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We propose new parallel algorithms for correspondence problem solution in computer vision. We develop an
industrial photogrammetric system that uses artificial retroreflective targets that are photometrically identical.
Therefore, we cannot use traditional descriptor-based point matching methods, such as SIFT, SURF etc. Instead,
we use epipolar geometry constraints for finding potential point correspondences between images. In this paper, we
propose new effective graph-based algorithms for finding point correspondences across the whole set of images (in
contrast to traditional methods that use 2-4 images for point matching). We give an exact problem solution via
superclique and show that this approach cannot be used for real tasks due to computational complexity. We propose
a new effective parallel algorithm that builds the graph from epipolar constraints, as well as a new fast parallel
heuristic clique finding algorithm. We use an iterative scheme (with backprojection of the points, filtering of outliers
and bundle adjustment of point coordinates and cameras’ positions) to obtain an exact correspondence problem
solution. This scheme allows using heuristic clique finding algorithm at each iteration. The proposed architecture of
the system offers a significant advantage in time. Newly proposed algorithms have been implemented in code; their
performance has been estimated. We also investigate their impact on the effectiveness of the photogrammetric
system that is currently under development and experimentally prove algorithms’ efficiency.
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Introduction

Effective matching between images of a 3D object points (also known as point correspond-
ence problem) is one of the key problems in computer vision [1]. There are several ways to
solve the correspondence problem, such as feature detection, a method based on the epipolar
geometry restraints, and the combination of these two methods. Feature detection is the most
popular approach for solving the point correspondence problem. These methods analyze images
and look for features, such as corners, ridges, contrast points etc. A numerical value, called
descriptor, is calculated from the image data based on some vicinity of the feature. This ap-
proach allows us to find point correspondences almost instantaneously by matching the nu-
merical values of descriptors, as local feature detectors are robust against most image transfor-
mations (caused by movement of the camera) given that lighting conditions remain the same
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and the camera position does not change drastically. Another advantage is the fact that feature
detection does not require any knowledge of the camera relative position.

Unfortunately, feature detection methods only work well in stable lighting conditions. If
the light source moves, features might alter their appearance, structure of shadows, or disap-
pear. This leads to changes in numerical values of the descriptors that make it impossible to
find matches. Harris detector [2|, SIFT [3] and SURF [4] are among the most popular and
widely used feature detectors and descriptors.

It is also possible to solve correspondence problem using epipolar geometry [1, 5. As it is
shown in Section 1.1, if we choose an image point in the first image, the corresponding image
point in the second image may only lie on the epipolar line [1|. Epipolar line can be easily
calculated, provided that we know camera intrinsic parameters with the relative position and
orientation of a pair of cameras. Thus, it is possible to narrow the search area to a single
epipolar line (for a pair of images), or even to the crossing point of two epipolar lines (for a
triplet of images). An approach based on epipolar geometry does not have any special require-
ments to lightning conditions of the image contents; however, it requires cameras’ parameters
and their relative position to be known. Fraser in [5] describes various approaches of finding
point correspondence based on epipolar geometry in 2- and 3-dimensional space. He also states
that computational difficulty grows rapidly when the number of images is increased.

A group of special (typically industrial) photogrammetric systems uses retroreflective tar-
gets (to identify the key points of the object being measured) and a flash to ensure that those
targets are easily distinguishable in an industrial environment that often has insufficient
lighting conditions. This directed light drastically changes the structure of shadows in the
image, thus changing the values of feature descriptors. In this case, point correspondence prob-
lem can only be solved by means of epipolar geometry. Unfortunately, in practice the point
may lie slightly out of the calculated epipolar line due to some degree of uncertainty in esti-
mated relative camera position or due to camera’s manufacturing imperfections. Thus in real-
life applications it is better to search for a point in some d-vicinity of the epipolar line. More-
over, as the number of images and targets increases, the search area may contain more other
points or artefacts (such as glares or reflections mistakenly recognized by the system as
retroreflective targets), so the correspondence problem becomes non-trivial. As we show in
Sections 1.2 and 1.3, the exact solution of point correspondence problem belongs to clique
problem in a multipartite graph and has exponential complexity.

We develop an industrial photogrammetric system that uses retroreflective targets [6, 7],
so we have to use epipolar geometry to solve the point correspondence problem. Our system
should work on a mid-high level laptop. Moreover, due to specifications, the whole process of
the 3D reconstruction (from uploading images from the camera to obtaining accurate 3D coor-
dinates of the targets) should take no more than 5-6 minutes. This requires us to develop some
new effective point matching algorithms based on epipolar geometry, which would allow us to
solve the problem in acceptable time. To achieve this, we use parallelization along with an
iterative scheme that adjusts the accuracy for estimation of targets and cameras’ positions.
This allows using heuristic clique finding algorithms (particularly but not exclusively their
parallel versions) that finally lead us to an exact solution of the point correspondence problem
in acceptable time.

