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The structural inverse gravity problem in a multilayer medium is one of the most important geophysics
problem. Until recently, the problem was reduced to the separation of gravitational fields and the restoration of
unknown layers independently. Now the methods are in demand that allow find unknown layers simultaneously.
For solving Urysohn integral equation of the first kind describing the problem regularized algorithms
Levenberg—Marquardt type with weight factors are investigated. A new Levenberg-Marquardt type method
based on Levenberg—Marquardt scheme is proposed. A regularized Levenberg—Marquardt type method compared
with classic Levenberg—-Marquardt method. For classic Levenberg—Marquardt method some computational
optimizations are offered. The numerical experiments using model gravitational data allow to compare
convergence rates, relative errors and program execution times of classic Levenberg—Marquardt algorithm and
Levenberg—Marquardt method. The parallel programs implementing the algorithms are developed using CUDA
and OpenMP technologies.
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Introduction

This paper is concerned with iterative solutions solving the inverse structural gravity problem
in a multilayer medium and is a continuation of the series of works [1, 2.
Hence we consider an operator equation

A(u) = f, (1)

where A(u) is nonlinear Frechet differentiable integral Urysohn type operator between Hilbert
spaces U, F', u = (u, .., ur) are unknown functons describing L desired interfaces, f is the total
gravitational field. The solution of (1) does not depend continuously on the data and thus using
of noise-contaminated data would lead to a meaningful deviation from solution. Hence a stable
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solution of (1) requires regularization techniques, for example the method of Tikhonov. We obtain

A(u)*(A(u) = f5) + a(u—u’) =0, (2)

where A’(u)* is a conjugated operator for derivative operator A’(u), a > 0 is a regularization
parameter, ||f — fs|| <4, u® is an initial approximation. So we will assume solving equation (2).
To solve (2) the regularized Levenberg—Marquardt algorithm can be used |[3]:

utT = A (W) A () + ad] A () (AW — f5) + alu — ) (3)

where v is the damping factor. This method used in iterative solution nonlinear inverse problems
of filtration, borehole and exploration geophysics ( [3-5]) etc. In the article [6] the method
(3) strong convergence to the solution is set up for the Tikhonov-regularized equation on the
assumption that the condition of the sourcewise representability of the solution z of the equation
(1) and the Lipschitz conditions for the derivative of the operator A are fulfilled and the initial

approximation is taken from a rather small neighborhood of the regularized solution.
[A" ()| < N1, ([ A (u) = A'(v)|| < Nafju— v,

z—&=A)*, |v| <1/Ns.

This method is complex to implement. It takes a lot of time for matrix to matrix multiplication,
matrix inversion. It is possible to use iterative methods for matrix inversion, so the iterative
process is two-step: at each step we reduce the problem to SLAE, which we solve by some
iterative method. We can see that LM algorithm tends to have larger computational overheads
with an increase in the size of input data.

The previous work [2] is concerned with a regularized Levenberg—Marquardt method (CLM)
which within the weight factors approach proposed in [7] lets find simultaneously several
structural boundaries described by unknown functions uyg, .., ur, in equation (1) using the total
gravitational field f. Weight factors w; will be chosen as follows:

F=[F,F, ... Fr] = (fi, fo, s frxpy oo fLxMxN)

— (w17w27 ey wLXMXN)?

w; = ﬂ, 6 > 1, (4)
max | fi|?
where Fj(l = 1,2,...,L) are anomalous fields generated by the gravitating mass located below
the corresponding depths H; for the sought surfaces of interface S;(l = 1,2, ..., L). Weight factors
depend on field F; which separated from field original F' using preliminary processing of gravity
observations [§].
Linearized gradient type methods based on linearized steepest descent method with weight
factors (5) for solving the gravity problem are considered in works [9, 10]

1S ()12

- |
[ (S ()P

uf T = uf — Pw; Si(u"), (5)

where S(u*) = A'(u¥)*(A(uF) — f), ¢ is damping factor. This method is suited to deal with

multilayer problem but there is a matrix to matrix multiplication operation.
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Also in [11]| a Levenberg-Marquardt gradient method based on Landweber-type scheme is
proposed

Bk g (Ai[u*] — F;) 0Ai[u]
VA [u]|2 Guk

As seen, this method is fast but is suitable only for finding interfaces in two layer model.

The present paper is focused on comparison of relative errors, numbers of iterations and
computation times between classic regularized Levenberg-Marquardt method (LM) and CLM.
Here there are used gravitational field models with uniform 15% noise. In a view of big memory
consumption and high computational complexity of LM some algorithmic optimizations are
proposed. On a basis of algorithms the parallel programs are implemented using OpenMP and
CUDA technologies. The perfomance estimations of parallel programs are obtained.

