HHCbOpMaTI/IKa, BbIIUCJINTEJIbHAA TEXHHUKA U yIIpaBJeHue

DOI: 10.14529/cmsel70105

HYBRID COMPUTER SYSTEM PROGRAMMING
TECHNOLOGY WITH ADAPTATION AND SCALING

OF CALCULATIONS"
© 2017 r. A.A. Gulenok', A.L. Dordopulo®, LI. Levin®, V.A. Gudkov’
' Academician A.V. Kalyaev SRI multiprocessor computer system
at Southern Federal University (GSP-284, Chekhov st. 2, Taganrog, 347928, Russia),
? Scientific Research Centre of Supercomputers and Neurocomputers
(Italyansky lane 106, Taganrog, 347900, Russia),
E-mail: andrei_ gulenok@mail.ru, scorpio@mus.sfedu.ru, levin@superevm.ru,
Slava_ Gudkov@mail.ru
Received: 20.10.2016

The paper considers the programming technology for hybrid computer systems, which contain reconfigurable
and microprocessor computational nodes. The base of the programming technology for hybrid computer systems is
the high-level programming language COLAMO with extensions, which allow descriptions of various types of par-
allel calculations such as structural, structural-procedural, multi-procedural and procedural forms of organization
of calculations in a unified parallel-pipeline form. The suggested parallel-pipeline form allows modifications of forms
of organization of calculations. Such modifications are performed automatically by the COLAMO language prepro-
cessor, which takes into account current configuration of the hybrid computer system. Owing to the suggested
technology, the program can be automatically adapted to the changed architecture or configuration of the hybrid
computer system without any modifications of the source code made by the developer. Specially for this the source
parallel program, developed in the programming language COLAMO, is transformed by the pre-processor into the
canonical form. Then the pre-processor estimates the available computational resource, detects effective parameters
of implementation of the program on the available resource and, if necessary, reduces the program performance to
adapt it to the current configuration of the hybrid computer system. The technology provides two-way scaling: for
increasing of the available computational resource (induction), and for reducing of the available computational
resource (reduction), which provides resource independence of programming during implementation of the program,
i.e. the developer is not “bound” to the available hardware resource of the computer system.

Keywords: performance reduction, high-level programming language, programming of hybrid computer systems,
application adaptation, application scaling.

FOR CITATION
Gulenok A.A., Dordopulo A.I., Levin L.I., Gudkov V.A. Hybrid computer system program-
ming technology with adaptation and scaling of calculations. Bulletin of the South Ural State

University. Series: Computational Mathematics and Software Engineering. 2017. vol. 6, no. 1.
pp. 73-86. DOI: 10.14529/cmsel70105.

Introduction

The majority of real-world problems require combination of both sequential and parallel
computational fragments within a single computational space for effective implementation of
structural and procedural [1] fragments of calculations. Many developers consider design of
computer systems with hybrid organization of calculations as a solution of this problem. Such
computer systems can contain computational nodes with different architectures, united by data

" The paper is recommended for publication by the Program Committee of the International
Scientific Conference “Parallel computational technologies (PCT) 2017".

2017, T. 6, Ne 1 73

Hybrid computer system programming technology with adaptation and scaling...

transfer channels, and allow implementation of structural and procedural calculations within a
single computational space. Symbiosis of nodes with different architecture in one computer
system theoretically allows the growth of the computer system real performance owing to the
opportunity of effective implementation of both structural and procedural fragments of calcu-
lations in the nodes with different architecture.

Wide application of such computer systems for solving real-world problems is considerably
limited by high complexity of their programming, as the effective use of architectural ad-
vantages of all computational nodes requires not only deep knowledge of various programming
languages and development environments for designing computational nodes of various types,
but also skills of independent synchronization of calculations within a single space.

The paper is organized as follows. In Section 1 we describe the main reasons that have lead
us to development of the hybrid computer systems programming technology. Section 2 de-
scribes the single parallel-pipeline form of COLAMO-applications developed for HCS, that
allows modifications of organization of calculations. In Section 3 we describe performance re-
duction methods as the base for two-way scaling of calculations in hybrid computer systems.
Section 4 describes implementation of the suggested programming technology as mapping of
parallel applications on the hardware resource of the hybrid computer system. In conclusion
we summarize the main theoretical and experimental results of the developed hybrid computer
systems programming technology.

1. Programming of hybrid computer systems

A hybrid computer system (HCS) contains computational nodes with different archi-tec-
ture and organization of calculations. Such hybrid computer systems can contain reconfigurable
computational nodes and nodes of general-purpose microprocessors, such as general-purpose
processors, graphic processors or accelerators Intel Xeon Phi [2]. Nowadays, in order to program
such computer systems (CS) we traditionally use programming technologies of heterogeneous
computer systems, such as CUDA [3], OpenACC, OpenCL [4], etc., which are based on exten-
sions of the programming languages C, C++, FORTRAN and which take into account the
architecture of special-purpose microprocessor node. These programming technologies have
considerable disadvantages such as poor portability of end solutions between CSs with different
architectures and configurations, and poor scalability of applications.

