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The applying of the line-by-line recurrent method for solving systems of difference elliptic equations with
nine-diagonal matrices is the subject of the article. Such matrices take place in the case of difference approximation
of 2D differential problems of a higher order of accuracy on a regular grid covering the area under consideration.
The technology of the so-called compensatory transform which allows replacing the initial nine-diagonal matrix of
the system with the five-diagonal one is offered in the article, due to the fact that originally the line-by-line
recurrent method was designed for solving systems of difference equations with a five-diagonal matrix. The
efficiency of this technology is analyzed by comparing the solutions of the test boundary value problem in a unit
square. The solutions are found both with the help of different implementations of the compensatory transform
technology and by other modern highly efficient iterative methods for solving the systems of difference equations.
The problem is solved on the sequence of grids from coarse (501\times 501) to fine (4001\times 4001) nodes. The accuracy
of the solution convergence is determined by the relative norm of the residual, which is equal to 10 - 12 in the
present work. It is shown that the line-by-line recurrent method retains its high efficiency over the entire range
of the grids under consideration despite the use of the intermediate technology of the compensatory transform.
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Introduction
As is well known, many “standard” finite-difference approximation technologies for

two-dimensional differential equations of problems of fluid dynamics and heat transfer on regular
grids are based on five-point stencil. The Patankar scheme [1] can be mentioned here as an
appropriate example of this kind of technologies. This technology yields an algorithm which
strictly provides monotonicity and central-point dominance of the finite-difference five-point
scheme. And as a result, a system of linear algebraic equations (SLAE) with a five-diagonal
matrix of positive type arises [2]. The Patankar scheme has shown itself well in numerous studies.
However, the need for higher-order accuracy schemes arises in a number of cases. For example, the
five-point central-difference scheme provides a smaller error than the Patankar scheme, despite
the fact that these schemes are formally of the same order of approximation. Unfortunately, the
SLAE matrix obtained on the basis of the central-difference scheme can lose its positive type in
certain conditions.

One can use the nine-point stencil (five points along each direction) to avoid this difficulty and
increase the approximation order at the same time. In this connection a variety of higher-order
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numerically stable schemes was developed using the nine-point stencil [3–8]. As a rule, the
convective flux discretization is the focus of a higher-order difference approximation, as it was
done in the previously cited works. While, the diffusion part of the transport equations is usually
approximated by the standard five-point scheme of the second order accuracy. The works that use
a higher-order difference approximation of diffusion flux are found much less often [9]. Difference
approximation of differential equations with derivatives of higher order (up to the fourth one) is
another origin of difference linear equations on five points along each independent coordinate [10].
In this case, it is evident that for 2D problems the difference stencil will consist of nine nodes.

It is remarkable that the absence or cursory mention of an iterative method for solving
arising nine-diagonal SLAE is a common feature of the above works. Probably the researchers
believe that the expansion of existing methods for solving systems with five-diagonal matrices to
methods for solving systems with nine-diagonal ones is not an insuperable barrier. Indeed, the
transition of such well-known methods as block successive over-relaxation (BSOR) or line-by-line
method [1] from five-point to nine-point versions do not cause much difficulty. But on the other
side, there are effective computational technologies for the SLAE solution, which don’t have an
easy expansion up to nine-point stencils (see, for example, [11, 12]).

A deferred correction procedure was developed to overcome this problem. Its idea is that
a nine-diagonal matrix of the system of equations is replaced by a five-diagonal one which is
obtained with the use of a difference approximation of lower order in a special way. After that
one can use any available method for solution of SLAE with a five-diagonal matrix. Interestingly,
the procedure occurs in two variants in the literature. The first variant is used when there is
an independent difference approximation of the convective and diffusive terms of the transport
equation [6]. So, it operates with convective terms of the equation on the stage of their difference
approximation. The second variant of the procedure is applied to an already formed algebraic
difference equation, regardless of how it was obtained and, therefore, it is more universal [13].
The article will consider the second version of the deferred correction procedure. It should be
noted that the procedure has a weak point, namely: if there is no difference approximation of
some terms of the equation of lower order on a reduced number of nodes, then it is not applicable.
For example, such situation takes place when there are fourth-order derivatives in a differential
equation that cannot be approximated using less than five nodes. Therefore, in this case one
have to design other procedure to replace a nine-diagonal matrix of SLAE with the five-diagonal
one, which does not have this shortcoming.

