
20302000.0
29685900.0
19696400.0
20077000.0
29256300.0
29877400.0
20068600.0
19935300.0
21713200.0
7120080.0

2. Filtered single-process jobs found in real job queue in various

13338400.0

23214700.0

22867400.0

22835900.0

4075520.0

12530700.0

5824880.0

12936200.0

25839200.0

32041400.0

6020430.0

16352300.0

30596800.0

24885900.0

25238900.0

31777900.0

31221100.0

LoadAvg

date

1719400.0 | 4526380.0

2798470.0

54673600.0

5926180.0
46279200.

2207980.0

2071330.0

54200400.0

3537700.0

regular partitions

8900490.0
13338400.0
4075520.0
16344900.0
8096580.0
8301980.0
8211870.0
7705300.0
27594000.0
5889370.0
5830350.0
5808760.0
2800020.0
7040100.0
12936200.0
8959310.0
16352300.0
9038480.0
8827940.0
12895800.0
8532810.0
8794960.0
13303000.0
13262000.0
8652860.0
8568990.0
9393860.0
3047080.0

LoadAvg

5365910.0
4987560.0
4735980.0
4514320.0

[503185 0 37525100
14762230 39305800
J4718030] 39756100
18349810 20954400

152708600 47717400
15563840 59261800
160022 62913900

morat

[5862190] 55574700
156828900 50832500
[610846°] 55438900
{06108 53984900
162255200 55696000
1646267 55275900
[BOT9BTNN 47257800
16551981 55726400
[518680 51591800
1846424 35351600
o798

1847890.0

regular partitions

3.2. Finding jobs with high Flops intensity and high efficiency

Apart from finding problem cases, there is a task of finding well-optimized jobs that utilize

HPC resources with high efficiency. These jobs owners are usually experienced users with high

qualification in parallel programming and fine tuning of software that secures highly efficient

supercomputer load. The contact with such users is very important first and foremost to learn

the techniques used and share them with novice users, contributing to FAQ/wiki sections of

helpdesk and so on. The experienced users are very likely to be invited to give public lectures,

make reports on seminars and join other educational activities.

As a rule, most of jobs with high floating point intensity are tagged with avg Flops HIGH,

avg_ CPU_user HIGIH tags and most efficient apps in terms of memory utilization are tagged

40

Becrauk FOYpI'Y. Cepus «BbruuciaurenbHasi MareMaTnka u nHOpPMaTUKa»

D.A. Nikitenko, V.V. Voevodin, A.M. Teplov, S.A. Zhumatiy, Vad.V. Voevodin u ap.

avg cache L1/L3 HIGH. Filtered by these criteria jobs are usually having good data locality,
they are well-balanced and show high performance.

The deeper analysis of such jobs allows revealing optimal command line and compiler options
for the variety of categories of standard applications and algorithm implementations. Once such
a job is approved to be a well-optimized typical example of a SW package usage or algorithm
implemented, a proper tag, corresponding to such a category can be set (like job _sw VASP). This
provides means for the comparative analysis of similar jobs. This can also serve as a good basis
for the more detailed analysis of the whole job collection and revealing inefficient applications
and users that use resources inefficiently.

3.3. Finding applications with special need for large amounts of memory

Many users of supercomputer complex run applications that are resource-demanding
regarding amount of available memory per process. Such applications are usually effective enough,
but are often scaled down in different ways to fit available memory, for example, reducing number
of MPI processes per node and so on.

Such applications are usually run on a considerable number of nodes and LoadAvg values
are below the number of CPU cores per node. These jobs are usually tagged with avg memload
HIGH, and related to node and core usage tags avg LA SINGLE CORE, job nnodes FEW or
job_nnodes MANY.

If such a job is found in the 6-cored CPU "Regular 6” partition (tagged with job partition
REGULARSG), even changing allocation to the "Regular 4” partition can be an optimization
choice leading to reducing the number of idle CPU cores per node by 4 cores (2*6-2%4).

Some of such applications can also benefit from moving to hybrid MPI+OpemMP or
MPI+Cilk models. If such a model cannot be applied, some of the applications can be reallocated
to SMP partition with much larger amounts of memory available.

