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In this work, the initial temperature has been investigated in the Cauchy inverse problem for linear heat
conduction equation that it depends on the given temperature at specification time. In this problem, the initial
temperature distribution is unknown, but instead, there is a known temperature at the time, t = T > 0. The heat
conduction problem can be formulated as Fredholm integral first kind equation. It is well known that this problem
is an ill-posed problem and direct solution to this problem is unacceptable. An algorithm has been used to define a
finite-dimensional operator for this problem also used the generalized discrepancy method to reduce the conditional
extremum variation problem to unconditional extremum variation problem for the integral equation. The
discretization of the integral equation has made it possible to reduce this problem to a system of linear algebraic
equations. Then, Tikhonov’s regularization inversion method has been used to find an approximation solution.
Finally, the numerical computation example has been presented to verify the accuracy of the estimated solution.
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Introduction

The Cauchy inverse problem of heat equation is ill-posed in the sense that arbitrarily
“small” change in the data can produce “large” errors in the solution. The problem can be
defined in the sense of Jacques Hadamard, that a problem is well-posed if and only if the
following properties hold [1].

e The solution exists, at least one solution exists (existence).
e  The solution is unique, at most one solution exists (uniqueness).
e  The solution depends continuously on the data (stability).

It is impossible to solve the ill-posedness problem by using classical numerical methods. It
requires special techniques, e.g., regularization strategies. With the development of high-speed
personal computers, it has become more convenient to use numerical techniques to solve heat
transfer inverse problems. Theoretical concepts and computational implementation related to
Cauchy inverse problem of heat equation have been discussed by many authors, and a lot of
methods have been described [3-7].

In some of them, the author has been identified the heat flux at the front surface of a thick
plate based on the measured temperature history at the plate back surface, which is
insulated [3]. In [4] the author has been applied the numerical method involving the Laplace
transform technique and the finite difference method in conjunction with the least-squares

22 Becrauk FOYpI'Y. Cepus «BpruuciurenbHasi MareMarnka u nHPOPMATUKA»



H.K. Al-Mahdawi

scheme to an Inverse Heat Conduction Problems. The inversion model that simultaneously
highlights the measurement errors and the inaccurate properties of the forward problem has
been proposed in [5] to improve the inversion accuracy and robustness. With the assistance of
the Tikhonov regularization method, a cost function is constructed to convert the original an
Inverse Heat Conduction Problems into an optimization problem [5]. In other paper, a model
has been developed to solve the inverse heat conduction problems for a triangular wall. The
conjugate gradient method has been used with the finite element method to determine the two-
dimensional variations of the temperatures and heat fluxes on the wall surface with time [6].
In [7] the Cauchy problem for the Laplace equation in a multiply connected region was solved
by replaced the heat conduction problem to the Poisson equation and solve it in a simply
connected region with an unknown source function different from zero in the adjoined region.
The methods described in the [2] are used to solve a number of inverse problems in
mathematical physics. The fundamentals of the optimal methods have been obtained for
solving ill-posed problems, as well as ways to estimate accurate solution and accurate by order
error estimates for these methods.

The main idea in this paper is to reconstruct the source function of the diffusion equation
by using the algorithm which proposed in [8]. The corresponding inverse problem, by Fourier
series expansion, has been represented as Fredholm equation of the first kind. Hence, the
solution does not depend continuously on the data in conventional Banach spaces, so the
solution unstable [1, 2, 8|. Therefore, this is an ill-posed problem. To get a well-posed problem
Tikhonov Regularization will be using. The problem of selecting the best regularization
parameter will be solved in this paper by using the residual principal method which described
in [2].

All these steps will be implemented through the sections in this paper. Section 1 defines
the direct problem for heat conduction problem as a linear partial differential equation and
describes solution as an integral Fredholm equation of the first kind. Section 2 defines the
inverse problem and give a discerption about the known data and operator. Section 3 considers
the integral equation of the first kind and reduces it as a system of linear algebraic equations
by implementing the algorithm in [8]. Then, in Section 4 the example has been presented to
verify the accuracy of our estimated solution. Finally, the explanation of the suggested method
has been summarized in the conclusion Section with suggested future work for solving the
nonlinear backward heat problem.