Recently, a highly efficient line-by-line recurrent method was developed and successfully
used for solving systems of difference elliptic equations in some problems of computational
fluid dynamics and heat transfer [14]. This method is applicable to systems of equations with
five-diagonal matrices due to its design features in the case of two-dimensional problems [15].
However, attempts to modify this method for the case of systems of equations with nine-diagonal
matrices faced great difficulties. Therefore, the way out is to use the line-by-line recurrent method
in cooperation with an intermediate technology of matrices transformation like the deferred
correction procedure, for example. In the light of the foregoing, the objective of the work is to
develop a universal technology of matrix transformation and to investigate the effectiveness of the
line-by-line recurrent method in solving systems of difference elliptic equations with nine-diagonal
matrices.

The paper is organized as follows. The mathematical statement of a problem, namely:
definition area, differential transport equation, boundary conditions, closing formulas — are
described in Section 1. In the following Section 2, the details of the numerical technique including
high order numerical discretization, deferred correction procedure, compensatory transform
technology are given. The comparisons of solutions of the test problem obtained by different
methods are presented in Section 3. The conclusions are drawn in the final Section.
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1. Statement of problem

Let \Omega = \{ (x, y) : 0 \leq x \leq 1, 0 \leq y \leq 1\} be a unit square in Cartesian coordinates (Fig. 1) as
the definition area of unknown \Phi (x, y) which is governed by a differential transport equation.

Fig. 1. Scheme of the problem area

In this case the formulation of a test 2D boundary value problem in \Omega can be used as an
origin for obtaining a system of difference elliptic equations with the sparse matrix with the
help of difference approximation of the initial differential problem. The generalized steady-state
convection-diffusion transport equation written for \Phi (x, y) can be stated as [1]

U
\partial \Phi 

\partial x
+ V

\partial \Phi 

\partial y
=

\partial 

\partial x

\biggl( 
\Gamma 
\partial \Phi 

\partial x

\biggr) 
+

\partial 

\partial y

\biggl( 
\Gamma 
\partial \Phi 

\partial y

\biggr) 
 - S, (1)

where U(x, y), V (x, y) — flow velocity components, \Gamma (x, y) — transfer coefficient, S(x, y) —
source. Dirichlet conditions take place on the area boundaries. Let velocity components and
transfer coefficient be as follows:

U(x, y) =  - 3y2 arctanx, V (x, y) =
y3

1 + x2
; \Gamma (x, y) = exp( - l2), l2 = x2 + y2.

It should be noted that the velocity field is solenoidal one. Lastly, let the solution of the test
problem be the function u(x, y) = exp( - 10l2) cos(8\pi l2), then the substitution of u, U, V, and \Gamma 

in equation (1) makes it possible to define the expression for the source S(x, y). It is not difficult
to see that Dirichlet conditions at the area boundaries in the case of the u(x, y) are written as:

0 \leq y \leq 1 : \Phi (0, y) = exp( - 10y2) cos(8\pi y2), \Phi (1, y) = exp( - 10(1 + y2)) cos(8\pi (1 + y2));

0 \leq x \leq 1 : \Phi (x, 0) = exp( - 10x2) cos(8\pi x2), \Phi (x, 1) = exp( - 10(1 + x2)) cos(8\pi (1 + x2)).

So, the test 2D boundary value problem is defined and one can begin to solve it numerically.

2. Numerical technique

2.1. High-resolution numerical discretization

The problem area is covered by a uniform orthogonal mesh which nodes one can separate
into three groups: internal, near-boundary, and boundary nodes. The nine-point stencil with
an internal central node is presented in Fig. 2a. The so-called SMART scheme [7] is used for
higher-order approximation of (1) in internal mesh nodes. Briefly, the technology of the scheme
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obtaining is as follows [16]. Integrating the equation (1) over the control volume (Fig. 2a) and
using the divergence theorem for a Cartesian coordinate system allows getting the following
discrete equation:

Je  - Jw + Jn  - Js = Q, (2)

where Je, Jw, Jn, Js represent the total fluxes of unknown \Phi across faces e, w, n, s of the control
volume, and Q is the volume integral of the source term S. Each of the surface fluxes J contains
convective and diffusive contributions. It is expressed, for example, for the face e, as follows:

Je =

\biggl( 
Ue\Phi e  - \Gamma e

\Phi E  - \Phi P

\delta xe

\biggr) 
\Delta y, (3)

where

Ue =
UE + UP

2
, \Gamma e = 2

\Gamma E\Gamma P

\Gamma E + \Gamma P
, \Phi e =

\Biggl\{ 
\Phi W + (\Phi E  - \Phi W ) f(\widetilde \Phi P ), Ue \geq 0,

\Phi EE + (\Phi P  - \Phi EE) f(\widetilde \Phi E), Ue < 0;

f(\widetilde \Phi ) =

\left\{ 
      
      

3\widetilde \Phi , 0 < \widetilde \Phi < 1/6,

3/8 + 3/4 \widetilde \Phi , 1/6 \leq \widetilde \Phi \leq 5/6,

1, 5/6 < \widetilde \Phi < 1,

\widetilde \Phi , \widetilde \Phi elsewhere.

