
 DOI: 10.14529/cmse170105

HYBRID COMPUTER SYSTEM PROGRAMMING 

TECHNOLOGY WITH ADAPTATION AND SCALING 

OF CALCULATIONS* 
© 2017 г. A.A. Gulenok1, A.I. Dordopulo2, I.I. Levin2, V.A. Gudkov2 

1 
Academician A.V. Kalyaev SRI multiprocessor computer system 

at Southern Federal University (GSP-284, Chekhov st. 2, Taganrog, 347928, Russia), 
2 Scientific Research Centre of Supercomputers and Neurocomputers 

(Italyansky lane 106, Taganrog, 347900, Russia), 

E-mail: andrei_gulenok@mail.ru, scorpio@mvs.sfedu.ru, levin@superevm.ru,  

Slava_Gudkov@mail.ru 

Received: 20.10.2016 

 
The paper considers the programming technology for hybrid computer systems, which contain reconfigurable 

and microprocessor computational nodes. The base of the programming technology for hybrid computer systems is 

the high-level programming language COLAMO with extensions, which allow descriptions of various types of par-

allel calculations such as structural, structural-procedural, multi-procedural and procedural forms of organization 

of calculations in a unified parallel-pipeline form. The suggested parallel-pipeline form allows modifications of forms 

of organization of calculations. Such modifications are performed automatically by the COLAMO language prepro-

cessor, which takes into account current configuration of the hybrid computer system. Owing to the suggested 

technology, the program can be automatically adapted to the changed architecture or configuration of the hybrid 

computer system without any modifications of the source code made by the developer. Specially for this the source 

parallel program, developed in the programming language COLAMO, is transformed by the pre-processor into the 

canonical form. Then the pre-processor estimates the available computational resource, detects effective parameters 

of implementation of the program on the available resource and, if necessary, reduces the program performance to 

adapt it to the current configuration of the hybrid computer system. The technology provides two-way scaling: for 

increasing of the available computational resource (induction), and for reducing of the available computational 

resource (reduction), which provides resource independence of programming during implementation of the program, 

i.e. the developer is not “bound” to the available hardware resource of the computer system. 

Keywords: performance reduction, high-level programming language, programming of hybrid computer systems, 

application adaptation, application scaling. 

 

FOR CITATION 

Gulenok A.A., Dordopulo A.I., Levin I.I., Gudkov V.A. Hybrid computer system program-

ming technology with adaptation and scaling of calculations. Bulletin of the South Ural State 

University. Series: Computational Mathematics and Software Engineering. 2017. vol. 6, no. 1. 

pp. 73‒86. DOI: 10.14529/cmse170105. 

Introduction 

The majority of real-world problems require combination of both sequential and parallel 

computational fragments within a single computational space for effective implementation of 

structural and procedural [1] fragments of calculations. Many developers consider design of 

computer systems with hybrid organization of calculations as a solution of this problem. Such 

computer systems can contain computational nodes with different architectures, united by data 

                                        
*
 The paper is recommended for publication by the Program Committee of the International 

Scientific Conference “Parallel computational technologies (PCT) 2017”. 

Информатика, вычислительная техника и управление

2017, т. 6, № 1 73



transfer channels, and allow implementation of structural and procedural calculations within a 

single computational space. Symbiosis of nodes with different architecture in one computer 

system theoretically allows the growth of the computer system real performance owing to the 

opportunity of effective implementation of both structural and procedural fragments of calcu-

lations in the nodes with different architecture. 

Wide application of such computer systems for solving real-world problems is considerably 

limited by high complexity of their programming, as the effective use of architectural ad-

vantages of all computational nodes requires not only deep knowledge of various programming 

languages and development environments for designing computational nodes of various types, 

but also skills of independent synchronization of calculations within a single space. 

The paper is organized as follows. In Section 1 we describe the main reasons that have lead 

us to development of the hybrid computer systems programming technology. Section 2 de-

scribes the single parallel-pipeline form of COLAMO-applications developed for HCS, that 

allows modifications of organization of calculations. In Section 3 we describe performance re-

duction methods as the base for two-way scaling of calculations in hybrid computer systems. 

Section 4 describes implementation of the suggested programming technology as mapping of 

parallel applications on the hardware resource of the hybrid computer system. In conclusion 

we summarize the main theoretical and experimental results of the developed hybrid computer 

systems programming technology. 