The main reason of these disadvantages is the HCS programming approach, which involves
task decomposition in separate fragments. Each fragment is implemented in a separate com-
putational node (on a separate device) of the hybrid computer system. So, each occupied CS
node is programmed independently, and as a result, each modification of the CS configuration
or of the initial application code requires re-decomposition of the task and development of local
applications for each node of the CS.

It is possible to formulate principal programming problems of modern HCS which contain

reconfigurable and microprocessor computational nodes:

1) FPGAs and microprocessors are programmed in different programming languages and in-
dependently of each other.

2) The application is developed specially for the current HCS configuration, and each modi-
fication of the system structure requires modification of the application code.

3) The developer is responsible for synchronization of the data flows within the task structure.

74 Bectauk FOYpI'Y. Cepus «BbruuciaurenpHas mareMaTnka 1 n”HOPMaTUKA»

A.A. Gulenok, A.I. Dordopulo, I.I. Levin, V.A. Gudkov

4) Porting of the application to another system with similar configuration leads to complete
re-development of the application.

5) The programming and debugging time required for development of the HCS application is
about 6-12 months.

That is why HCS programming requires tools for description of various kinds of organiza-
tion of calculations (a single language for various architectures) and tools for translation of
parallel applications, united into the technology of resource independent HCS programming.
From our point of view, the technology of resource independent HCS programming is a com-
bination of knowledge, methods, technological approaches and tools, which provides flexible
modification and scaling of the application according to a new computational architecture or
configuration of the computer system.

In order to provide functioning of general-purpose processor and reconfigurable computa-
tional nodes in a single space, we need a new technology of resource independent HCS pro-
gramming [5], based on the following principles:

- adaptation of the application to the current HCS configuration is performed automatically
by a specialized software tool — a pre-processor based on performance reduction meth-

ods [5];

- effective parameters of scaling and performance reduction must be determined without
any participation of the developer, only by computer-aided programming tools;

- for computer-aided transformation to the current HCS configuration, the application must
be represented in a canonical form (a single parallel-pipeline form).

Transformation of the application into the single parallel-pipeline form makes it possible
to increase the task parallelism (induction) if hardware resource is growing, and to reduce
(reduction) if hardware resource is decreasing, is the base for application of computer-aided
tools. To implement the technology of resource independent HCS programming we must choose
a programming language, which allows description of various forms of organization of calcula-
tions and programming of general-purpose processor and reconfigurable computational nodes
in a single computational space.

Specialized high-level languages |6, 7| for reconfigurable computer system (RCS) [8] pro-
gramming have C-like syntax, which is usual for the majority of PC developers, and differ from
each other by semantic features of call and use of operators |1]. To describe parallel processes
in RCS, these languages use a C-language paradigm which is initially sequential. Semantic of
the C-language is oriented to interaction of sequential processes, and it does not allow the use
of all abilities of RCS during development of parallel applications in these languages. This leads
to a semantic gap between the initial information graph of the task, its description in the high-
level language and its circuit solution generated by the translator. The result of this gap is a
considerable decrease in effectiveness of the parallel application — as a rule, the performance is
in 3-5 times lower in comparison with applications developed with the use of HDL-languages.

A promising direction for RCS programming is a high-level language COLAMO |[1, 5],
developed in Scientific Research Institute of Multiprocessor Computer Systems (SRI MCS SFU,
Taganrog, Russia). The language COLAMO is used for description of parallel algorithms and
generation of special-purpose computing structures within RCS architecture according to the
principles of structural-procedural organization of calculations. Each special-purpose compu-
ting structure sequentially performs structurally (hardwarily) implemented fragments of the
task information graph. Each graph is a computational pipeline of an instruction flow. So, the

2017, T. 6, Ne 1 75

Hybrid computer system programming technology with adaptation and scaling...

RCS application (the RCS task) consists of a structural component, presented as a set of
hardwarily implemented fragments of calculations, and of a procedural component — one and
the same control program for all structural fragments, which provides sequential change of
computing structures and organizes data flows.

In order to implement calculations in general-purpose processors, the language COLAMO
contains instructions for description of procedural organization of calculations and provides
fast transition from procedural implementation of calculations in general-purpose processors to
structural organization of calculations on reconfigurable computational nodes. A structure Im-
plicit is used for implicit declaration of organization of calculations (structural or procedural)
for the application fragment. Re-declaration of implementation of the structure Implicit allows
the developer to use procedural organization of calculations instead of structural one, and vice-
versa without any considerable modification of the parallel program. Owing to this, the devel-
oper can create a single application using one and the same programming language for all HCS
nodes. This allows the high-level programming language COLAMO to be considered as a base
for the technology of resource independent programming for both reconfigurable computational
nodes and general-purpose nodes of the HCS.