1. Direct problem

The direct (forward) problem consists of passing heat conduction through a bar with the
determined boundary condition and initial temperature condition. The mathematical
formulation of this problem has been described by the following liner partial differential

equation
ou(x,t) 0%u(x,t)
= > 1
=D ——5—,0<x <1,t 20, (1)
u(0,t) =0,t >0, (2)
u(l,t) =0,t =0, (3)
u(x,0) =uy(x),0<x <1, (4)
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where the u(0,t) and u(1,t) are boundary conditions, uy(x) initial condition it is representing
the initial temperature. The (t) represents the time, (x) spatial variable and (D) denote the
dispersion coefficient.

In the direct problem (1-4), the initial condition has been specified. For solving this type
of problem there are many ways such as finite different method (FMD) and separation of
variables. To formulate this problem as the Fredholm integral equation first kind, the Fourier
series method by separation of variables has been used as follows:

— —(nm)?t o;
u(x,t) = ;ane ; 2t sin( nx), (5)
u(x,0) = uo(ic) - ; a,, sin(nmx), (6)
v a, =2 fo uo(x) sin(nmx) dx, (7)
from (5) and (7) we get )
1 2
u(x, t) = 2 fo ;e—(mﬂ t sin( nmx) sin(nmy) ug () dy. (8)

The formula (8) is rewriting as integral equation first kind for some fixed t = T as following:
1

u(x,t) = f K, y)ug(y)dy ,0<x < 1, (9)
0

or we can write it as following:
1

Au(x) = f K, y) uo(y) dy, (10)
0

where K(x,y) = %Z;’{;l e~ (T sin( nmx) sin( nmy) and uy(y) the initial function.
Where the kernel K(x,y) € C ([0,1] X [0,1]), uo(y) € L,[0,1] and f(x) € L,[0,1]. The
kernel of the operator A is closed.

2. Inverse problem

The inverse problem, described as the initial temperature uy(y) is the unknown function
inside integral. To estimate the unknown initial temperature the measurement temperature
has been given at specific time T over the specified space interval 0 < x <1

u(x, T) = f(x), T > 0. (11)

The measurement temperature includes some noise f5(x), where § > 0 defined as the range
of error, ||f5(x) — fo(x)|l,, < 6. Additionally, the inverse operator A~ is unbounded ||A7Y| =
oo, it means the solution usually poor approximated even small value of §. All this lead to the
inverse heat conduction problem it ill-posed problem because the solution is not stable.

3. Computational scheme

We considered the following integral equation of the first kind. Our target reduces this

problem to a system of linear algebraic equations
1

Au(x) = f K(x,y)uo(y)dy = f(x), T > 0. (12)
0

The kernel K(x,y,T) is an infinite series and we cannot handle infinite sum and when n
goes to oo the value e~(™°’T hecome very small for simplicity, we finite the sum of series to
10 times
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10
K(x,y) =2 Z e~ (T sin(nmx) sin(nmy), T > 0. (13)
n=1
Now introduce the operator C map L, [0, 1] into L, (0,T]
1
cu) = [ Gy uedy, (14)
0

for the numerical solution of the equation (14) replace operator C by the finite-dimensional

operator C,,, where C = C,, and C,,~A.
Next step need to divide interval [0,1] into m equal parts by points x; =M, i

0,1,..,m—1 and yj = j(lr;O), j=0,1,...,m—1, the width for each interval h = Ax = Ay =

(xi+1 — x) and x; = y;.

Now introduce the kernel function

K(x,y,) =K(x;,y;), (15)
where x; < x < Xt Vi S Y <Yj+1,0=01,..,m—-1 and j =0,1,....m—1
1
Cnu(y) =f K(x,y;) u@)dy = f5(x), (16)
0

where u(y) = (uj), j=01,...m—-1u =u(y) and fs5(x) - %, i=01,...m—1, %=
f5(xp).

Now introduces the finite-dimensional subspaces Y,, and X,, of the space L, [0, 1] consisting
all functions on intervals (x;, x;44], i =0,1,...,m =1, (¥}, ¥j+1],j =0,1,...,m — 1.

We denote by B, and Q,, the metric projection operators from L, [0,1] onto ¥, and X,,
subspaces respectively

Crti(y;) = f R (o v;) u(y;)dy = fGeo. (17)

By using the generalized discrepancy method which has been described in [8] for the
approximate solution of equation (16). We will reduce the equation to the conditional

extremum variation problem

inf{[lu@I?: u) € Y, | Cu®) + 5™ Il < 623, (18)
where f5™ (x) = Qp[fs (X)].