It is impossible to parallelize the whole problem of 3D reconstruction due to its specific
nature. However, we may significantly increase overall efficiency of the process by performing

50 Bectauk FOYpI'Y. Cepus «BbruuciaurenpHas mareMaTnka 1 n”HOPMaTUKA»



S.A. Tushev, B.M. Sukhovilov

parallel data processing at several stages, thanks to the widespread parallel architecture (now-
adays most of the mid-high level laptops contain multi-core CPUs, as well as discrete GPUs).

In this paper we will cover different aspects of the problem. We start with considering the
theoretical solution of the point correspondence problem by the means of epipolar geometry
(Sections 1.1-1.3) and estimating its complexity (Section 3.1). Section 1.4 describes our iterative
scheme that allows us to use near-polynomial time clique finding algorithms that are described
in section 1.5. Section 2 covers our software implementation of the algorithms. Test results are
provided in Section 3. Our findings are summarized in the final section, “Conclusion and future
work”.

Related work. Point matching is one of the key tasks in computer vision. Most works
rely on having photometrically distinct features that allow computing a descriptor from image
data [8, 9]. SIFT [3] and SURF [4] are among the most popular and widely used methods. We
can name BRISK [8] and FREAK [11] among the developments of the recent years. There are
also works that consider hybrid approach, such as [12]

However, due to the usage of photometrically identical targets, we should rely solely on
epipolar geometry. One of the most fundamental works that cover multiple aspects of computer
vision, including epipolar geometry, is [1]. There are two primary approaches to finding point
correspondences via epipolar geometry: so-called clustering method, which operates within 3D
space, and plane-based methods. Various techniques that utilize the clustering method are
considered in [13, 14|. Among the papers that describe the plane-based approach, we can name
both classical works by Maas [15, 16|, Zhang et al. [17], as well as recent papers, such as
[18, 19]. Fraser in [20] describes “presently adopted approaches for close-range photogrammetric
network orientation, along with three categories of processing for 3D point determination”.

Modern photogrammetry systems, such as V-STARS [21] or Agisoft PhotoScan [22]| are
likely to use similar approaches to finding point correspondences. However, due to commercial
considerations, very little information concerning the internal target detection mechanisms,
point matching algorithms etc. is available. Among the few works that consider various aspects
of photogrammetry systems we can name [5| as the closest one to our photogrammetric system.

In this paper, we propose new effective graph-based algorithms that utilize epipolar geom-
etry for finding point correspondences across the whole set of images. This is, to the best of
our knowledge, a new approach; other techniques that utilize epipolar geometry for point
matching are based on 2, 3 or 4 images [15, 23].

An extension of 4-images approach to an arbitrary number of images has been reported by
Dold and Maas in [16], although they state high computational complexity of their method
that “grows exponentially with the number of images and would hardly be tolerable in an
application with 18 images”. However, our method, despite utilizing similar principles of epi-
polar geometry, is different: we use a graph as a mathematical model of point correspondence
problem, so that each clique in the graph represent a potential matched point across all images
in the set. Thus we can “automatically” get all point matches, by choosing the largest disjoint
cliques from the graph. We also consider additional information such as clique weight to choose
the best candidates for establishing point correspondence. While we encountered the same
exponential computational complexity within our superclique approach, we developed another
approach that allows to find exact point correspondences across the whole range of images in
a reasonable time. It includes our new parallel graph-based algorithms along with an iterative
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scheme. Thus it makes it possible to find an exact solution of the point correspondence problem
for hundreds of images in a fast and efficient way.

Another approach that utilizes epipolar geometry, tree hierarchy, graph theory and clus-
tering was reported in [24].

1. Theory

1.1. Epipolar geometry and point correspondence

Epipolar geometry describes the so-called stereoscopic pair — two cameras with known
relative pose and orientation that observe the same three-dimensional object.

Suppose that point X is simultaneously observed by two cameras: the left camera with
optical center Or, and the right camera with optical center Or (Fig. 1). The real (three-dimen-
sional) point X is projected on the left and right image planes as X1, and Xg correspondingly.
The baseline, which connects cameras’ centers O, and Og, intersects with image planes in
points e, and er, which are known as epipoles [1].

X —cDipolar line
corridor boundaries

Camera 1 Camera 2

Fig. 1. Epipolar geometry and epipolar corridors

Apparently, each 3D point X has its own epipolar plane that goes through baseline and
through X (thus through Xj, as well). The intersection of the epipolar plane with the right
image plane forms an epipolar line that goes through Xg.