1. Programming of hybrid computer systems 

A hybrid computer system (HCS) contains computational nodes with different archi-tec-

ture and organization of calculations. Such hybrid computer systems can contain reconfigurable 

computational nodes and nodes of general-purpose microprocessors, such as general-purpose 

processors, graphic processors or accelerators Intel Xeon Phi [2]. Nowadays, in order to program 

such computer systems (CS) we traditionally use programming technologies of heterogeneous 

computer systems, such as CUDA [3], OpenACC, OpenCL [4], etc., which are based on exten-

sions of the programming languages C, С++, FORTRAN and which take into account the 

architecture of special-purpose microprocessor node. These programming technologies have 

considerable disadvantages such as poor portability of end solutions between CSs with different 

architectures and configurations, and poor scalability of applications. 

The main reason of these disadvantages is the HCS programming approach, which involves 

task decomposition in separate fragments. Each fragment is implemented in a separate com-

putational node (on a separate device) of the hybrid computer system. So, each occupied CS 

node is programmed independently, and as a result, each modification of the CS configuration 

or of the initial application code requires re-decomposition of the task and development of local 

applications for each node of the CS. 

It is possible to formulate principal programming problems of modern HCS which contain 

reconfigurable and microprocessor computational nodes: 

1) FPGAs and microprocessors are programmed in different programming languages and in-

dependently of each other. 

2) The application is developed specially for the current HCS configuration, and each modi-

fication of the system structure requires modification of the application code. 

3) The developer is responsible for synchronization of the data flows within the task structure. 

Hybrid computer system programming technology with adaptation and scaling...

74 Вестник ЮУрГУ. Серия «Вычислительная математика и информатика»



4) Porting of the application to another system with similar configuration leads to complete 

re-development of the application. 

5) The programming and debugging time required for development of the HCS application is 

about 6–12 months. 

That is why HCS programming requires tools for description of various kinds of organiza-

tion of calculations (a single language for various architectures) and tools for translation of 

parallel applications, united into the technology of resource independent HCS programming. 

From our point of view, the technology of resource independent HCS programming is a com-

bination of knowledge, methods, technological approaches and tools, which provides flexible 

modification and scaling of the application according to a new computational architecture or 

configuration of the computer system. 

In order to provide functioning of general-purpose processor and reconfigurable computa-

tional nodes in a single space, we need a new technology of resource independent HCS pro-

gramming [5], based on the following principles: 

­ adaptation of the application to the current HCS configuration is performed automatically 

by a specialized software tool – a pre-processor based on performance reduction meth-

ods [5]; 

­ effective parameters of scaling and performance reduction must be determined without 

any participation of the developer, only by computer-aided programming tools; 

­ for computer-aided transformation to the current HCS configuration, the application must 

be represented in a canonical form (a single parallel-pipeline form). 

Transformation of the application into the single parallel-pipeline form makes it possible 

to increase the task parallelism (induction) if hardware resource is growing, and to reduce 

(reduction) if hardware resource is decreasing, is the base for application of computer-aided 

tools. To implement the technology of resource independent HCS programming we must choose 

a programming language, which allows description of various forms of organization of calcula-

tions and programming of general-purpose processor and reconfigurable computational nodes 

in a single computational space. 

Specialized high-level languages [6, 7] for reconfigurable computer system (RCS) [8] pro-

gramming have C-like syntax, which is usual for the majority of PC developers, and differ from 

each other by semantic features of call and use of operators [1]. To describe parallel processes 

in RCS, these languages use a C-language paradigm which is initially sequential. Semantic of 

the C-language is oriented to interaction of sequential processes, and it does not allow the use 

of all abilities of RCS during development of parallel applications in these languages. This leads 

to a semantic gap between the initial information graph of the task, its description in the high-

level language and its circuit solution generated by the translator. The result of this gap is a 

considerable decrease in effectiveness of the parallel application – as a rule, the performance is 

in 3‒5 times lower in comparison with applications developed with the use of HDL-languages. 

A promising direction for RCS programming is a high-level language COLAMO [1, 5], 

developed in Scientific Research Institute of Multiprocessor Computer Systems (SRI MCS SFU, 

Taganrog, Russia). The language COLAMO is used for description of parallel algorithms and 

generation of special-purpose computing structures within RCS architecture according to the 

principles of structural-procedural organization of calculations. Each special-purpose compu-

ting structure sequentially performs structurally (hardwarily) implemented fragments of the 

task information graph. Each graph is a computational pipeline of an instruction flow. So, the 

A.A. Gulenok, A.I. Dordopulo, I.I. Levin, V.A. Gudkov

2017, т. 6, № 1 75



RCS application (the RCS task) consists of a structural component, presented as a set of 

hardwarily implemented fragments of calculations, and of a procedural component – one and 

the same control program for all structural fragments, which provides sequential change of 

computing structures and organizes data flows. 