The rest of the paper is organized as follows. The section 1 is dedicated to inverse multilayer
gravity problem definition. The section 2 devoted to LM and CLM description. The next
section 3 describes a techniques and principles used for program development. The section 4
presents the numerical results using quasi-model gravitational data and the results of parallel
implementations. The final section lists the conclusions.

1. Multilayer structural gravity problem statement

The three-dimensional structural inverse gravity problem on finding interfaces between
medium layers on the basis of data on the gravitational field measured in a certain area of
the earth surface, and the density jumps.

It is assumed that the lower half-space consists of several layers with a constant density
Aoyl = 1,..,L), divided by desired interfaces S;, where L is the number of interfaces (fig. 1).
The gravitational effect of such a half-space is equal to the sum of the gravitational effects of all
the interfaces.

z

Fig. 1. Model of multilayer medium

Let the interfaces be described by the equations u; = u;(x,y) and the jumps of density are
equal to Ao;. The interfaces have horizontal asymptotic planes u; = Hj, i.e.

lim  |w(z,y) — H| = 0.

|2,y =00
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Functions u; = u(z,y) describing the desired interfaces satisfy operator equation (2), operator
A takes the form

I “+00 +00
1 1
Alu) = ; fA(”zm_é _4 { [(z—2)2 + (y = ')* +ui(z,y)] /2 (6)

1 / /
_[(x — 22+ (y—y)? +H12]1/2} = Ag(a',y),

where f is the gravitational constant, Aoy(l = 1,.., L) is the density jump, Ag(z',y') = Zlel q
is the sum of an anomalous gravitational fields. Preliminary processing of the gravity data with
the aim to select the anomalous field from the measured gravity data is performed using the
methodology [8]. The problem is undetermined because of attemption to find several unknown
functions u; = w(x,y) from the given function Ag(z’,y’). So it’s necessary to use the weight
factors which can be found from formula [7].

2. Numerical methods for solving the problem

To solve (6) the regularized Levenberg-Marquardt algorithm with weight factors can be used:

WL = b A (P A (WF) + ad]TEALA (WF) (A" — f5) + alu — a0, (7)

where A is operator with a corresponding diagonal matrix with the weight factors on the main
diagonal.

Remark. In nonlinear inverse gravimetry problems in a discrete representation the
matrix A’(u”) is ill-conditioned which entails significant increasing the condition number of
A’(uk)*A’(uk).

The second method is a Levenberg-Marquardt regularized Levenberg—-Marquardt algorithm
[2]. Here iterative process approximates each of the solution components u;, [ =1, .., L:

= AL (A~ 1)+l ) ®

where

b d
1= [an/ / K{L(x’,y’,:v,y,Uf(x,y))dﬂf’dy’}

b d
x[an/ / KL(x,y,x’,y’,Uf(SE,y))dwdy],

where K| (z',y',z,y,uf(x,y)) is transposed kernel function of K/, (z,y,2',vy,uf(z,y)), A’ (uf)*
is a transposed derivative operator in uf The value ¢; depends on uf“ The process (8) is
implemented in discrete form

K}

= - ’ngl wi,i [{A'(Uf)T(A(uk) — f5)}i + aluf; u?i)} ; (9)

where

N M
1 = [an SN K (s Yo {7 0, Uﬁi)Aw’Ay’]

k=1m=1

N M
X |:an Z Z K;L(:Ukv Ym, {.ﬁl, y,}iv uf(xka ym))AxAy] )
k=1m=1
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Here we don’t need computation of the inverse of matrix A’(u*)T A'(u¥) + al. It makes
this method more economical for numerical solution then (7) which computational complexity
is O(n3) because of multiplication A’(u*)T A’(u*) and matrix A’(u*)T A’(u*) + oI inversion. The
computational complexity of (8) is O(n?) because the most time-consuming operation here is
A’(uF)T matrix elements calculation and matrix-vector multiplication.

Discretizing equation (6) on the n = M x N grid with the given right-hand side Ag(z’,y") and
approximating integral operator A(u) using the quadrature formula, we obtain the right-hand
side F(z',y") of M x N dimension, the solution vector u(z,y) = [u1(z,y), .., ur(z,y)] of Lx M x N
dimension, the derivative matrix of operator A’(u”*) of (M x N) x (L x M x N) dimension, and
the system of nonlinear equations

Aplu] = F,. (10)

The ||An[u¥] — F,||/||Full < € relative error condition for comparing the exact and numerical

solutions with a sufficiently small € is taken as the termination criterion.