Given a case where real 3D coordinates of X are unknown (for instance, processing a set
of images when we have only two-dimensional coordinates of Xi1), we cannot unambiguously
locate Xr on the right image due to the loss of depth when projecting the point to an image
plane. However, it is still possible to narrow the search area of the corresponding point Xgr
from the whole image to epipolar line.

An epipolar line (in the form of ax + by + ¢ = 0) that corresponds to Xy, in the right image
can be described as (1), according to [25]:

e=F- X, (1)

where e is the column vector of coefficients a, b and ¢, X;, is the column of homogeneous point
coordinates in the left image, F is a fundamental matrix calculated for the given pair of images
by camera intrinsic parameters K and camera relative pose and orientation, which are repre-
sented by essential matrix E [1]:
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F=K1-E-K, 2)
Essential matrix E can be calculated as (3):
0 —tx(3) tx(2)
E=|tx(3) 0 —tx(1)| "R, (3)

—tx(2) tx(1) 0

where tx is the normalized translation vector between the cameras’ centers. Given the pair of
translation vectors t; and t,. which define location of the cameras’ centers in some global coor-

dinate system, we can calculate tx from (4) and (5):
tx’

tx = , 4
Viiex!ll )
tx' =tf —R-t], (5)

where R is the rotation matrix between the two cameras. It can be found by (6) from a pair of
rotation matrices A; u 4, in some global coordinate system:
R=A,-Al. (6)

It is evident that epipolar line on the right image can go through several different image
points, thus making the point correspondence problem to be non-trivial.

In order to use the epipolar geometry, camera poses and orientations should be known
before making calculations. In our photogrammetric system we use so-called coded targets that
provide us with the global coordinate system for all images [26].

Unfortunately, real cameras are not as perfect as their mathematical models are. In the
right picture, the point may lie slightly off the calculated epipolar line due to some degree of
uncertainty in the estimated relative camera position or due to the camera’s manufacturing
imperfections. Thus in practice it is better to use the epipolar corridor of width d that is more
likely to contain the point.

Switching from epipolar lines to epipolar corridors brings even more nearby candidate
image points into the correspondence search area. Moreover, some of the images may contain
extra artefacts inside of the corridor (such as glares or reflections mistakenly recognized by the
system as retroreflective targets). Thus, point matching algorithm should be robust and insen-
sitive to various disturbances and artefacts.

1.2. Epipolar geometry and point correspondence

We propose to use the multipartite graph G={V;E} as a mathematical model of the point
correspondence problem. Graph G consists of a set of image points V (graph vertices) and a
set of possible correspondences between points E (graph edges). A pair of points is considered
adjacent if each point of the pair lies within the epipolar corridor calculated for the opposite
point of the pair. Each single image forms a separate part of the graph (because vertices that
represent points in the same image cannot be adjacent), so the whole graph becomes k-partite,
where k is the number of images.

The algorithm for building the graph from epipolar data is given below. For each pair of
images we calculate fundamental matrix F using (2) — (6). Then we process each pair of image
points in the “left” and “right” images of the pair. For each point of the pair we calculate
epipolar line on the “opposite” image (the one that the point does not belong to) and Euclidian
distance to this line for the other point of the pair. When the mean pixel distance to the
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epipolar lines (7) is not greater than the half of the allowed width of the epipolar corridor, two
vertices in G become adjacent with the edge weight w, equal to (7):

1 le; - prl le, - il
w=72= ) (7)
2 \Ve (1)2+e;(2)2 e (1)%2+e,(2)2
Here e;, e, are the column vectors of coefficients (1) for epipolar lines in the left and the

right image correspondingly; p;, p, are homogeneous pixel coordinates of image points in the

left and the right images (8):

Xpax

YVpx
1

p= : (8)

This algorithm has a large number of independent calculations and possesses high cy-
clomatic complexity, which makes it a good candidate for parallelization. We describe our
parallel implementation of this algorithm in Section 2.1.

1.3. Epipolar geometry and point correspondence

The exact, theoretical solution of the point correspondence problem is a superclique — a
clique in a supergraph, a graph where each vertex represents a clique in graph G (a clique is a
subset of graph where every two distinct vertices are adjacent).

At the first step, we should initially find all maximal cliques in G with the number of
vertices greater than or equal to some pre-defined value t (which is used to filter out artefacts).
Each clique C; = {V;} represents a possible 3D candidate point; its vertices V; represent possible
images of this point in various pictures that satisfy epipolar restraints. Besides the set of ver-
tices, each clique obtains its unique identifier.

At the next step, we build a supergraph — graph S with vertices C;. A pair of cliques C;
and C; are adjacent in S if they do not have any common vertices V; (i.e. they are disjoint:
GNnG={Vin{V}=0)

Superclique is the maximum clique of S that consists of disjoint cliques {C;} and represents
the final set of 3D points. At this step each Ci from superclique represents an actual 3D point
identified across all the pictures in the set. The superclique is the exact solution of the graph-
based point correspondence problem. This approach requires two steps.