In order to implement calculations in general-purpose processors, the language COLAMO 

contains instructions for description of procedural organization of calculations and provides 

fast transition from procedural implementation of calculations in general-purpose processors to 

structural organization of calculations on reconfigurable computational nodes. A structure Im-

plicit is used for implicit declaration of organization of calculations (structural or procedural) 

for the application fragment. Re-declaration of implementation of the structure Implicit allows 

the developer to use procedural organization of calculations instead of structural one, and vice-

versa without any considerable modification of the parallel program. Owing to this, the devel-

oper can create a single application using one and the same programming language for all HCS 

nodes. This allows the high-level programming language COLAMO to be considered as a base 

for the technology of resource independent programming for both reconfigurable computational 

nodes and general-purpose nodes of the HCS. 

However, for effective HCS programming it is necessary to have language tools which allow 

description of fragments of calculations, which use different frequencies, data delay ratio and 

digital capacity of processed data. Owing to this, it is possible to scale both fragments and 

single circuit cores in both cases – when hardware resource is increasing or decreasing, and, in 

addition, it is also possible to use data with variable capacity for effective use of HCS hardware 

resource.  

2. The single parallel-pipeline form of COLAMO-applications 

 developed for HCS 

Here and forth, the parallel-pipeline form for representation of variables and arrays is a 

description of data, made by means of the high-level programming language COLAMO, which 

provides both parallel and sequential access at the same time. In the language COLAMO such 

access types are declared by the keywords Vector (BitVector) and Stream (BitStream). Fig. 1 

shows an example of simultaneous use of parallel and sequential data and bit access types to 

the arrays A, B, and C. 

Such a form of applications is a canonical form; it allows automatic modification of the 

principal parameters of any parallel application such as the number of simultaneously imple-

mented computational subgraphs, the capacity of processed data, the number of operations, 

etc. Such modification can be performed by the pre-processor tool for adaptation of applications 

to the HCS without any participation of the developer. 

Transformation of the initial application into the canonical form is performed in two steps. 

In the first step variables and structures of the application are transformed for parallel-pipeline 

processing on data level, and in the second step – on bit level. 

In general, the method of application transformation into the canonical form can be rep-

resented as follows:  

1) All arrays in the initial COLAMO-application are transformed into the parallel-pipeline 

form. If it is necessary, Vector or Stream access types are added.  

2) All variables (except for loop counters) of the parallel COLAMO-application are trans-

formed into the format of the Union-structure, which provides both direct access to a 

Hybrid computer system programming technology with adaptation and scaling...

76 Вестник ЮУрГУ. Серия «Вычислительная математика и информатика»



variable according to its type, and parallel (bitvector) and sequential (bitstream) access 

types. 

3) All subcadrs of the parallel COLAMO-application are transformed into Implicit-structures. 

4) All structures and operators of the application are transformed according to the modified 

parameters of the variables. 

5) For the generated single parallel-pipeline form of the COLAMO-application, a global pre-

processor directive of performance reduction of functional blocks, which is equal to 1, is 

declared.  

 
Const N = 10; Const M = 100; 
Const Bv = 32; Const Bs = 1; 
Type Type32: Integer [BV: BitVector, BS:BitStream] of Int; 
Var a,b,c : Array Type32 [N : Vector, M:Stream] Mem; 
Var i, j, k, t : Number; 
Cadr ExpParallelStream; 
   For i := 0 to N-1 do 
        For j := 0 to M-1 do 
           For k := 0 to Bv-1 do 
               For t := 0 to Bs-1 do 
                  Begin 
                      c[i,j][k,t] := a[i,j][k,t] – b[i,j][k,t]; 
                  End; 
EndCadr; 

Fig. 1. Concurrent use of parallel and pipeline types of access to data arrays and digits 

Variables are transformed to parallel and sequential access types (a mixed access type) 

according to the following rules: 

­ if we use only sequential access to array items, then the parameter Vector, which means 

parallel access, with the dimension of unity is added to the declaration of the array; 

­ if we use only parallel access to array items, then the parameter Stream, which means 

sequential access, with the dimension of unity is added to the declaration of the array; 

­ if we use mixed access to array items, then no transformations are performed for such 

array.  