However, for effective HCS programming it is necessary to have language tools which allow
description of fragments of calculations, which use different frequencies, data delay ratio and
digital capacity of processed data. Owing to this, it is possible to scale both fragments and
single circuit cores in both cases — when hardware resource is increasing or decreasing, and, in
addition, it is also possible to use data with variable capacity for effective use of HCS hardware

resource.

2. The single parallel-pipeline form of COLAMO-applications
developed for HCS

Here and forth, the parallel-pipeline form for representation of variables and arrays is a
description of data, made by means of the high-level programming language COLAMO, which
provides both parallel and sequential access at the same time. In the language COLAMO such
access types are declared by the keywords Vector (BitVector) and Stream (BitStream). Fig. 1
shows an example of simultaneous use of parallel and sequential data and bit access types to
the arrays A, B, and C.

Such a form of applications is a canonical form; it allows automatic modification of the
principal parameters of any parallel application such as the number of simultaneously imple-
mented computational subgraphs, the capacity of processed data, the number of operations,
etc. Such modification can be performed by the pre-processor tool for adaptation of applications
to the HCS without any participation of the developer.

Transformation of the initial application into the canonical form is performed in two steps.
In the first step variables and structures of the application are transformed for parallel-pipeline
processing on data level, and in the second step — on bit level.

In general, the method of application transformation into the canonical form can be rep-
resented as follows:

1) All arrays in the initial COLAMO-application are transformed into the parallel-pipeline
form. If it is necessary, Vector or Stream access types are added.
2) All variables (except for loop counters) of the parallel COLAMO-application are trans-

formed into the format of the Union-structure, which provides both direct access to a

76 Bectauk FOYpI'Y. Cepus «BbruuciaurenpHas mareMaTnka 1 n”HOPMaTUKA»

A.A. Gulenok, A.I. Dordopulo, I.I. Levin, V.A. Gudkov

variable according to its type, and parallel (bitvector) and sequential (bitstream) access
types.

3) All subcadrs of the parallel COLAMO-application are transformed into Implicit-structures.

4) All structures and operators of the application are transformed according to the modified
parameters of the variables.

5) For the generated single parallel-pipeline form of the COLAMO-application, a global pre-
processor directive of performance reduction of functional blocks, which is equal to 1, is
declared.

Const N = 10; Const M = 100;

Const Bv = 32; Const Bs = 1;

Type Type32: Integer [BV: BitVector, BS:BitStream] of Int;
Var a,b,c : Array Type32 [N : Vector, M:Stream] Mem;

Var i, j, k, t : Number;

Cadr ExpParallelStream;

For i := 0 to N-1 do
For 7 := 0 to M-1 do
For k := 0 to Bv-1 do
For t := 0 to Bs-1 do
Begin
cli,jllk,t] := ali,jllk,t] - bli,Jllk,t];
End;
EndCadr;

Fig. 1. Concurrent use of parallel and pipeline types of access to data arrays and digits

Variables are transformed to parallel and sequential access types (a mixed access type)
according to the following rules:
- if we use only sequential access to array items, then the parameter Vector, which means
parallel access, with the dimension of unity is added to the declaration of the array;
- if we use only parallel access to array items, then the parameter Stream, which means
sequential access, with the dimension of unity is added to the declaration of the array;
- if we use mixed access to array items, then no transformations are performed for such
array.
So, when the declaration of any array is modified, its dimension is increased. For example,
when we declare the array A as:

Var A : Array Integer [N : Stream] Mem
It is necessary to transform its declaration as follows:

Var A : Array Integer [M : Vector, K : Stream] Memnm,

where M=1, K = N/M. To provide equivalency of the information graphs of the initial
application and the modified one, the initial value of M is 1.

Fig. 2 shows transformation of the initial application a) to the canonical form b). As we
can see from the text of the parallel-pipeline application (see Fig. 2b), all linear arrays are
transformed into two-dimensional arrays with mixed access type (M : Vector, K : Stream), a
new loop operator with a loop counter VC 1 is added, and all references to the variables are
modified.

2017, T. 6, Ne 1 77

Hybrid computer system programming technology with adaptation and scaling...

Const N = 10;
Var a, b, ¢, d : Array Integer [N: Vector]Mem;
Var i : Number;
Cadr ExpParallel;
For i := 0 to N-1 do
Begin
If(A[i]>5)
C[i] :=A[1]-BI[i];
Else
Cli] :=A[i]1+D[1];
end;
EndCadr;

a) The initial program

Const N = 10; Const M = 10; Const K = N/M;
Var a, b, ¢, d : Array Integer [M: Vector, K: Stream]Mem;
Var i,vc_1 : Number;
Cadr ExpParallelConvData;
For vc 1 := 0 to K-1 do
Begin
For i := 0 to M-1 do
Begin
If(A[i,vc_1]>5)
Cli,vc 1] :=A[i,vc 1] - B[i,vc_1];
Else
Cli,vc 1] :=A[i,vc_1] + D[i,vc_1];
end;
end;
EndCadr;

b) The transformed program
Fig. 2. Transformation of the program to the canonical form on data level

Effective adaptation of the application for HCS requires similar transformations for bits.