We have introduced t before as a parameter that controls filtering various artefacts, such
as glares, blinks etc. It is assumed that those disturbances are visible in no more than t-1
pictures in the series. If a bright point that resembles retroreflective target is visible in ¢ or
more images, it can be considered as an additional 3D feature that can be used to improve
accuracy of the computations. The value of t partially depends on shape of object being meas-
ured. In our work we typically use t = 4 ... 6.

Unfortunately, the usage of the superclique approach in practice is limited due to compu-
tational complexity. Nowadays both the maximum and the maximal clique problems are con-
sidered to be NP-complete [27]. While listing all maximal cliques in G is hard, finding maximum
clique in S is much harder (as S may contain much more edges and vertices than G). We
provide some experimental data and estimations in Section 3.1.

According to our research, at the current level of technology it is impossible to use the
superclique approach for practical tasks, except for cases with low number of targets and cam-
eras that are not of any practical industrial interest.
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1.4. Exact solution of the problem using an iterative scheme

Our photogrammetric system must perform measurements in a specified amount of time.
Our tests show that the superclique approach requires large amounts of time, which exceed the
acceptable limits even for small-sized datasets.

In order to meet the time requirements we develop an iterative scheme for finding point
correspondences that uses approximate superclique finding methods, triangulation of 3D points
with filtering of outliers, bundle adjustment [28] of point and cameras’ parameters with
backprojection techniques that allow finding new point images in the pictures. This scheme
makes it possible to use approximate clique finding algorithms of near-polynomial time com-
plexity at every single iteration. Eventually, this scheme provides the exact solution of the
point correspondence problem (and estimation of their 3D coordinates) in a reasonable amount
of time.

1.5. Parallel local graph-based algorithm for finding correspondence

points

We propose a new parallel algorithm for finding point correspondence. The key idea of this
algorithm is building a number of small local graphs instead of processing one large global
graph. This is the further development of our PLG family of algorithms, which are described
in [29], with the consideration of gathered experience and criticism.

General idea. Most algorithms of this family process the whole set of point images in
series. At each iteration, algorithm builds a small-sized local graph for the current image point,
which becomes the seeding vertex, or seeding point (SP). All other image points that lie within
the corresponding epipolar corridors in all other pictures are also added to the local graph as
vertices, adjacent to the seeding point (NP). The corresponding edge weight is calculated by
equation (7). In the next step, the algorithm analyses epipolar geometry of the newly added
point images and adds more edges to the graph between existing vertices. Some members of
the PLG family even expand the graph at this step by adding new vertices that are connected
to NP (but not to SP). Finally, the algorithm finds the maximum clique in the graph. Vertices
that form this maximum clique represent the same 3D point across all pictures [12].

An intuitive (geometrical) explanation of the working principles of the point matching
algorithms that are based on local graphs can be formulated as the following:

1. An image point (SP) is picked in a certain way from the set of all image points across

all pictures;

2. Epipolar lines in all other images are calculated for SP;

3. All other image points from other pictures that lie within some 8-vicinity of the epipolar

lines are considered as potential corresponding points;

4. New epipolar line across all other images are calculated for each of the potential corre-

sponding points;

5. In each image, we choose an image point that lies at the crossing point of the maximum

number of epipolar lines (or in some 3-vicinity of the crossing point);

6. The set of chosen image points represents the same 3D point with the maximum degree

of probability (which is proven by the experiments).

Our method conceptually resembles point matching between a triplet of images [1, 5],
however, it takes more data to consider (we analyze all pictures that contain the necessary

2017, T. 6, Ne 2 55



Parallel algorithms for effective correspondence problem solution...

scene fragment). Thus, potentially, it may achieve more accurate point matching than triplet-
based methods. Our experiments have proven this method to be robust and accurate.

Different algorithms in PLG family pick the seeding point in a different way. At present,
we consider the algorithm called PLG4 to be the most optimal. At every iteration, it picks the
vertex with the highest degree in the global graph (i.e. the image point with the maximum
number of candidate image points in the proximity of its epipolar lines), which has not been
included to any cliques before, as the seeding vertex for the current local graph. The local
graph in PLG4 must contain only vertices adjacent to SP. We consider this algorithm as more
accurate rather than PLG1 or PLG2 described in [29], thus our parallel point correspondence
algorithm will be based upon these principles.