So, when the declaration of any array is modified, its dimension is increased. For example, 

when we declare the array A as:  
 
Var A : Array Integer [N : Stream] Mem 

It is necessary to transform its declaration as follows:  
 
Var A : Array Integer [M : Vector, K : Stream] Mem,  

where M=1, K = N/M. To provide equivalency of the information graphs of the initial 

application and the modified one, the initial value of M is 1.  

Fig. 2 shows transformation of the initial application a) to the canonical form b). As we 

can see from the text of the parallel-pipeline application (see Fig. 2b), all linear arrays are 

transformed into two-dimensional arrays with mixed access type (M : Vector, K : Stream), a 

new loop operator with a loop counter VC_1 is added, and all references to the variables are 

modified. 

 

 

 

A.A. Gulenok, A.I. Dordopulo, I.I. Levin, V.A. Gudkov

2017, т. 6, № 1 77



Const N = 10; 
Var a, b, c, d : Array Integer [N: Vector]Mem; 
Var i : Number; 
Cadr ExpParallel; 
   For i := 0 to N-1 do 
     Begin 
        If(A[i]>5) 
           C[i] :=A[i]-B[i]; 
        Else 
           C[i] :=A[i]+D[i]; 
     end; 
EndCadr; 

а) The initial program 

 
Const N = 10; Const M = 10; Const K = N/M; 
Var a, b, c, d : Array Integer [M: Vector, K: Stream]Mem; 
Var i,vc_1 : Number; 
Cadr ExpParallelConvData; 
   For vc_1 := 0 to K-1 do 
     Begin 
        For i := 0 to M-1 do 
           Begin 
              If(A[i,vc_1]>5) 
                C[i,vc_1] :=A[i,vc_1] – B[i,vc_1]; 
              Else 
                C[i,vc_1] :=A[i,vc_1] + D[i,vc_1]; 
           end; 
     end; 
EndCadr; 

b) The transformed program 

Fig. 2. Transformation of the program to the canonical form on data level 

Effective adaptation of the application for HCS requires similar transformations for bits. 

3. Scaling of calculations in HCS on the base of performance 

 reduction 

The base for simple scaling and adaptation of the application in both cases – increasing 

and decreasing of available hardware resource – is reduction of the application performance [5], 

which means proportional performance reduction in all the fragments of the task information 

graph and possible reduction of hardware resources necessary for implementation of the com-

puting structure. Performance reduction of parallel applications allows variation of their key 

parameters (the number of used circuit cores, the number of memory channels, the operand 

capacity, the frequency, etc.), because structural implementation of the task can lead to a lack 

of available hardware resource. This is especially urgent if the task is ported between HCS with 

different architectures and configurations. In contrast to traditional technologies and methods 

of multiprocessor computer system programming (MPI, CUDA, OpenACC, etc.), in which the 

basic information subgraph of the task is parallelized depending on the configuration of avail-

able hardware resource, the HCS programming technology, in order to apply performance re-

duction, requires description of the information graph of the task represented in the initial 

parallel form with the maximum possible degree of parallelism. According to the number of 

Hybrid computer system programming technology with adaptation and scaling...

78 Вестник ЮУрГУ. Серия «Вычислительная математика и информатика»



available HCS computational nodes, the initial information graph is reduced by special reduc-

tion transformations, which in a balanced manner reduce performance of all fragments of the 

information graph and, in several cases, reduce HCS hardware resource used by the task. It is 

possible to single out four kinds of reduction: 

­ performance reduction according to circuit operations; 

­ performance reduction according to memory channels; 

­ performance reduction according to capacity; 

­ performance reduction according to frequency. 

 

Fig. 3. Principles of performance reduction according to circuit operations illustrated by the 

operation of fast Fourier transformation (a – the initial information graph of the FFT 

 operation, b – structural implementation of the FFT operation on RCS with conditional 

 filling of FPGAs) 

Performance reduction according to circuit operations is based on reducing the number of 

circuit blocks operating simultaneously and performing computing operations. The example of 

A.A. Gulenok, A.I. Dordopulo, I.I. Levin, V.A. Gudkov

2017, т. 6, № 1 79



the fast Fourier transformation (FFT), shown in Fig. 3 and Fig. 4, illustrates principles of 

performance reduction according to circuit operations. 