3.4. Revealing categories of issues and inefficient behavior

The accumulation of statistics and knowledge on the problems of parallel applications is
one of the most important components of the HPC center job collection analysis. The ability to
add tags to the analyzed jobs related to the implementation issues found is a useful feature for
this purpose as well as tags corresponding to non-efficient use of computing resources, hardware
problems or other features found in course of job execution characteristics analysis.

When analyzing inefficient, abnormal application behavior of a single run or of a sequence of
jobs, based on the certain software package, it is often needed to contact the user, the application
owner who can provide additional information on the program details: algorithm implementation
used, program architecture and structure, computing model and so on up to dependencies on
input data and command line options. All this information should be recorded to aid further
analysis of similar applications and categories.

If any application run is being analyzed it is useful to mark and tag the used system software
details. This is true first of all regarding the math libraries used, compiler and compiler options,
MPI type, etc. This provides the basis for the comparative analysis of similar jobs or sequences
of jobs. If differences in behavior are found, one can continue deep study on the reason origin:
user application reaction, system software configuration, etc.

All widely-met issues like data race, deadlocks and so forth can be marked by special tags
(job_bug DATA RACE, job_bug DEADLOCK, etc.). This can help in further analysis of other

2016, T. 5, Ne 4 41

Supercomputer Application Integral Characteristics Analysis for the Whole Queued Job...

jobs. One can compare strange program behavior to the analyzed profiles marked as having
specific issues. Once a similar behavior is found, it can be a key to resolving the problems of the
originally analyzed job.

Conclusion and future work

Close-future plans include implementation of the Octoshell [7, 8] module for full project-
oriented workflow support and authentication, thus securing accessibility of the proposed service
for any user. We expect it ready by the middle of 2016. By that time we also plan to extend
supported tag set and adjust criteria for existing tags if needed.

To sum up, a user-friendly, useful and effective technique for filtration, grouping and
further analysis of the whole queued job collection of large-scale HPC systems based on system
monitoring and resource manager data is proposed and implemented. The developed tool is
evaluated in the every-day practice of the Supercomputer Center of Lomonosov Moscow State
University, providing means for effective analysis for any and every user application run. The
priceless collection of information on all finished jobs is already being enriched in a 24/7 mode

for several month.

The work was funded in part by the Russian Foundation for Basic Research (grants
M16-07-00972A, Ne13-07-007864), Russian Presidential study grant (SP-1981.2016.5), and by
the Ministry of Education and Science of the Russian Federation, Agreement No. 14.607.21.0006
(unique identifier REMEFI60714X0006).

References

1. Top50 Supercomputers of Russia and CIS. Available at: http://top50.supercomputers.ru/
(accessed 15.02.2016).

2. Top500 Supercomputer Sites. Available at: http://top500.org/ (accessed:15.02.2016).
3. Antonov A., Zhumatiy S., Nikitenko D., Stefanov K., Teplov A., Shvets P. Analysis of

Dynamic Characteristics of Job Stream on Supercomputer System Numerical Methods and
Programming. 2013. vol. 14, no. 2. pp. 104-108.

4. Safonov A., Kostenetskiy P., Borodulin K., Melekhin F. A Monitoring System for
Supercomputers of SUSU. Russian Supercomputing Days International Conference, Moscow,
Russian Federation, 28-29 September, 2015, Proceedings. CEUR Workshop Proceedings, 2015.
vol. 1482. pp. 662-666.

5. Stefanov K. et al. Dynamically Reconfigurable Distributed Modular Monitoring System
for Supercomputers (DiMMon). Procedia Computer Science / Elsevier B.V.. 2015. vol. 66.
pp. 625-634. DOL: 10.1016/].procs.2015.11.071.

6. Nikitenko D. Complex Approach to Performance Analysis of Supercomputer Systems Based
on System Monitoring Data. Numerical Methods and Programming. 2014. vol. 15. pp. 85-97.