3. Optimization, parallelization and implementation

A big size matrices in LM algorithm require large amounts of memory. For example, when
L =3, M =N = 1000 the matrix A’(u*)*A’(u*) type of double allocates ~ 67 Tbh. Also full
matrix-matrix multiplication is very computationally expensive problem. So to reduce memory
allocation the decision was made to make all matrix-matrix and matrix-vector computations
flying: a matrix element is calculated at the time of access to this element. Let it show.
Previously the system of non-linear equations (10) reduces to the SLAE:

B(uF)uF 1 = [A' (M) T A'(uF) + adluf T = b, (11)
where b = [A'(u
and [A'(u*)TA
A (u)TA (u”)
multiplication replacing it matrix-vector twice operation. Further the system (11) can be solved

T A (uPF) + aduf — AA" (uF)T (A(uF) — f5). Here we obtain A'(u®)T (A(uF) — fs)
"(uF)]u* on the fly. Within the "associative law"[A’(uF)T A’(u*)]u* equals to
u¥], so "on the fly"technique makes it possible to avoid matrix to matrix
by iterative gradient-type methods, minimal residual method e.g [12, 13]. A method chosen in
this work is a minimal residual method.

Parallel algorithms for solving (6) are implemented numerically on the multicore Intel
Xeon processor and NVIDIA Tesla M2050 graphics processors unit incorporated in the parallel
computing system Uran at the Institute of Mathematics and Mechanics of the Ural Branch
of RAS. The parallel algorithms are implemented on the multicore Intel Xeon processor using
the OpenMP technology and Intel MKL library and on NVIDIA Tesla GPUs using the CUDA
technology and CUBLAS library.

For the multicore Intel Xeon processor, the optimization of the vector-matrix operations
using the Intel Xeon compiler options and the loop vectorization using the directive #pragma

simd are implemented.

4. Results of numerical experiments

The structural inverse gravimetry problem of finding model interfaces Si,Ss,S3 for the
four-layer medium with the density jumps was solved using the quasi-model original gravitational
data and with uniform noise with an amplitude of 15% noise for the grids 100 x 100 km? and
1000 x 1000 km? . The gravitational field (fig. 2) is a real but density jumps are taken from
model, the model surfaces are based on the quasi-real surfaces constructed in work [9].
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Puc. 2. Total gravitational field (left) and 15% noised total field (right) (mGal)

The distances to the asymptotic planes were taken as H; = 8 km, Hy = 15 km and H3 = 30
km. The density jumps were Ag; = 0,2 g/cm?, Aoy = 0,1 g/cm3, Aoz = 0,1 g/cm?. The grid
steps were equal to Az = 2 km, Ay = 3 km.

The part a) of the fig. 3 shows model interfaces Si, S2, S3. The part b) shows reconstructed
interfaces by LM and the part ¢) shows CLM results. The parts d) and c) shows reconstructed
interfaces by LM and CLM from noised gravitational field.

The table presents the computation times for solving the gravity problem in the three-layer
medium for model interfaces with /without noise by the using LM, CLM methods for the grids
of 100 x 100 and 1000 x 1000 dimensions. The weight factors were obtained from preliminary
selected fields by formula from [7] with parameters o = 1, 8 = 1, 1. The regularization parameter
a = 1073 and the dumping factor v = 1 were taken for both methods. The termination criterion
€ was set to 0.25. In the second column of the table number of iterations for gravitational data
without noise is written, in the third column number of iterations for gravitational data with 15%
noise is shown. The relative errors 0; = ||ug — ue||/||ze|| for comparing the exact u. and numerical
solution u, for each i layer are shown (for original gravitational data). In the last columns the
solution times are shown: This the solution time on one core of Intel Xeon, 75 is the solution
time on eight cores of Intel Xeon, T3 is the solution time on NVIDIA Tesla M2050 GPU. Data in
the top substrings corresponds to 100 x 100 grid and data in the bottom substrings corresponds
to 1000 x 1000 grid.

Table
Relative errors and computation times
Method | Nyy | Nisw | 61 O 03 Ty T T3
LM 30 57 0,052 | 0,026 | 0.051 | 4 min. 6 sec. | 2 min. 15 sec. | 22 sec.
11 h. 40 min. | 1 h. 25 min. 35 min.
CLM 10 19 0,051 | 0,035 | 0,060 | 33 sec. 16 sec. 2 sec.

1 h. 12 min. 10 min. 3 min.