3. Scaling of calculations in HCS on the base of performance

reduction

The base for simple scaling and adaptation of the application in both cases — increasing
and decreasing of available hardware resource — is reduction of the application performance [5],
which means proportional performance reduction in all the fragments of the task information
graph and possible reduction of hardware resources necessary for implementation of the com-
puting structure. Performance reduction of parallel applications allows variation of their key
parameters (the number of used circuit cores, the number of memory channels, the operand
capacity, the frequency, etc.), because structural implementation of the task can lead to a lack
of available hardware resource. This is especially urgent if the task is ported between HCS with
different architectures and configurations. In contrast to traditional technologies and methods
of multiprocessor computer system programming (MPI, CUDA, OpenACC, etc.), in which the
basic information subgraph of the task is parallelized depending on the configuration of avail-
able hardware resource, the HCS programming technology, in order to apply performance re-
duction, requires description of the information graph of the task represented in the initial
parallel form with the maximum possible degree of parallelism. According to the number of

78 Bectauk FOYpI'Y. Cepus «BbruuciaurenpHas mareMaTnka 1 n”HOPMaTUKA»

A.A. Gulenok, A.I. Dordopulo, I.I. Levin, V.A. Gudkov

available HCS computational nodes, the initial information graph is reduced by special reduc-
tion transformations, which in a balanced manner reduce performance of all fragments of the
information graph and, in several cases, reduce HCS hardware resource used by the task. It is
possible to single out four kinds of reduction:

- performance reduction according to circuit operations;

- performance reduction according to memory channels;

- performance reduction according to capacity;

- performance reduction according to frequency.

Re[4,]

Q 1 Re[4,.;]
Im[4,] \ -
~ @ 2 1A, ;]
LA

Re[5,] v

9 Re[5,4]

Im[5] i

RelIT5] 44—
Re[lT5]
Im[I¥¢]

Im[iFg]

° 10 Im[3,_,]

Re[4,] | RcDA|

b ! Re[4,,]
' [
Im[A,]

Im[4,,,]

Re[B]

Im[&,]

Re[iv.]—
Re[iF,]

Im{W;]

Im{,]

Fig. 3. Principles of performance reduction according to circuit operations illustrated by the
operation of fast Fourier transformation (a — the initial information graph of the FFT

operation, b — structural implementation of the FFT operation on RCS with conditional
filling of FPGAS)

Performance reduction according to circuit operations is based on reducing the number of
circuit blocks operating simultaneously and performing computing operations. The example of

2017, T. 6, Ne 1 79

Hybrid computer system programming technology with adaptation and scaling...

the fast Fourier transformation (FFT), shown in Fig. 3 and Fig. 4, illustrates principles of
performance reduction according to circuit operations.

Re[Ws] 3 Re[4,]
1 . 1 Re[4,,]
() refc,] — i@lf’ 1 50 5 1]
Re[5] | Re[B] o
(15) Re[w;]— 12
Im (7] 4 Im[4,]
4) mic,] —4 \(D 126 13 jj@fzns
Im[W5] | P Im[B,] e
(16) Im[¥;] — 14 $
Re[WB]_I. Re[4,]
{4} II]I[C‘.] -_— -‘3‘7 5 Dﬂ_)}g (‘_) 9 Re[‘B.’—II
Im(Ws] —| /C> Re[B,] 10 Im[B,]
(15) Re[W;] — 6 -—-l
Re[W5]—| Im[4,]
(3) Re[C,] — C 14,8 7 j—“Q 4 (-),10
Im[Fz] —§ . Im[5,] e
(16) Impw;]— a) 8 $
(R4 RCD 1| :r Re[4] , RCD3 |
| Re[C,]) | 1
| Re[¥s] 1 | Re[B] 1
| RefiFy] | : ;'
! 1m[¥) . { Im[d]

|
I
! Im{C,] |
REILY tm{2,])
! Im[¥;])
et 5 T S 1 |)
I
|]
{ Re{iT])
! RefC,])
| Im[I7;] \
{ Tm[f;] :1 b)

Fig. 4. Result of performance reduction according to circuit operations with the degree equal
to 2 for the basic operation of the FFT (a — the information graph of the FFT reduced in 2
times, b — structural implementation of the FFT on RCS with conditional filling of FPGAs)

2

=
I
I
i
I
L}
15
I
I
I
I
15
I
I
15
|
I
I
I
I
3
el

One of the most important types of reduction, which provide HCS resource independent
programming, is performance reduction according to memory channels — an operation of con-
certed reduction of the number of concurrently used memory channels for some fragment of
the task information graph. Fig. 5 and Fig. 6 illustrate principles of performance reduction
according to memory channels.

Fig. 5 shows a fragment of the initial information graph, which contains 4 input channels.
Fig. 6 shows the result of performance reduction according to memory channels with the degree

80 Bectauk FOYpI'Y. Cepus «BbruuciaurenpHas mareMaTnka 1 n”HOPMaTUKA»

A.A. Gulenok, A.I. Dordopulo, I.I. Levin, V.A. Gudkov

equal to 2. After performance reduction according to memory channels the number of concur-
rently performed circuit operations is not changed but the time of processing data flows in-
creases in 2 times. This decreases the performance of the fragment in 2 times.