 

Fig. 4. Result of performance reduction according to circuit operations with the degree equal 

to 2 for the basic operation of the FFT (a – the information graph of the FFT reduced in 2 

times, b – structural implementation of the FFT on RCS with conditional filling of FPGAs) 

One of the most important types of reduction, which provide HCS resource independent 

programming, is performance reduction according to memory channels – an operation of con-

certed reduction of the number of concurrently used memory channels for some fragment of 

the task information graph. Fig. 5 and Fig. 6 illustrate principles of performance reduction 

according to memory channels. 

Fig. 5 shows a fragment of the initial information graph, which contains 4 input channels. 

Fig. 6 shows the result of performance reduction according to memory channels with the degree 

Hybrid computer system programming technology with adaptation and scaling...

80 Вестник ЮУрГУ. Серия «Вычислительная математика и информатика»



equal to 2. After performance reduction according to memory channels the number of concur-

rently performed circuit operations is not changed but the time of processing data flows in-

creases in 2 times. This decreases the performance of the fragment in 2 times. 

 

Fig. 5. An initial information graph of some reducible fragment 

The result of performance reduction according to capacity is not the reduced number of 

operations in a computing structure, but the reduced capacity of processing data owing to the 

use of operations with smaller capacity. This leads to increasing of the processing time and to 

decreasing of hardware burden for implementation of the computing structure. After perfor-

mance reduction according to capacity, data flows are controlled by a multiplexer, and data 

flows enter the computing structure with the data delay ratio equal to the degree of performed 

reduction.  

 

Fig. 6. Result of performance reduction according to memory channels with the degree equal 

to 2 (a – performance reduction according to memory channels with data placement in one 

channel for each circuit operation, b – performance reduction according to memory channels 

with data placement in different channels for each circuit operation). 

Performance reduction according to frequency is applied for increasing of the data flow 

processing time proportionally to the degree of reduction at the cost of multiple reduction of 

the fragment frequency. Here, the delay ratio of data, entering the computing structure, re-

mains constant. Performance reduction is an auxiliary reduction transformation, which cannot 

be used separately, and is only applied for matching processing rates between reduced and non-

reduced fragments of the information graph in the task structure. 

For practical use of the considered reduction transformations the developer must mark the 

fragments of the parallel application, written in the high-level programming language 

COLAMO, which can be reduced, by pre-processor directives. The directive of reduction can 

be declared as follows: 
#Reduction of <type of reduction> <degree of reduction>;  
        Block of operators 
EndReduction; 

A.A. Gulenok, A.I. Dordopulo, I.I. Levin, V.A. Gudkov

2017, т. 6, № 1 81



During translation of the parallel application the pre-processor automatically transforms 

the information graph of the application to the available HCS configuration according to the 

reduction directives placed by the developer. This provides adaptation of the application to 

the current HCS configuration without considerable modification of the initial program code. 

In conclusion of analysis of the transformations, we can describe functioning of the tech-

nology of resource independent programming of hybrid computer systems, which contain re-

configurable and microprocessor computational nodes, as follows. The pre-processor unit of the 

language COLAMO, which performs analysis of the source parallel application, transforms it 

into the canonical form, determines hardware resource required for its implementation and 

compares it with the current HCS configuration. Then it determines the maximum reduction 

degree and types of all required transformations. If the current HCS hardware resource is 

sufficient for implementation of the application, then bitstream files and loadable files are 

generated for all HCS nodes involved into implementation of the task. Otherwise special re-

duction transformations are performed. They reduce the application performance and the in-

volved HCS hardware resource in a balanced manner. Performance reduction is performed as 

follows: reduction according to simultaneously performed subgraphs of the application, reduc-

tion according to capacity, reduction according to instructions (cores), reduction according to 

data delay ratio (clock rate). The analysis unit of the pre-processor reduces the involved hard-

ware resource for each type of reduction, taking into account its theoretically permissible de-

gree. It determines the most reasonable use of reduction which can provide the maximum 

possible performance of the application for the current HCS configuration. The text of the 

reduced parallel application, generated by the pre-processor in an automatic mode, is passed 

to the translator of the programming language COLAMO, which generates a detailed infor-

mation graph of the application. The information graph of the application, which contains 

fragments structurally implemented in reconfigurable computational nodes and procedurally 

implemented in microprocessor computational nodes, is passed to a synthesizer tool, which 

automatically distributes the fragments among reconfigurable and microprocessor computa-

tional nodes available in the current HCS configuration. 