Our parallel point correspondence algorithm. Most algorithms in PLG family work
with the converging set of image points (because image points that have formed a clique are
excluded from consideration). This feature makes data to be dependent from the previous step,
thus making parallelization of this algorithm more difficult. Besides, the exclusion of image
point from further analysis it could potentially lead to the loss of other cliques of the same
size, but with lesser summary weight of edges, which are more preferable.

parallel for each (point € 2DPoints)
G,:=0
for each neighbour € point.Targets
Gp «— vertex (neighbour)
G, edge (point < neighbour)
end for each
for each (neighbour € point.Targets)
for each (link €neighbour.Targets)
if (G,31ink as vertex)
@f— edge (1link <> neighbour)
endif
end for each
end for each
grouped_point := find maximum clique of min_weight (G,)
if (size(grouped point) = t )

{ cliques } <« grouped point

endif
end _parallel for each
cliques := sort by size (cliques)

foreach clique € cliques
foreach clique2 €cliques[clique...end]
if (clique N clique2 # Q)
cliques := cliques \ clique?2
endif
end for_ each
end for_ each

Fig. 2. Parallel PLG algorithm pseudo-code

In our new algorithm, we decided not to exclude the image points that have formed cliques
from further processing, so the input dataset does not converge with time. This not only sim-
plifies parallelization of algorithms, but also allows creating a brand new approach based on
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local graphs as well. A sequential implementation of this approach is also possible, although it
is far less effective.

Therefore, our parallel algorithm for finding point correspondence consists of two stages.
At the first stage, we build local graphs for all image points in a parallel. The algorithm also
tries to find maximum clique in each local graph that it builds. Once the parallel stage is
complete, we refine the resulting set of cliques to get rid of the clique intersections. Our new
algorithm is provided in pseudo-code given in Fig. 2.

find maximum clique of min weight procedure searches for the maximum clique
in Gp, choosing the one with lesser summary edge weight in case of two cliques of the same
size being compared. From practical point of view, clique with lesser summary edge weight has
it vertices located closer to the corresponding epipolar lines, thus being more preferable over
the clique with greater summary edge weight.

2. Implementation

We implement both epipolar-corridors-to-graph and the point correspondence algorithms
in C++11. We use Microsoft Visual Studio 2015 C++ Compiler to build our code.

In the current version of our software implementation of algorithms, we use Microsoft C++
Concurrency Runtime\ Parallel Patterns Library for the purpose of parallelization. Our choice
is based on the requirements for photogrammetric software being developed: it must run under
MS Windows on a mid-high level laptop. Current software only uses CPU cores for performing
calculations. We consider tailoring our algorithms to GPU architecture as one of the directions
for the future work.

Other modules of our photogrammetric system that are not described in this paper are
implemented with either GNU Octave or C+-+.

2.1. Implementation of parallel algorithm for graph building from epipolar

geometry

Initially, we had been implementing epipolar-corridors-to-graph algorithm with the use of
OpenCV 3.1 Library [30] for matrix operations (because OpenCV is the inner standard of our
photogrammetric system). However, profiling showed that OpenCV matrix performance is low,
so we chose to use Eigen 3.2.8 library [31] for matrix operations which gives us extra speedup.

Our parallel algorithm is given in pseudo-code in Fig. 3.

We modify the initial algorithm described in Section 1.2 by splitting it into several steps.
First, we build a batch of tasks (a pair of images + corresponding fundamental matrix) in a
parallel. Then we process this batch (as well in a parallel) by calculating (7) for each pair of
image points from current pair of images and writing down pairs that lie within the corridor.
Finally, we build a graph (in a form of edge list, as required by design rules) based on the data
from the second step.

These modifications make calculation of fundamental matrices to be independent from the
processing of image point pairs. Besides that, it reduces cyclomatic complexity of algorithm
from 4 nested cycles to 3 and gives us more potential for parallelization.
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pairs<i,j> := all_possible pairs (1..Njpiges)
parallel for each(pairs)
F := equations (2) - (6)
tasks « <i, j, F>
end parallel for each
parallel for each(tasks)
for each( p, € image points (i) )
e, =F-p
for each( p, € image points(j) )
ee=F-p,
if ( equation (7) < ec halfwidth )
graph « edge (p;, pr)
endif
end for each
end for each
end parallel for each

Fig. 3. Parallel algorithm for graph building from epipolar geometry

2.2. Details on implementation of parallel algorithm for point

correspondence problem

We implement our newly proposed graph-based point correspondence algorithm as a part
of clique finding module, which also implements other clique finding algorithms described in
[29].

The pseudo-code of the new algorithm is given above in Fig. 2.

In order to find the maximum clique, we use modified Konc and Janézi¢ [32] Maximum
Clique Algorithm, also known as MCQDyn. We use its reference implementation 33| as the
basis of function find maximum clique of min weight in Fig. 2. Our modifications of
this algorithm are described in the next Section 2.3.