Ali] Elil
B[i] —>
<t Plil
DIi] —»>

Fig. 5. An initial information graph of some reducible fragment

The result of performance reduction according to capacity is not the reduced number of
operations in a computing structure, but the reduced capacity of processing data owing to the
use of operations with smaller capacity. This leads to increasing of the processing time and to
decreasing of hardware burden for implementation of the computing structure. After perfor-
mance reduction according to capacity, data flows are controlled by a multiplexer, and data
flows enter the computing structure with the data delay ratio equal to the degree of performed

reduction.
...BLA,B,A
b.,c,...nD,C,D.,C P.P.
C.,A....C,A,C,A.

D.,B.,...D.,B, D, B, @—EFEEE
b _‘®;P14,...,P:,Pu

Fig. 6. Result of performance reduction according to memory channels with the degree equal

to 2 (a — performance reduction according to memory channels with data placement in one
channel for each circuit operation, b — performance reduction according to memory channels
with data placement in different channels for each circuit operation).

Performance reduction according to frequency is applied for increasing of the data flow
processing time proportionally to the degree of reduction at the cost of multiple reduction of
the fragment frequency. Here, the delay ratio of data, entering the computing structure, re-
mains constant. Performance reduction is an auxiliary reduction transformation, which cannot
be used separately, and is only applied for matching processing rates between reduced and non-
reduced fragments of the information graph in the task structure.

For practical use of the considered reduction transformations the developer must mark the
fragments of the parallel application, written in the high-level programming language
COLAMO, which can be reduced, by pre-processor directives. The directive of reduction can
be declared as follows:

#Reduction of <type of reduction> <degree of reduction>;
Block of operators
EndReduction;

2017, T. 6, Ne 1 81

Hybrid computer system programming technology with adaptation and scaling...

During translation of the parallel application the pre-processor automatically transforms
the information graph of the application to the available HCS configuration according to the
reduction directives placed by the developer. This provides adaptation of the application to
the current HCS configuration without considerable modification of the initial program code.

In conclusion of analysis of the transformations, we can describe functioning of the tech-
nology of resource independent programming of hybrid computer systems, which contain re-
configurable and microprocessor computational nodes, as follows. The pre-processor unit of the
language COLAMO, which performs analysis of the source parallel application, transforms it
into the canonical form, determines hardware resource required for its implementation and
compares it with the current HCS configuration. Then it determines the maximum reduction
degree and types of all required transformations. If the current HCS hardware resource is
sufficient for implementation of the application, then bitstream files and loadable files are
generated for all HCS nodes involved into implementation of the task. Otherwise special re-
duction transformations are performed. They reduce the application performance and the in-
volved HCS hardware resource in a balanced manner. Performance reduction is performed as
follows: reduction according to simultaneously performed subgraphs of the application, reduc-
tion according to capacity, reduction according to instructions (cores), reduction according to
data delay ratio (clock rate). The analysis unit of the pre-processor reduces the involved hard-
ware resource for each type of reduction, taking into account its theoretically permissible de-
gree. It determines the most reasonable use of reduction which can provide the maximum
possible performance of the application for the current HCS configuration. The text of the
reduced parallel application, generated by the pre-processor in an automatic mode, is passed
to the translator of the programming language COLAMO, which generates a detailed infor-
mation graph of the application. The information graph of the application, which contains
fragments structurally implemented in reconfigurable computational nodes and procedurally
implemented in microprocessor computational nodes, is passed to a synthesizer tool, which
automatically distributes the fragments among reconfigurable and microprocessor computa-
tional nodes available in the current HCS configuration.

4. Mapping of parallel applications on HCS hardware
resource

The problem of distribution of parallel application fragments on hardware resource of a
multiprocessor HCS is in automatic decomposition of computational structure of the parallel
application, described by the information graph, into disjoint fragments, and in distribution of
these fragments into separate computational nodes of the HSC, such as reconfigurable compu-
tational nodes and microprocessor computational nodes). Besides, the fragments placed in re-
configurable computational nodes are decomposed into smaller fragments, each of which is
implemented in a separate FPGA chip.

All blocks of the computational structure of the parallel application can be divided into
two groups. The first group contains hardwarily implemented blocks, which must be mapped
into reconfigurable computational nodes. The second group contains blocks, which correspond
to the Implicit structures. Each block has its own C++ or C# procedure. The blocks from the
second group are placed into HCS microprocessor computational nodes.