Conclusion

On a base of Levenberg-Marquardt and componentwise Newton type algorithms
a Levenberg—Marquardt method is proposed. This method joins advantages of
Levenberg—-Marquardt scheme in solving gravity multilayer problem and simlicity in
Levenberg—Marquardt apporoach in the Gauss—Newton method. At the same time a regularized
Levenberg—Marquardt type method avoids some of the complexities associated with using classic
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Puc. 3. Comparison of the exact solutions with numerical with parts a) exact solutions, b)
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Levenberg-Marquardt method. At first, the inversing an ill-conditioned matrices using internal
iterative process. In the second place, matrix-to matrix multiplying entails high computational
complexity and big memory consumption. This problem may be solved by "on the fly"technique.
The results of numerical experiments show that CLM method has better convergence then
classic LM. The both methods are resistant to uniform noise. For large-scale grids, when the
data cannot be stored in the memory, "on the fly"technique is the fastest. The computations’
acceleration and efficiency on multi-core and graphic accelerators are sufficient. At small grid
sizes, the acceleration S,, < n, where n is the number of processors, but when the grid size
increases it is equalized S, =~ n and an efficiency F, ~ 1. This means a high resource parallelism
of algorithms.
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In the future, the question of theoretical interest of the Levenberg—Marquardt method
concerns investigating its convergence properties, the conditions on the kernel of the integral
operator in equation (1). The obtained conclusions will be useful for another applications.
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[Tocrynmuna B pemaknuio: 05.06.2017

CrpykTypHas obparHasi 3ajlada TDAaBUMETPUM B MHOIOCJIONHON Ccpeje sIBJsSIeTCsl BaKHeimeil u3
reodusndeckux 3amad. o HemaBHEro BpeMeHH 3a/a9a CBOMWIACH K PA3/IEJEHUI0 TPDABUTAIMOHHBIX IMOJIEH U
BOCCTAHOBJIEHIE HEU3BECTHBIX CJIOEB IO OT/EILHOCTH, Cefdac aKTyaJbHbI METObI, KOTOPbIE TIO3BOJISIIOT HAXOIUTH
HEU3BECTHBIE IIOBEPXHOCTH OJHOBPEeMeHHO. Jljisi pelleHusi MHTErpajibHOIO ypaBHEHUsI Y PBICOHA IIEPpBOrO poJia,
OIKCHIBAIOIIETO JAHHYIO 3314y, MPEJJIOKEHBl W HUCCJEIYIOTCS PEryJsipU30BAHHBIE METO/bl Ha OCHOBE METOJa
JleBenbGepra—MapKBap/iTa ¢ UCIIOJTB30BAHNEM BECOBBIX MHOXKHUTE . [Ipeiosken HOBBII METOT TOKOMIIOHEHTHOTO
THIIA Ha OCHOBe cxeMbl JleBenbGepra—Mapksap/ra. CpaBHUBAETCS PEryJIsSIPU30BAHHBIN TOKOMIIOHEHTHBINH METOZ,
tuna JleBembGepra—MapkBapara ¢ kiaccmdeckuM. s kimaccmdeckoro Merozna  Jlesernbepra—Mapksapzara
MIPE/IJIOYKEHBI HEKOTOPBIE BBIYUC/IUTEIbHBIE ONTUMU3AINNA. 1UCIE€HHBIE SKCIEPUMEHTHI HA MPUMEPE MOJETbHBIX

I'PaBUTAIlUOHHBIX JTaHHBIX II03BOJIAIOT CPAaBHUTH CKOPOCTH CXOJUMOCTHU, OTHOCHUTEJIbHbIC omubKyu u BpeMEHa

TaThbd PEKOMEHJOBaHa K IIYOJIMKAIIUMW IIPOIr'paMMHBIM KOMUTETOM €XKIYHAPOJIHON HAYYHOU KOHQEpPEeHIIUUN
*C 6 M

«ITapasutensuble BeraucinTenbable TexHosorun (ITaBT) 2017».
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BBIIIOJIHEHHSI TIPOTPAMM KJIACCHYIECKOTO MeTona JleBenbGepra—MapkBapara u nokommnonentHoro. [lapannenbubie
IPOTPaMMbI, PeaJU3YIOIIUe JJaHHbIE AJITOPUTMbI, pa3paboTanbl ¢ ucnosb3osanueM texuojornii CUDA u OpenMP.

Karoueswie caosa: peeyaspusayus no Turonosy, peeysapudosannwvli memod Jlesenbepea—Mapreapoma,
DPE2YAAPUIOBAHHVIT NOKOMNOKEHMHBLYL Memod muna Jlesenbepea—Mapkeapdma, obpamnasn 3adaua epasuMempul,
8 MH020¢A0THO0T cpede.
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