4. Mapping of parallel applications on HCS hardware 

 resource 

The problem of distribution of parallel application fragments on hardware resource of a 

multiprocessor HCS is in automatic decomposition of computational structure of the parallel 

application, described by the information graph, into disjoint fragments, and in distribution of 

these fragments into separate computational nodes of the HSC, such as reconfigurable compu-

tational nodes and microprocessor computational nodes). Besides, the fragments placed in re-

configurable computational nodes are decomposed into smaller fragments, each of which is 

implemented in a separate FPGA chip.  

All blocks of the computational structure of the parallel application can be divided into 

two groups. The first group contains hardwarily implemented blocks, which must be mapped 

into reconfigurable computational nodes. The second group contains blocks, which correspond 

to the Implicit structures. Each block has its own C++ or C# procedure. The blocks from the 

second group are placed into HCS microprocessor computational nodes. 

Automatic mapping of the computational structure of the parallel application on HCS 

hardware resource consists of three steps. The first step is decomposition of the computational 

Hybrid computer system programming technology with adaptation and scaling...

82 Вестник ЮУрГУ. Серия «Вычислительная математика и информатика»



structure of the parallel application into disjoint fragments, which must be placed in the nodes 

of the multiprocessor HCS. Only one block is placed in each microprocessor node of the com-

putational structure, because in one node it is possible to run only one sequential subroutine 

with intensive data exchange with other microprocessor and reconfigurable nodes. Fragments 

of parallel applications, which contain hardwarily implemented blocks, are placed into recon-

figurable computational nodes. In this case, the total hardware resource occupied by the blocks 

of one fragment must not exceed the total hardware resource of FPGA chips of one reconfigu-

rable computational node. 

The second step of the algorithm of application synthesis is distribution of the fragments, 

which are placed in reconfigurable computational nodes, into separate FPGA chips of these 

nodes. 

The third and the last step of the algorithm of application synthesis is synchronization of 

external and internal data flows of the computational structure of the parallel application, and 

placement of interface units for matching data exchange between heterogeneous fragments of 

the computational structure. These interfaces match data exchange between procedural and 

pipeline computational nodes, between the nodes which are operating at different clock fre-

quencies, between the nodes which are operating at similar clock frequencies but connected to 

different clock generators (because of different phases and inaccuracy of clock generators), etc. 

After setting of all required interfaces and synchronization elements, the synthesizer tool 

generates bitstream files *.bit for reconfigurable nodes and loadable files *.exe for microproces-

sor nodes of the HCS, and generates a control program which controls computational process 

and is single for all HCS computational modules. 

Conclusion 

For effective programming of hybrid computer systems we suggest the high-level program-

ming language COLAMO as a part of the developed technology of resource-independent pro-

gramming. The language COLAMO allows description of various forms of organization of cal-

culations in one and the same computational space. The suggested single parallel-pipeline form 

of applications along with the developed performance reduction methods provide automatic 

adaptation of applications to the modified HCS architecture or configuration. Owing to the 

suggested technology we can reasonably use resources of nodes with different architectures 

during HCS programming, and we have a set of necessary tools for quick development of 

effective resource-independent scalable parallel applications in a single language space. It sim-

plifies HCS programming and speeds up development of parallel applications.  

We tested the developed HCS programming technology, using three test tasks from differ-

ent problem areas: digital signal processing, symbolic processing and monitoring of computer 

networks. 

The task of digital signal processing consists in processing of input data according to the 

direct fast Fourier transformation algorithm with frequency decimation. The task of symbolic 

processing consists in transformation of input data according to the algorithm of symmetric 

block encryption GOST 28147-89. In the third task we implement a procedure of patterns 

search in a data flow, which detects frequencies of all found patterns within one string and 

within the input data flow. 

For all three tasks we developed applications in the language COLAMO, and each appli-

cation was translated for different HCS architectures with different quantity of computational 

A.A. Gulenok, A.I. Dordopulo, I.I. Levin, V.A. Gudkov

2017, т. 6, № 1 83



nodes. Our research has proved effectiveness of the developed technology for adaptation of the 

parallel application to the used hardware resource in both cases – when resource is increasing 

and when the application is ported to the HCS with smaller hardware resource. 
 

The project has been funded in part by the scholarship of the President of the Russian 

Federation for young scientists and graduate students (SP-173.2016.5). 

References 

1. Kalyaev I.A., Levin I.I., Semernikov E.A., Shmoilov V.I. Reconfigurable multipipeline 

computing structures. New York, Nova Science Publishers, 2012. 330 р. 