Automatic mapping of the computational structure of the parallel application on HCS
hardware resource consists of three steps. The first step is decomposition of the computational

82 Bectauk FOYpI'Y. Cepus «BbruuciaurenpHas mareMaTnka 1 n”HOPMaTUKA»

A.A. Gulenok, A.I. Dordopulo, I.I. Levin, V.A. Gudkov

structure of the parallel application into disjoint fragments, which must be placed in the nodes
of the multiprocessor HCS. Only one block is placed in each microprocessor node of the com-
putational structure, because in one node it is possible to run only one sequential subroutine
with intensive data exchange with other microprocessor and reconfigurable nodes. Fragments
of parallel applications, which contain hardwarily implemented blocks, are placed into recon-
figurable computational nodes. In this case, the total hardware resource occupied by the blocks
of one fragment must not exceed the total hardware resource of FPGA chips of one reconfigu-
rable computational node.

The second step of the algorithm of application synthesis is distribution of the fragments,
which are placed in reconfigurable computational nodes, into separate FPGA chips of these
nodes.

The third and the last step of the algorithm of application synthesis is synchronization of
external and internal data flows of the computational structure of the parallel application, and
placement of interface units for matching data exchange between heterogeneous fragments of
the computational structure. These interfaces match data exchange between procedural and
pipeline computational nodes, between the nodes which are operating at different clock fre-
quencies, between the nodes which are operating at similar clock frequencies but connected to
different clock generators (because of different phases and inaccuracy of clock generators), etc.

After setting of all required interfaces and synchronization elements, the synthesizer tool
generates bitstream files *.bit for reconfigurable nodes and loadable files *.exe for microproces-
sor nodes of the HCS, and generates a control program which controls computational process
and is single for all HCS computational modules.

Conclusion

For effective programming of hybrid computer systems we suggest the high-level program-
ming language COLAMO as a part of the developed technology of resource-independent pro-
gramming. The language COLAMO allows description of various forms of organization of cal-
culations in one and the same computational space. The suggested single parallel-pipeline form
of applications along with the developed performance reduction methods provide automatic
adaptation of applications to the modified HCS architecture or configuration. Owing to the
suggested technology we can reasonably use resources of nodes with different architectures
during HCS programming, and we have a set of necessary tools for quick development of
effective resource-independent scalable parallel applications in a single language space. It sim-
plifies HCS programming and speeds up development of parallel applications.

We tested the developed HCS programming technology, using three test tasks from differ-
ent problem areas: digital signal processing, symbolic processing and monitoring of computer
networks.

The task of digital signal processing consists in processing of input data according to the
direct fast Fourier transformation algorithm with frequency decimation. The task of symbolic
processing consists in transformation of input data according to the algorithm of symmetric
block encryption GOST 28147-89. In the third task we implement a procedure of patterns
search in a data flow, which detects frequencies of all found patterns within one string and
within the input data flow.

For all three tasks we developed applications in the language COLAMO, and each appli-
cation was translated for different HCS architectures with different quantity of computational

2017, T. 6, Ne 1 83

Hybrid computer system programming technology with adaptation and scaling...

nodes. Our research has proved effectiveness of the developed technology for adaptation of the
parallel application to the used hardware resource in both cases — when resource is increasing
and when the application is ported to the HCS with smaller hardware resource.

The project has been funded in part by the scholarship of the President of the Russian
Federation for young scientists and graduate students (SP-173.2016.5).

References

1. Kalyaev I.A., Levin LI., Semernikov E.A., Shmoilov V.I. Reconfigurable multipipeline
computing structures. New York, Nova Science Publishers, 2012. 330 p.

2. Dong X., Chai J., Yang J., Wen M., Wu N., Cai X., Zhang C., Chen Z. Utilizing multiple
xeon Phi coprocessors on one compute node. Lecture Notes in Computer Science, 2014,
Vol. 8631, Issue PART 2, pp. 68-81. DOI:10.1007/978-3-319-11194-0 6

3. Liang T.-Y., Li H.-F., Lin Y.-J., Chen B.-S. A Distributed PTX Virtual Machine on Hybrid
CPU/GPU Clusters. Journal of Systems Architecture, 2016. Vol. 62. pp. 63-77. DOI:
10.1016/j.sysarc.2015.10.003

4. Li H-F., Liang T.-Y., Lin Y.-J. An OpenMP programming toolkit for hybrid CPU/GPU
clusters based on software unified memory. Journal of Information Science and Engineer-
ing, 2016, Vol. 32, Issue 3. pp. 517-539.

5. Dordopulo A., Levin 1., Kalyaev 1., Gudkov V., Gulenok A.. Programming of hybrid com-
puter systems based on the performance reduction method. CEUR Proceedings, 2016, Vol.
1576, pp. 131-140.