The variation problem (18) is reduced to unconditional extremum variation problem

inf{|[Cru) = f5" CONI? — a lu@) > u(y) € Y}, a >0, (19)
which is the version of the Tikhonov regularization method
m-1
Cmuj = h Z K (i, y;)u(yy) = fi (20)
j=0
where
Vj+1
u; = Pylu(y;)] = hf u(y),j=0,1,..,m—1, (21)
Yj
the form of operator Q,, implies that f5™ (x) = {f; : x; < x < x;41,i = 0,1,...,m — 1}, where
Xi+1
fi=On () =h [ f3(0),i=0,1,..,m—1. (22)

Xi
From (19-22) and to give the approximate solution to u(x), we can rewrite the problem
as linear algebraic equations
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Cm(uj) = fi
l[ E(XO'YO) E(x0ry1) K(xo'Ym 1)] u(yo) f5(xo)
pe| KOy KGay) o KGuym) | u(n)\ l foe) | (23)
E(xm.—pyo) E(xm;1'3’1) K(xm—lrym—l) u(ym-1) f5(xm 1)

The problem (23) is ill-posed in the sense that the inverse operator Cp, ! of Cp, exists but
it is not continuous. The problem (23) has a unique solution when solving it directly will not
give the right solution. Indeed, the linear operator C,, is ill-conditioned that any numerical
attempt to directly solve (23) may fail.

In order to find the stable solution from the equation (23) which is described Tikhonov
regularization method. The computation of the approximate solution u,s consists in solving
the Euler equation

us(0) = (CCm + a D7C 7, (24)
where C,, is the operator adjoin to the operator C,, and [/ is identity matrix and «a is
regularization parameter.

To determine the regularization parameter a in solution u;j(a) we based on the residual

principle method as described in [2]. The a should satisfy following equation
S112
”Cmu&(as) - fl ”Lz =62 (25)

4. Numerical example

Considering the problem (1-4) we need to estimate the initial temperature uy(x) from
given function u(x,T) = f(x) with known noise level § where time (T=0.1 and T=0.15),
(m=100) and D=1 for checking the approximation solution we will use the exact initial
temperature uy(x) = sin(x) in example 1 and uy(x) = 4sin(3mx) in example 2. In each example,
we can find f(x) function by using the equation (8) this called forward solution and add some
noise to apply the inverse algorithm to estimate the initial function and check it with the exact

initial temperature.
4.1. Example 1

Let the exact solution for the problems (1-4) be
Up(x) =sin(x),0 <x <1, (26)

we consider two cases under different time (T=0.1 and T=0.15) as shown in Fig. 1.

.........
. .
o ‘s

+ Uy (T)T=0

== u(x,T), T=0,1

B .
o8- o ‘. ==, T), T=0,15 B
B .

Fig. 1. Direct solution initial temperature uy(x) = sin(x)
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We can add noise to each u(x,T) for using them in the problem analysis. By using the
equation (24) we can find estimated solutions with regularization parameters o. We can use
the set of regularization parameters to obtain the best-estimated solution ag = {aq, ay, ..., s},
where a; = 107!, @; = 1072 and ag = 1075 as shown in Fig. 2.

*u(x,T), T=0

+ u(x,T), T=0 7f§(x)

—

—-a=0.1
_as01 --a=001

--a=001 H ol

N
—=a=0.001 | - a=0.0001
3

'Y [~} a N
W -—a=0.0001 2“ A Y - a=0.00001

N
o —— a= 1 Ef . N
va a=0.00001 //// N --a=0.000001
7 - - a=0.000001 7 RN
el /// \ 1
0 2
%
N N
e h
/ \\ \

X

a) T=0.1 and § = 0.057 b) T=0.15 and § = 0.052

Fig. 2. Inverse solution for the initial temperature uy(x) = sin(x)

The best regularization parameter o can be selected by using the residual principle method
equation (25) as shown in Tab. 1.

Table 1
Best a residual principle method
" ICmus () = 67|, . [Cmus (o) = £°l, .
where T=0.1 and §=0.057 | where T=0.15 and §=0.052
1+107" 1.121952241 1.089270388
1%1072 0.183193635 0.269894863
1+1073 0.039406461 0.047722743
1%107* 0.034446107 0.036155186
1%107° 0.034377304 0.036009032
1%10°° 0.034269028 0.036003374

4.2. Example 2

Let the exact solution for the problem (1-4) be
Ug(x) = 4sin(3mx), 0 <x <1, (27)

we consider two cases under different time (T=0.01 and T=0.015) as shown in Fig. 3.

T
.