7. Voevodin V., Zhumatiy S., Nikitenko D. Octoshell: Large Supercomputer Complex
Administration System. Russian Supercomputing Days International Conference, Moscow,
Russian Federation, 28-29 September, 2015, Proceedings. CEUR Workshop Proceedings, 2015.
vol. 1482. pp. 69-83.

8. Nikitenko D., Voevodin V., Zhumatiy S. Resolving Frontier Problems of Mastering Large-Scale
Supercomputer Complexes. Proceedings of the ACM International Conference on Computing

42 Becrauk FOYpI'Y. Cepus «BbruuciaurenbHasi MareMaTnka u nHOpPMaTUKa»

D.A. Nikitenko, V.V. Voevodin, A.M. Teplov, S.A. Zhumatiy, Vad.V. Voevodin u ap.

Frontiers (CF’16), Como, Italy, 16-18 May, 2016. ACM New York, NY, USA, 2016. pp. 349—
352. DOI: 10.1145/2903150.2903481.

9. Voevodin V1., Antonov A., Bryzgalov P., Nikitenko D., Zhumatiy S., Sobolev S., Stefanov K.,
Voevodin Vad. Practice of "Lomonosov” Supercomputer. Open Systems. 2012. no. 7. pp. 36—39.

10. Zhumatiy S., Nikitenko D. Approach to Flexible Supercomputers Management. International
Supercomputing Conference Scientific Services & Internet: All Parallelism Edges,
Noworossiysk, Russian Federation, 23-28 September, 2018, Proceedings. MSU, 2013. pp. 296—
300.

11. Voevodin VI. Supercomputer Situational Screen. Open Systems. 2014. no. 3. pp. 36-39.

12. Shvets P. , Antonov A., Nikitenko D., Sobolev S., Stefanov K., Voevodin Vad., Voevodin V.,
Zhumatiy S. An Approach for Ensuring Reliable Functioning of a Supercomputer Based on a
Formal Model. Parallel Processing and Applied Mathematics. 11th International Conference,
PPAM 2015, Krakow, Poland, September 6-9, 2015. Springer International Publishing.
vol. 9573. pp. 12-22. DOI: 10.1007/978-3-319-32149-3 2.

13. Voevodin V., Antonov A., Dongarra J. AlgoWiki: an Open Encyclopedia of Parallel
Algorithmic Features. Supercomputing Frontiers and Innovations. 2015. vol. 2, no. 1. pp. 4-18.
DOI: 10.14529/jsti150101.

14. SLURM Workload Manager. Available at: http://slurm.schedmd.com/ (accessed:
15.02.2016).

15. Cleo Cluster Batch System. Available at: http://sourceforge.net/projects/cleo-bs/ (accessed:
15.02.2016).

16. Ganglia ~ Monitoring System. Available at: http://ganglia.sourceforge.net/
(accessed:15.02.2016).

17. Collectd — The System Statistics Collection Daemon. Available at: https://collectd.org/
(accessed: 15.02.2016).

18. Clustrx. Available at: http://www.t-platforms.ru/products/software/clustrxproductfamily /
clustrxwatch.html (accessed: 15.02.2016).

19. jQuery & jQuery UL Available at: http://jqueryui.com/ (accessed: 15.02.2016).
20. Taglt. Available at: http://aehlke.github.io/tag-it/ (accessed 15.02.2016).

2016, T. 5, Ne 4 43

Supercomputer Application Integral Characteristics Analysis for the Whole Queued Job...
YIAK 004.457, 004.382.2 DOI: 10.14529/cm59160403

NCCJIEAOBAHUWUE MHTEI'PAJIBHBIX
XAPAKTEPUCTUK CYIIEPKOMIIBIOTEPHBIX
I[IPUJIOXKEHNI J1J1d BCEI'O IIOTOKA 3AJIAY

BOJIBIHINX BBIYNCJ/IUTEJIbHBIX CUCTEM

(© 2016 r. /I.A. Hukurenko, B.B. Boesonuu, A.M. Tensos, C.A. XKymaruii,
Ban.B. Boesogun, K.C. Credanos, II.A. ITlBen

Mocxkoscruitl 2ocydapemeennoit yrusepcumem umeny, M.B. Jlomonocosa
(119991 Mockea, ya. Jlenunckue Topw, 0. 1)