2. Dong X., Chai J., Yang J., Wen M., Wu N., Cai X., Zhang C., Chen Z. Utilizing multiple 

xeon Phi coprocessors on one compute node. Lecture Notes in Computer Science, 2014, 

Vol. 8631, Issue PART 2, pp. 68–81. DOI:10.1007/978-3-319-11194-0_6 

3. Liang T.-Y., Li H.-F., Lin Y.-J., Chen B.-S. A Distributed PTX Virtual Machine on Hybrid 

CPU/GPU Clusters. Journal of Systems Architecture, 2016. Vol. 62. pp. 63–77. DOI: 

10.1016/j.sysarc.2015.10.003 

4. Li H.-F., Liang T.-Y., Lin Y.-J. An OpenMP programming toolkit for hybrid CPU/GPU 

clusters based on software unified memory. Journal of Information Science and Engineer-

ing, 2016, Vol. 32, Issue 3. pp. 517–539. 

5. Dordopulo A., Levin I., Kalyaev I., Gudkov V., Gulenok A.. Programming of hybrid com-

puter systems based on the performance reduction method. CEUR Proceedings, 2016, Vol. 

1576, pp. 131–140. 

6. El-Araby E., Taher M., Abouellail M., El-Ghazawi T., Newby G.B. Comparative analysis 

of high level programming for reconfigurable computers: Methodology and empirical study. 

2007 3rd Southern Conference on Programmable Logic, Mar del Plata; 2007; pp. 99–106. 

DOI: 10.1109/SPL.2007.371731 

7. Xu J, Subramanian N, Alessio A, Hauck S. Impulse C vs. VHDL for accelerating tomo-

graphic reconstruction. 18th IEEE International Symposium on Field-Programmable Cus-

tom Computing Machines, 2010, pp. 171–174. DOI: 10.1109/fccm.2010.33 

8. Dordopulo A., Kalyaev I., Levin I., Slasten L. High-performance reconfigurable computer 

systems. Lecture Notes in Computer Science, 2011, Vol. 6873. Chapter Parallel Computing 

Technologies. pp. 272–283. DOI:10.1007/978-3-642-23178-0_24 

 

Gulenok Andrey Aleksandrovich, PhD, Senior staff scientist, Academician A.V. Kal-

yaev SRI multiprocessor computer system at Southern Federal University (Taganrog, Russian 

Federation) 

Dordopulo Alexey Igorevich, PhD, Head of Department, Scientific Research Center of Su-

percomputers and Neurocomputers (Taganrog, Russian Federation) 

Levin Ilya Izrailevich, Dr. Sc., professor, Director of Scientific Research Center of Super-

computers and Neurocomputers (Taganrog, Russian Federation) 

Gudkov Vyacheslav Aleksandrovich, PhD, Senior staff scientist, Scientific Research Cen-

ter of Supercomputers and Neurocomputers (Taganrog, Russian Federation) 

Hybrid computer system programming technology with adaptation and scaling...

84 Вестник ЮУрГУ. Серия «Вычислительная математика и информатика»



УДК 004.382.2       DOI: 10.14529/cmse170105 

ТЕХНОЛОГИЯ ПРОГРАММИРОВАНИЯ 

ВЫЧИСЛИТЕЛЬНЫХ СИСТЕМ 

ГИБРИДНОГО ТИПА С АДАПТАЦИЕЙ 

И МАСШТАБИРОВАНИЕМ ВЫЧИСЛЕНИЙ 

А.А. Гуленок1, А.И. Дордопуло2, И.И. Левин2, В.А. Гудков2 

1
 Научно-исследовательский институт многопроцессорных вычислительных систем 

Южного федерального университета (347928 Таганрог, ул. Чехова, д. 2, ГСП-284) 
2
 Научно-исследовательский центр супер-ЭВМ и нейрокомпьютеров 

(347900 Таганрог, Итальянский пр., д. 106) 

Поступила в редакцию: 20.10.2016 

 
В статье рассматривается технология программирования вычислительных систем гибридного типа, содер-

жащих реконфигурируемые и микропроцессорные вычислительные узлы. В качестве основы технологии 

программирования вычислительных систем гибридного типа предлагается язык программирования высо-

кого уровня COLAMO с расширениями, с помощью которых можно описывать различные виды параллель-

ных вычислений – структурную, структурно-процедурную, мультипроцедурную и процедурную формы ор-

ганизации вычислений в единой параллельно-конвейерной (канонической) форме. Предложенная параллельно-

конвейерная форма позволяет изменять формы организации вычислений автоматизировано препроцессором 

языка COLAMO с учетом текущей конфигурации вычислительной системы гибридного типа. На основе 

канонической формы и возможностей описания различных форм организации вычислений на языке програм-

мирования высокого уровня COLAMO предложена технология ресурсонезависимого программирования, ко-

торая позволяет адаптировать программу под изменившиеся архитектуру или конфигурацию вычисли-

тельной системы гибридного типа в автоматическом режиме без корректировки кода программистом. 