+ u(x,T), T=0
ki - - - u(x,T), T=0.01

——u(x,T) , T=0.015

Fig. 3. Direct solution initial temperature uy(x) = 4sin(31mx)
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In this example, we increase noise level 6 and used the same set of the regularization
parameters in the previous example. We obtained the best-estimated solutions as shown in
Fig. 4.

—f (%)

-—0=0.1

—-—a=001
=-=-a=0.001 ——0=0.001
== a=0.0001 =-=-a=0.0001
—— a=0.00001 —— a=0.00001

—— a=0.000001

—— a=0.000001

05
X

a) T=0.01 and § = 0.114 b) T=0.015 and § = 0.106
Fig. 4. Inverse solution for the initial temperature uy(x) = 4sin(3mx)

The best regularization parameter o can be selected by using the residual principle method
equation (25) as shown in Tab. 2.

Table 2
Best a residual principle method
" [Cmus (o) = 7l . [Cmus (o) = £°], .
where T=0.01 and §=0.114 | where T=0.015 and 6=0.106
11071 4.32936173855166 4.41171841520750
1%1072 0.653083706856141 0.941489551857426
11073 0.0905050094101809 0.119829324858028
1%107* 0.0587797017102758 0.0569163570726761
1%1075 0.0578365971019751 0.0557491308369363
1%107° 0.0578001716547491 0.0550439922968124
Conclusion

This work deals with the algorithm for solving the backward heat problem and some results
have been collected. This problem is Cauchy ill-posed problem and special method need to
solve such as problem. Fourier series method has been used by separation of variables for
backward heat problem to represent the partial differential equation as Fredholm integral
equation of the first kind. The numerical analyzes successfully apply to solve the inverse heat
conducting problem by using discretization method to convert integral equation to a system of
linear equations and using the Tikhonov’s regularization method to estimate initial
temperature and checking the estimated result with exact result. From the examples, we can
note the algorithm was efficient to estimate the initial temperature depending on the given
measurement temperature with the known noise level .
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PASBPABOTKA YMCJIEHHOI'O METO/JA PEIIIEHWMNA
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B sroit pabore nHavasbHas Temmeparypa ObLia HMCCaenoBaHa B o0OpaTHON 3amade Komm jyis smHeRHOrO
YPaBHEHHUd TEIIONPOBOLHOCTH, KOTOpad 3aBHCUT OT 3aJaHHOHU TeMIepaTypbl B 3aJaHHOE BpeMd C HEKOTOPBIMA
IIyMOBBIMH U3MepeHUsAMU. B 9Toil 3a/1aue HaYaJIbHOE PACIIPEIE/IEHIE TEeMIIEPATYPhl HEU3BECTHO, HO BMECTO 3TOTO B
TO Bpemsi m3BecTHa Temmepatypa, t=T > 0. 3agady TemIompoBOIHOCTH MOXKHO CGHOPMYJIUPOBATH TaK, KakK
WHTErpajibHOe ypaBHeHuWe 1mepBoro poga DPpearospbma. XOPOIMIO U3BECTHO, UTO 3Ta MPOOIEMA  SBIISIETCS
HEKOPPEKTHON 3ajiadeif, W MPsAMOe peIleHre 3TOW MpOOIeMbl HEenmpueMmyieMo. AJICOPUTM, WUCIOJIb3yeMbIi i
Ompeie/ieHnss KOHEYHOMEPHOTO OIMepaTropa s 9TOH 3a7add, TakK»Ke WCIOJb30BAJT MeTOZ, O0DOOIEeHHO
HECOOTBETCTBUSA JIJIsi YMEHBINIEHNS YCIOBHOM TTPOOIEMBI BAPUAIIUN SKCTPEMyMa K 6€3yCIOBHON MpOOIeMe M3MEHEHS
9KCTPEMYMA [IJIsi WHTErPAJILHOrO ypaBHeHud. JMCKpeTn3anus WHTErpaJIbHOrO YPABHEHWUS ITO3BOJIMJIA CBECTH Ty
3a/]a9y K CHUCTeMe JMHEHHbIX ajredpamdeckux ypasuenuit. Torga i pemreHus ammpOKCUMAIIMYA HCIOJIH30BAJICS
MeToJ nHBepcun peryasgpusanuu Tuxonosa. Hakonerr, Ob11 peicTaBIeH IPUMEDP YUCIEHHOTO PACIETA JJISt IPOBEPKHI
TOYHOCTHU OIIEHOYHOI'O PelleHnd.

Kmoueswie caosa: nexoppekmuas 3a0aua, pe2ysapudayus, oopammnas 3a0a4a, mMenionposoorocms.
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