6. El-Araby E., Taher M., Abouellail M., El-Ghazawi T., Newby G.B. Comparative analysis
of high level programming for reconfigurable computers: Methodology and empirical study.
2007 3rd Southern Conference on Programmable Logic, Mar del Plata; 2007; pp. 99-106.
DOI: 10.1109/SPL.2007.371731

7. Xu J, Subramanian N, Alessio A, Hauck S. Impulse C vs. VHDL for accelerating tomo-
graphic reconstruction. 18th IEEFE International Symposium on Field-Programmable Cus-
tom Computing Machines, 2010, pp. 171-174. DOI: 10.1109/fccm.2010.33

8. Dordopulo A., Kalyaev I., Levin I., Slasten L. High-performance reconfigurable computer
systems. Lecture Notes in Computer Science, 2011, Vol. 6873. Chapter Parallel Computing
Technologies. pp. 272-283. DOI:10.1007/978-3-642-23178-0 24

Gulenok Andrey Aleksandrovich, PhD, Senior staff scientist, Academician A.V. Kal-
yaev SRI multiprocessor computer system at Southern Federal University (Taganrog, Russian
Federation)

Dordopulo Alexey Igorevich, PhD, Head of Department, Scientific Research Center of Su-
percomputers and Neurocomputers (Taganrog, Russian Federation)

Levin Ilya Izrailevich, Dr. Sc., professor, Director of Scientific Research Center of Super-
computers and Neurocomputers (Taganrog, Russian Federation)

Gudkov Vyacheslav Aleksandrovich, PhD, Senior staff scientist, Scientific Research Cen-
ter of Supercomputers and Neurocomputers (Taganrog, Russian Federation)

84 Bectauk FOYpI'Y. Cepus «BbruuciaurenpHas mareMaTnka 1 n”HOPMaTUKA»

A.A. Gulenok, A.I. Dordopulo, I.I. Levin, V.A. Gudkov

YK 004.382.2 DOI: 10.14529/cmsel70105

TEXHOJIOTUY I[TIPOITPAMMUPOBAHU S
BBIYNCJINTEJIBHBIX CUCTEM
T'MBPU/THOT'O TUIIA C AJTAIITAIIEN
" MACIIITABUPOBAHUWEM BBIUYUCJIEHUN

A.A. Tynenok', A.1. Hopnonyno?, NI Jlesun?, B.A. I'yaxos®

! Hayuno-uccaedosameaberkudi uHCmumym MHO20npoOUeccopHuis GbHUCAUMEALHBLT CUCTIEM
FOotcnozo gedepanrvrozo ynusepcumema (347928 Tazanpoe, ya. Yexosa, 0. 2, I'CII-284)
? Hayuno-uccaedosamenveruti uenmp cynep-9BM u netipokomnvlomepos
(847900 Tazanpoz, Hmanrvarcrud np., d. 106)

IToctynuna B pemaxmmio: 20.10.2016

B crarbe paccMaTpuBaeTcsi TEXHOJIOTHS TIPOTPAMMUAPOBAHUS BHIYACIUTEIBHBIX CACTEM M'UOPHUIHOTO THUIA, COIEP-
JKAIMAX PEKOHMUTYPUPYEMble U MUKPOIIPOIECCOPHBIE BBIYUCIUTENBHBIE Y3JIbl. B KAueCmee 0CHO8b METHON02UL
NPOZPAMMUPOSAHUA BHIHUCAUMENDHBLT CUCTIEM 2UOPUOH020 MUNG NPEOAA2AEMCA A3V NPOZDAMMUPOSAHUA GBLCO-
1020 yposns COLAMO c pacwupenuamu, ¢ NOMOULHIO KOMOPHLT MOHCHO ONUCHIBATMNL PAAUYHBLE UL NAPAAAEND-
HOIL 8LIYUCAEHUT, — CMPYRMYPHYIO, CMPYKMYPHO-NPOUEIYDHYI, MYALMUNDOUEIYPHYI U NPOUEIYPHYIO HOPMbL OD-
2AHUBAUUL BLHUCAEHUTE 8 eOUHOT NAPAANEABHO-KONGETepHoT (Kanoruyeckoti) dopme. [Tpedrostcernas napasiesvro-
KOHBETEPHAA POPMA NOZEONAEM USMEHAND HOPMBL OP2AHUAUUU EVNUUCAEHUT ABTMOMATNUSUPOSAHO NPENPOUECCOPOM
asvica COLAMO ¢ yuemom meryweli Konpuaypayul 6uuuciumessrot cucmemv, eubpudnozo muna. Ha ocrose
KAGHOHUYECKOT POPMBL U BO3MOHCHOCTET, ONUCGHUA PASAUNHDIT POPM OP2AHUBGUUL BHIHUCAEHUT HA A3bIKE NPOSPAM-
Mmuposarus 6vicorozo yposus COLAMO npedaosicena mernoso2us pecypcone3asucumozo npozpamMmMuposaHUL, Ko-
Mopas No360AAEM AOANMUPOSAMS NPOZPAMMY NO00 USMEHUSULUECS GPTUMERMYPY UAU KOHPUYPAUUIO EIHUCAU-
MeALHOT CuCmemsvt 2ubpudH020 MUNG 6 ABTMOMATMUYECKOM DEXCUME GE3 KOPPERMUPOSKY K004 NPOPAMMUCTLOM.
JIasa 9mo20 ucxoonas napastesvras npozpamma ma asvke npozpammuposanus COLAMO npenpoyeccopom npeob-
PABYEMCA 6 KAHOHUMECKYO (POPMY, NOCAE UE20 NPENPOUECCOP NPOSOOUM OUEHKY JOCMYNHO20 BHIHUCAUMENBHOZ0
pecypca, onpedeasem IPPHeRMUEHbE NAPAMEMPDL PEANUSAUUL UPOLPAMMDL HA JOCTIYNHOM PECYPCe U, NPU HeobTo-
JumMocmu, 8vIMOAHAEM, PEOYKUUIN NPOUSBOIUTNEALHOCTIIU NPOZPAMMDL ONA A0ANMAUUL 100 MERYULYIO KOHPULYDAUUIO
BHIHUCAUMENDHOT CuCTEeMbL 2ubpudHo20 muna. TexrHoa02UA NO3BOAAEM OCYUWELCMBAAND MACWMAOUPOSAHUE 6 00€
CTMOPOHDL KAK 6 CAYUAE YGEAUNEHUA DOCTNYNHOZ0 BUHUCAUMEALHOZO PECYPCa (UNIYKUUA), Mak U 6 CAYHaE COKPaULe-
HUA JOCTYNHOZO BHIMUCAUMENDHOZ0 PECYPCA (PEOYKUUA), 4MO 06ECNENUBAEM PECYPCOHEZABUCUMOCTIVL TUPOZDAMMU-
POBAHUA NPU PA3PABOMIKE NPOZPAMMDL — NPOZPAMMUCT, HE NPUBAZVEAEMCA K OCTYNHOMY ANNAPATIHOMY PECYDCY