Our clique finding module also contains implementation of other sequential point corre-
spondence algorithms described in [29]. We use those algorithms as competitors to our new
parallel algorithm. Most of those algorithms (i.e. PLG4) also use MCQDyn to find the maxi-
mum clique. However, other sequential algorithms, such as CE, find all maximal cliques in a
graph. In order to do this, we use Tomita’s variation [34, 35] of Brohn—Kerbosch algorithm [36]
with pivoting. Our code is based on Ozaki’s implementation [37] that uses adjacency lists built
upon unordered set from Boost [38].

2.3. Implementation of the modified Konc-Janézi¢ algorithm

for the maximum clique with minimal summary edge weight

Most maximum clique algorithms are only capable of finding clique with the maximum
number of vertices. In tasks related to epipolar geometry it is also important to consider the
summary edge weight of a vertex set (which is also called cliqgue weight). Edge weight defines
how far the vertex is from its corresponding epipolar line, thus clique weight shows how close
this vertex set lies to its corresponding epipolar lines. Given two cliques of the same size, we
should prefer the one that has lesser summary edge weight.

In the text below we name key differences of our implementation of Konc-Janézi¢ maxi-
mum clique algorithm (also known as MCQDyn) that find maximum clique with minimal
weight from its reference implementation [33].
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We introduce additional data structure for keeping edge weights. It is implemented as
unordered map<pair<int,int>, double>, which has search time complexity of O(1).
For working with clique weight, it is also necessary to implement the corresponding
clique weight function.

Immediately after exiting the recursion call, the reference version of the algorithm checks
whether the newly found candidate clique Q can unseat current maximum clique QMAX by
the following criterion: |Q| > |QMAX|. Our modified criteria is given in Fig. 4. It also skips
cliques with the size lower than ¢ (threshold), which is used for filtering out artefacts:

if |Q] = threshold
if |Q| > |QMAX| OR
|Q|l = |QMAX| AND clique weight (|Q|)<clique weight (|QMAX])
QMAX :=Q
endif
endif

Fig. 4. Modified QMAX unseat criterion

3. Experimental results

Test machine A is equipped with Intel Core i7-6700K processor running at 4.0 GHz (4
cores, 8 threads) and 48 GBs of RAM. We as well estimate integral algorithm efficiency (section
3.4) on machine B, which is equipped with Intel Core 2 Duo CPU running at 2.66 GHz (2
cores, 2 threads) and 4 GBs of RAM. Except where otherwise noted, we provide average run-
ning time for a series of n=10 launches with the same input data as “running time of algorithm”.
All datasets can be downloaded from https://github.com/tushev/pplgx-sample-data.

3.1. Estimation of complexity for superclique approach

In order to estimate time complexity for superclique approach, we use one of our test series
with 74 pictures and 122 spatially dense retroreflective targets. We obtain graph G with 1 048
vertices and 19 542 edges with edge density of 3,56%. The corresponding supergraph S consists
of 16 356 vertices m 77 140 880 edges with edge density of 57,67%. It took 74,4 seconds on test
machine A just to build S’s adjacency matrix in RAM (with the total program’s memory
consumption of 6,97 Gb). In comparison, the previous step that found 16 356 maximal cliques
in G took only 0,138 seconds. We were unable to find superclique as we had to terminate
superclique discovery step after more than 2 hours of computations.

Thus, at the moment, the superclique approach may only be of theoretical interest. It is
unsuitable for most practical photogrammetric applications (except for the cases with small
number of cameras and targets) due to high time complexity.

3.2. Experimental results for parallel graph building algorithms

Tab. 1 provides average running times for three variants of the epipolar-corridors-to-graph
algorithm: classic sequential implementation that uses OpenCV library for matrix operations,
parallel implementation with OpenCV and parallel implementation with Figen library for ma-
trix operations.
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Table 1
Running time of graph building algorithms from epipolar geometry, s.
# of |Total images| Avg. images of parallel- .
# . . . . parallel-cv . classic
pictures of points points per picture eigen
23 2186 95 0,8658 0,3831 5,0344
2 30 1288 42 0,5966 0,3606 2,0730
89 896 10 0,4149 0,2776 0,3608

We use three different photographic sessions as input data. The data given in Tab. 1 sug-
gest that our parallel OpenCV implementation runs faster than sequential implementation on
dense sessions (like datasets 1&2), while the overheads slow it down on the small-sized sparse
dataset 3. Nevertheless, the Eigen-based parallel implementation always runs faster because of
better performance of matrix operations. All the tests are performed on machine A.

3.3. Experimental results for point correspondence algorithms

for synthetic data

We develop a simulation model of our photogrammetric system to estimate efficiency of
point correspondence algorithms. This simulator includes graph generator, which allows to
form synthetical graphs with the specified number of “pictures” taken, number of targets and
number of artefacts. By varying these parameters, we obtain graphs with different number of
vertices, edges and different edge density.