E-mail: dan@parallel.ru, alex-teplov@yandex.ru, serg@parallel.ru, vadim@parallel.ru,

cstef@parallel.ru, shvets.pavel.srcc@gmail.com
[Hocrynuia B pepakiuio: 11.04.2016

DddexTuBHOCTD PAbOTHI CYyIEPKOMIIBIOTEPHBIX CHCTEM 3aBUCUT OT MHOXKecTBa (haxTopos. B ycimoBusax om-
HOBPEMEHHON paboThl MHOXKECTBA IOJIb30BaTENel 0CO0YI0 POJIb UIPAET KOHTPOJIb KCIIOJIb30BAHUS BbIIEJIEHHBIX
JJIsT pacYeTOB pecypcoB. BaskHO, 4TOOBI B pACIOPSKEHUY TIOIh30BaTe /el OblIa moapobHas nH(GOPMAIUs O CBO-
CTBaX BBIIIOJIHEHHDBIX 3a/Ja4. B YyCJ/10BUAX I‘pyHHOBOﬁ pa6OTbI Ha/ IPUKJIAJIHBIMU 3aJa9aMi JOIIOTHUTE/IbHO CTOUT
BBIJIEJINTH HEOOXOIMMOCTb KOHTPOJISI MCIIOJIb30BAHNS PECYPCOB yYaCTHHKAMU IIPOEKTA pyKoBomuresaeM pabor. K
COYKAJIEHUIO, TaKWe CBEIEHWsl cefiuac KaK MPaBMUJIO He JOCTYIHBL. DTOT TMPo6Ges MpU3BaH BOCIOJJHUTEH pa3pabo-
TAHHDBII AaBTOPpaMu II0AXO0[K IIOJIyY€HHUIO M HUCCJAEA0BAHUIO MHTEI'PDAJIBHBIX XAaPAaKTEPUCTUK CYIIEPKOMIIBIOTEPHBIX
HpI/I.]'IO)KeHI/II./i 14 BCEro IIOTOKa 3ada4 6OJ'IBHII/IX CYIIEPKOMIIbIOTEPHBIX CUCTEM. B OCHOBE€ II0aXO0Jda JIE?KUT HCIIOJIb-
30BaHU€ JaHHBIX CUCTEMHOI'O MOHUTOPWHIA, TIOCTPOEHNE MHTETPAJIBHBIX XaPaKTEPUCTUK OTAEC/IBHBIX 3aITyCKOB IJId
BCEro MHO2K€CTBa BBIIIOJIHEHHDbIX 3a/a', JAe/JICHUE UX Ha KJ/IaCCbl, BblABJICHHUE 0CO6€HHOCTeﬁ 3allyCKOB.

Karouesvie caosa: cynepromnvlomep, sPPexmuerocms, CUuCmemusili MOHUMOPUHE, KAGCCH, 3a0aM, UHMeE-
2PANLHBLE TAPAKMEPUCTIUKY 3a0aY%, NOMOK 340044, KOHMPOAL UCTLOABI0BAHUA Gbl-YUCAUTIEADHHT DECYPCOG.

OBPA3EIL INTUPOBAHNA

Nikitenko D.A., Voevodin V.V., Teplov A.M. Zhumatiy S.A., Voevodin Vad.V.,
Stefanov K.S., Shvets P.A. Supercomputer Application Integral Characteristics Analysis for the
Whole Queued Job Collection of Large-Scale HPC Systems // Becrauk FOYpI'Y. Cepusi: Borauc-
JmuTeabHas MaTemaTuka u nadopmarnka. 2016. T. 5, Ne 4. C. 32-45. DOL: 10.14529/cmse160403.

JIureparypa

1. Top50 Supercomputers of Russia and CIS. URL: http://top50.supercomputers.ru/ (mara 06-
parmienus: 15.02.2016).

2. Top500 Supercomputer sites. URL: http://top500.org/ (nara obparmenus: 15.02.2016).

3. Antonov A., Zhumatiy S., Nikitenko D., Stefanov K., Teplov A., Shvets P. Analysis of dynamic
characteristics of job stream on supercomputer system Numerical Methods and Programming,
2013. Vol. 14, No. 2. P. 104-108.