Для этого исходная параллельная программа на языке программирования COLAMO препроцессором преоб-

разуется в каноническую форму, после чего препроцессор проводит оценку доступного вычислительного 

ресурса, определяет эффективные параметры реализации программы на доступном ресурсе и, при необхо-

димости, выполняет редукцию производительности программы для адаптации под текущую конфигурацию 

вычислительной системы гибридного типа. Технология позволяет осуществлять масштабирование в обе 

стороны как в случае увеличения доступного вычислительного ресурса (индукция), так и в случае сокраще-

ния доступного вычислительного ресурса (редукция), что обеспечивает ресурсонезависимость программи-

рования при разработке программы — программист не привязывается к доступному аппаратному ресурсу 

вычислительной системы. 

Ключевые слова: редукция производительности, язык программирования высокого уровня, про-

граммирование вычислительных систем гибридного типа, адаптация программы, масштабирование 

программы. 

ОБРАЗЕЦ ЦИТИРОВАНИЯ 

Gulenok A.A., Dordopulo A.I., Levin I.I., Gudkov V.A. Hybrid computer system program-

ming technology with adaptation and scaling of calculations // Вестник ЮУрГУ  

Серия: Вычислительная математика и информатика. 2017. Т. 6. № 1. С. 73−86.  

DOI: 10.14529/cmse170105. 

A.A. Gulenok, A.I. Dordopulo, I.I. Levin, V.A. Gudkov

2017, т. 6, № 1 85



Литература 

1. Kalyaev I.A., Levin I.I., Semernikov E.A., Shmoilov V.I. Reconfigurable multipipeline 

computing structures. New York, Nova Science Publishers, 2012. 330 р. 

2. Dong X., Chai J., Yang J., Wen M., Wu N., Cai X., Zhang C., Chen Z. Utilizing multiple 

Xeon Phi coprocessors on one compute node // Lecture Notes in Computer Science, 2014, 

Vol. 8631, Issue PART 2, P. 68–81. DOI:10.1007/978-3-319-11194-0_6 

3. Liang T.-Y., Li H.-F., Lin Y.-J., Chen B.-S. A Distributed PTX Virtual Machine on Hybrid 

CPU/GPU Clusters // Journal of Systems Architecture, 2016. Vol. 62. P. 63–77. DOI: 

10.1016/j.sysarc.2015.10.003 

4. Li H.-F., Liang T.-Y., Lin Y.-J. An OpenMP programming toolkit for hybrid CPU/GPU 

clusters based on software unified memory // Journal of Information Science and Engi-

neering, 2016, Vol. 32, Issue 3. P. 517–539. 

5. Dordopulo A., Levin I., Kalyaev I., Gudkov V., Gulenok A.. Programming of hybrid com-

puter systems based on the performance reduction method // CEUR Proceedings, 2016, 

Vol. 1576. P. 131–140. 

6. El-Araby E., Taher M., Abouellail M., El-Ghazawi T., Newby G.B. Comparative analysis 

of high level programming for reconfigurable computers: Methodology and empirical study 

// 2007 3rd Southern Conference on Programmable Logic, Mar del Plata; 2007; P. 99–106. 

DOI: 10.1109/SPL.2007.371731 

7. Xu J, Subramanian N, Alessio A, Hauck S. Impulse C vs. VHDL for accelerating tomo-

graphic reconstruction // 18th IEEE International Symposium on Field-Programmable 

Custom Computing Machines, 2010, P. 171–174. DOI: 10.1109/fccm.2010.33 

8. Dordopulo A., Kalyaev I., Levin I., Slasten L. High-performance reconfigurable computer 

systems // Lecture Notes in Computer Science, 2011, Vol. 6873. Chapter Parallel Compu-

ting Technologies. Р. 272–283. DOI:10.1007/978-3-642-23178-0_24. 

Hybrid computer system programming technology with adaptation and scaling...

86 Вестник ЮУрГУ. Серия «Вычислительная математика и информатика»