Tab. 2 contains average runtime of point correspondence algorithms on different synthetic
graphs on machine A.

Table 2
Running time of point correspondence algorithms, s.
. Graph edge
Graph # | Vertices | Edges . Images | PPLGx, s |PLG4, s| CE, s
density
1 2 188 71 024 2,97% 23 0,207 0,266 0,444
2 2175 19 722 0,83% 23 0,024 0,842 0,162
3 2 188 69 284 2,90% 23 0,191 0,27 0,439
4 2 978 42 786 0,97% 20 0,107 0,212 0,338
5 11 112 375 414 0,61% 53 2,936 7,734 4,457
6 20 590 981 122 0,46% 71 14,488 15,507 16,461
7 32739 | 1609 460 0,30% 83 30,332 219,215 | 40,253

We denote the new parallel point correspondence algorithm as PPLGx, which is described
together with sequential PL.G4 algorithm in Section 1.5. A sequential CE point matching al-
gorithm is described in [29].

The data in Tab. 2 suggest that our new algorithm is faster in all cases. However, this data
does not reflect overall matching efficiency of proposed approaches and should only be used to
compare the execution time between algorithms. To estimate overall integral matching effi-
ciency we should test our algorithms as a part of the photogrammetric system.
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3.4. Estimation of integral algorithm efficiency

As shown in Section 1.4, our photogrammetric system uses iterative scheme for finding
point correspondence that refines data accuracy on each iteration. We have chosen the follow-
ing variables as the key performance indicators: the total running time, the number of 3D
points identified, the mean reprojection error, the total number of point images identified and
the number of iterations, denoted as INV.

We have picked two test datasets that represent two kinds of situations we may encounter
while performing photogrammetric reconstruction. Tab. 3 contains experimental results for a
typical photogrammetric session, which is representative for most measurement procedures in
our practice.

Table 3
Integral efficiency of the photogrammetric system (“typical” session)
. Avg. runtime Avg. runtime | # 3D | # 2D Mean reproj.
Algorithm ] . . . N

(Machine A), s | (Machine B), s | points | points error, px
PPLGx 41,08 135,55 161 1701 17 0,396974
PLG4 45,63 139,92 161 1701 17 0,396974
CE 45,18 141,51 161 1701 17 0,396974

Tab. 4 contains experimental results for our most computationally hard case as of the

current date with high spatial density of retroreflective targets. Such situations are not com-
mon, but they contain a very large number of candidate points and therefore are the most
challenging ones. They also may lead to varying results due to different principles lying beneath
matching algorithms.

Table 4
Integral efficiency of the photogrammetric system (“extreme” session)
. Avg. runtime Avg. runtime | # 3D | # 2D Mean reproj.
Algorithm . . . . N

(Machine A), s | (Machine B), s | points | points error, px
PPLGx 187,14 502,59 253 2371 29 0,307259
PLG4 240,39 557,44 253 2379 45 0,305532
CE 269,73 597,10 251 2362 36 0,307569

We use parallel epipolar-geometry-to-graph algorithm with PPLGx and its sequential ver-
sion with PLG4 and CE.

As we see from Tables 3 & 4, our new parallel algorithm (PPLGx) is the fastest in both
cases. Also, in the “extreme” case, it converges the system much earlier than other point corre-
spondence algorithms, and finds the same number of 253 3D points as PLG4. However, in this
case, PLG4 identifies 0,33% more image points and gains slightly less reprojection error (around
0,0017 pixels).

Note on overall system accuracy. The overall measurement error of the photogram-
metric system mostly depends on final bundle adjustment procedure and the accuracy of meas-
urements of pixel coordinates of the circle targets in the images [26]. The main goal of the
point correspondence algorithm is to identify as many targets in the images as possible. Thus,
if any of the point correspondence algorithms manages to find more points than the other, the
result measurement error of the photogrammetric system (represented in this case by mean
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reprojection error) decreases (as shown in the data from Tab. 4). Otherwise, if all algorithms
converge to the same result (as in Tab. 3), the final bundle adjustment procedure gains the
same accuracy. In this case, the fastest algorithm becomes the most preferable one.

This allows us to create a kind of “switch” in our software, which detects the complexity
of the given session and asks the user whether to perform fast but slightly less accurate calcu-
lations, or precise but 20-25% slower calculations. If the given session is identified as “typical”,
the system always chooses the fast parallel point correspondence algorithm.

Conclusion and future work

In this paper we describe how epipolar geometry may be used to find point correspondences
when other methods such as feature detectors are not applicable. We introduce a multipartite
graph as mathematical representation of the system and describe how to construct it from
epipolar geometry. We also propose parallel implementation of graph building algorithm and
estimate its efficiency over sequential implementation.