4. Safonov A., Kostenetskiy P., Borodulin K., Melekhin F. A monitoring system for
supercomputers of SUSU // Russian Supercomputing Days International Conference, Moscow,
Russian Federation, 28-29 September, 2015, Proceedings. CEUR, Workshop Proceedings, 2015.
Vol. 1482. P. 662-666.

44 Becrauk FOYpI'Y. Cepus «BbruuciaurenbHasi MareMaTnka u nHOpPMaTUKa»

D.A. Nikitenko, V.V. Voevodin, A.M. Teplov, S.A. Zhumatiy, Vad.V. Voevodin u ap.

5. Stefanov K. et al. Dynamically Reconfigurable Distributed Modular Monitoring System for
Supercomputers (DiMMon) // Procedia Computer Science / Elsevier B.V., 2015. Vol. 66.
P. 625-634.

6. Nikitenko D. Complex approach to performance analysis of supercomputer systems based on
system monitoring data // Numerical Methods and Programming, 2014. Vol. 15. P. 85-97.

7. Voevodin V., Zhumatiy S., Nikitenko D. Octoshell: Large Supercomputer Complex
Administration System // Russian Supercomputing Days International Conference, Moscow,
Russian Federation, 28-29 September, 2015, Proceedings. CEUR, Workshop Proceedings, 2015.
Vol. 1482. P. 69-83.

8. Nikitenko D., Voevodin V., Zhumatiy S. Resolving frontier problems of mastering large-scale
supercomputer complexes // Proceedings of the ACM International Conference on Computing
Frontiers (CF’16), Como, Italy, 16-18 May, 2016. ACM New York, NY, USA, 2016. P. 349-352.

9. Voevodin V1., Antonov A., Bryzgalov P., Nikitenko D., Zhumatiy S., Sobolev S., Stefanov
K., Voevodin Vad. Practice of "Lomonosov” Supercomputer // Open systems, 2012. No. 7.
P. 36-39.

10. Zhumatiy S., Nikitenko D. Approach to flexible supercomputers management //
International supercomputing conference Scientific Services & Internet: all parallelism edges,
Novorossiysk, Russian Federation, 23-28 September, 2013, Proceedings. MSU, 2013. P. 296—
300.

11. Voevodin V1. Supercomputer situational screen // Open systems, 2014. No. 3. P. 36-39.

12. Shvets P. , Antonov A., Nikitenko D., Sobolev S., Stefanov K., Voevodin Vad., Voevodin
V., Zhumatiy S. An Approach for Ensuring Reliable Functioning of a Supercomputer Based
on a Formal Model // Parallel Processing and Applied Mathematics. 11th International
Conference, PPAM 2015, Krakow, Poland, September 6-9, 2015. Springer International
Publishing. Vol. 9573. P. 12-22.

13. Voevodin V., Antonov A., Dongarra J. AlgoWiki: an Open Encyclopedia of Parallel
Algorithmic Features // Supercomputing Frontiers and Innovations, 2015. Vol. 2, No.1. P. 4—
18.

14. SLURM workload manager. URL: http://slurm.schedmd.com/ (gara obpaiienus:
15.02.2016).

15. Cleo cluster batch system. URL: http://sourceforge.net/projects/cleo-bs/ (nara obpamenns:
15.02.2016).

16. Ganglia Monitoring System. URL: http://ganglia.sourceforge.net/ (mara obpaiienust:
15.02.2016).

17. Collectd — The system statistics collection daemon. URL: https://collectd.org/ (mara obpa-
mennst: 15.02.2016).

18. Clustrx. ~ URL: http://www.t-platforms.ru/products/software/clustrxproductfamily/
clustrxwatch.html (nara obparenns: 15.02.2016).

19. jQuery & jQuery UL URL: http://jqueryui.com/ (mara obparienus: 15.02.2016).
20. Taglt. URL: http://aehlke.github.io/tag-it/ (mara obpamenns: 15.02.2016).

2016, T. 5, Ne 4 45