BHIUUCAUMENOHOT, CUCTINEMDL.

Karouesnie caosa: peayKiiust TPOU3BOIUTETIBHOCTH, sI3bIK TPOrPAMMUPOBAHKST BBICOKOTO YPOBHS, IIPO-
IPAMMHUPOBAHNE BBIUUCIUTEIHHBIX CUCTEM TMOPUIHOTO THUIIA, AIANTAIUS ITPOrPAMMBI, MACIITAONPOBAHNE

IIPOTPaMMBI.

OBPAS3EII IINTUPOBAHUA
Gulenok A.A., Dordopulo A.IL., Levin I.I., Gudkov V.A. Hybrid computer system program-
ming technology with adaptation and scaling of calculations // Bectauk OYpI'Y

Cepust: Bprauncimrenbrast maremMatuka u uHpopmarumka. 2017. T. 6. Ne 1. C. 73-86.
DOI: 10.14529/cmsel70105.

2017, T. 6, Ne 1 85

Hybrid computer system programming technology with adaptation and scaling...

JIureparypa

1.

Kalyaev I.A., Levin L.I., Semernikov E.A., Shmoilov V.I. Reconfigurable multipipeline
computing structures. New York, Nova Science Publishers, 2012. 330 p.

Dong X., Chai J., Yang J., Wen M., Wu N., Cai X., Zhang C., Chen Z. Utilizing multiple
Xeon Phi coprocessors on one compute node // Lecture Notes in Computer Science, 2014,
Vol. 8631, Issue PART 2, P. 68-81. DOI:10.1007/978-3-319-11194-0 6

Liang T.-Y., Li H.-F., Lin Y.-J., Chen B.-S. A Distributed PTX Virtual Machine on Hybrid
CPU/GPU Clusters // Journal of Systems Architecture, 2016. Vol. 62. P. 63-77. DOL:
10.1016/j.sysarc.2015.10.003

Li H.-F., Liang T.-Y., Lin Y.-J. An OpenMP programming toolkit for hybrid CPU/GPU
clusters based on software unified memory // Journal of Information Science and Engi-
neering, 2016, Vol. 32, Issue 3. P. 517-539.

Dordopulo A., Levin 1., Kalyaev I., Gudkov V., Gulenok A.. Programming of hybrid com-
puter systems based on the performance reduction method // CEUR Proceedings, 2016,
Vol. 1576. P. 131-140.

El-Araby E., Taher M., Abouellail M., El-Ghazawi T., Newby G.B. Comparative analysis
of high level programming for reconfigurable computers: Methodology and empirical study
// 2007 3rd Southern Conference on Programmable Logic, Mar del Plata; 2007; P. 99-106.
DOI: 10.1109/SPL.2007.371731

Xu J, Subramanian N, Alessio A, Hauck S. Impulse C vs. VHDL for accelerating tomo-
graphic reconstruction // 18th IEEE International Symposium on Field-Programmable
Custom Computing Machines, 2010, P. 171-174. DOI: 10.1109/fccm.2010.33

Dordopulo A., Kalyaev I., Levin I., Slasten L. High-performance reconfigurable computer
systems // Lecture Notes in Computer Science, 2011, Vol. 6873. Chapter Parallel Compu-
ting Technologies. P. 272-283. DOI:10.1007/978-3-642-23178-0 24.

86

Bectauk FOYpI'Y. Cepusi «BorauciauresbHasg mareMaTuka u nH(pOpMaTUKa»