We propose a new parallel graph-based algorithm for finding point correspondence, which
is based on the idea of local graphs of small size. Our tests prove that the new algorithm is
faster than other sequential point matching algorithms, both on synthetic data and as a part
of the photogrammetric system. Also, it is accurate and it produces the same results for all
sparse cases as the other algorithms. However, for spatially dense cases, it may lead to slightly
different results with negligible reprojection differences. We believe that fine-tuning of the
other parts of the photogrammetric system may mitigate these differences and regard this as
one of the directions for the future work.

We consider tailoring our algorithms to GPU architecture as the future work as well.

The work was supported by Act 211 Government of the Russian Federation, contract
M 02.A03.21.0011.
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B macrosimeit craTbe mpeyioyKeHbl mapaJsiie/bHbIe AJITOPUTMBI JIJIs IOMCKA COOTBETCTBYIONINX TOYEK B 33IaUaX
KOMITbIOTEPHOTO 3penusi. Pa3pabarbiBaeMasi KOJUIEKTUBOM aBTOPOB (POTOrPAMMETPUYECKAsl CHCTeMa OCHOBAaHA HA
UCIIOJIb30BAHUN MCKYCCTBEHHBIX CBETOBO3BPAIIAIONINX MHUIIEHEH, MIEHTUIHBIX 110 (POTOMETPUYIECKUM TapaMeTPaM.
B cBsi3u ¢ 9TUM TPaJMIMOHHBIE METOIbI IOMCKA COOTBETCTBUI HA OCHOBEe Bbluncienus neckpunrtopos (SIFT, SURF,
U JIp.) HEIPUMEHUMBIL; (POTOrpAMMETPUYECKAsl CUCTEMA UCIIOJb3YEeT METO/Ibl, OCHOBAHHBIE Ha 3IUIOJIAPHON reoMer-
puu. B macrosineit crarbe npeyioxkensbr 3DdeKTUBHBIE aJTOPUTMBI [TIOUCKA, COOTBETCTBUII MEXK Ly TOUYKAMU IO BCeil
COBOKYITHOCTH CHUMKOB (B OTJIMYKe OT KJACCHYECKUX METOJIOB, UCIOJB3YIOMUX 2-4 CHAMKA), OCHOBAHHBIE HA I'Da-
dax. [IpuBesieno ToUHOE ABYXIIATOBOE DEIIEHUE 3aJa49i Yepe3 CyIepKJMKY I'pada MoTeHIUAIbHBIX COOTBETCTBHI;
[TOKA3aHA HEBO3MOXKHOCTD ITPAKTUYECKOIO HAXOXKIEHUsI CYTIEPKJIMKYU B PEAJIbHBIX 33/[a9aX B CBI3U C BBIYUCIATEI b
Hoii cjokuocThiO. [Ipemoxkena addekTrBHas TapaUie/ibHas peajm3alys ajaroputMa gopMupoBanus rpada Ha
OCHOBE SIUIOJIIPHBIX OrPAHUYEHUI, & TAKKe ObICTPOJIEHCTBYIOMN TAPAJUIEIHHBINA SBPUCTUYECKUN AJITOPUTM 110~
ucKa KWK B gaHHoM rpade. [Ipumenenue urepalioHHON CXeMbl ¢ OOPATHBIM HPOEIMPOBAHUEM TOYEK, OTCEBOM
BBIOPOCOB U ypaBHUBAHUEM KOOD/IMHAT TOUYEK U MOJIOKEHUI KaMep Yepe3 MeTOI CBSI30K [TO3BOJISIET B UTOre MOJIYYaTh
TOYHOE PEIeHre 3aJ[aYU € UCIIOJIB30BAHUEM IBPUCTUYECKOIO AJIFOPUTMA IIOMCKA KJIMK Ha KaXKj1oii ureparuu. [Ipe-
JIOXKEHHAsI apXUTEKTYPa CUCTEMbI JIA€T 3HAYMTEbHBIM BHIUIPHINT BO BpeMeHu. PaszpaboraHbl IPOrpaMMHBIE DEaJIvi-
3aliU OIKMCAHHBIX aJI'OPUTMOB. BBINIOJIHEHA CDABHUTEbHAS ONEHKA (D MEKTUBHOCTU U IPOU3BOIUTEIHLHOCTH [IPEJI-
JIOXKEHHBIX AJITOPUTMOB IPUMEHUTEJILHO K pa3pabarbiBaeMoil (DOTOrpaMMETPUIECKO CUCTEME, IKCIEPUMEHTATBLHO
noirBepK aeHa 3(OEKTUBHOCTD MPEJIAraeMbIX PEIEeHHIA.
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