The tilde above unknown \Phi denotes a so-called normalized variable which is defined as
\widetilde \Phi = (\Phi  - \Phi U )/(\Phi D  - \Phi U ). Here, subscripts U,D mean upflow and downflow nodes relative the
central point, correspondingly. For example, for the face e the central node will be point P in
the case Ue \geq 0 while conversely – point E if Ue < 0. So, \widetilde \Phi = \widetilde \Phi P = (\Phi P  - \Phi W )/(\Phi E  - \Phi W ) for
Ue \geq 0, and \widetilde \Phi = \widetilde \Phi E = (\Phi E  - \Phi EE)/(\Phi W  - \Phi EE) for Ue < 0.

The fluxes through the w, n and s faces can be found in a similar manner.

Fig. 2. Finite-difference stencil for higher-order discrete approximation

The eight-point stencil with a near-boundary central node is presented in Fig. 2b. For
example, the right boundary of the problem area \Omega is chosen. For this case the general
approximation scheme described above can be applied if Ue \geq 0. In contrary, if Ue < 0 (as
in the figure) it is necessary to follow special practices. In this context, it should be kept in mind
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that a lower order approximation takes place as a result of the “windward rule” in any case. In
literature the first order upwind scheme for near-boundary node is used as a rule [6]. But in the
present work the more complex technology of Patankar scheme is adapted with a view to obtain
a second order upwind difference scheme. For this case it is not difficult to get the approximation
formula for \Phi e based on this methodology applying the profile of the fifth degree for unknown
\Phi , namely:

\Phi e = \Phi P + (\Phi E  - \Phi P ) \varphi (Pe), (4)

where, in the context of the grid uniformity

\varphi (Pe) =
\~\Psi (Pe)

2\~\Psi (Pe/2)
, Pe =

(\Gamma E + \Gamma E)(UP + UE)

4\Gamma P\Gamma E
\delta xe; (5)

\~\Psi (Pe) =

\left\{ 
      
      

 - Pe, Pe <  - 10,

(1 + 0, 1Pe)
5  - Pe,  - 10 \leq Pe < 0,

(1 - 0, 1Pe)
5, 0 \leq Pe \leq 10,

0, Pe > 10.

(6)

Indeed, as is well known, the solution of the problem “convection and diffusion”

d

dx
(\rho U\Phi ) =

d

dx

\biggl( 
\Gamma 
d\Phi 

dx

\biggr) 

for a domain 0 \leq x \leq L with boundary conditions: \Phi = \Phi 0 at x = 0, and \Phi = \Phi L at x = L is

\Phi = \Phi 0 + (\Phi L  - \Phi 0)
exp(Px/L) - 1

exp(P ) - 1
(7)

on the assumption with \Gamma and \rho U are constants [1]. Here P is a Peclet number defined by
P \equiv \rho UL/\Gamma .

The value of \Phi e in (4) is calculated according to the solution profile (7), i. e. it is assumed
that \Phi 0 = \Phi P , \Phi L = \Phi E , L = \delta xe, x = \delta xe/2, P = Pe, and \Phi = \Phi e in the formula (7). So,

\Phi e = \Phi P + (\Phi E  - \Phi P )
exp(Pe/2) - 1

exp(Pe) - 1
= \Phi P + (\Phi E  - \Phi P )

1

2

Pe

exp(Pe) - 1

exp(Pe/2) - 1

Pe/2
, or

\Phi e = \Phi P + (\Phi E  - \Phi P )
\Psi (Pe)

2\Psi (Pe/2)
, (8)

where \Psi (z) = z/(exp(z)  - 1). Because an exponential function is very expensive to compute,
\Psi (z) is approximated by Patankar’s power-law scheme (see formulas (5.27) and (5.33) in [1])
which is represented by the complex formula (6) in the present work. In other words, \Psi \approx \~\Psi . As
a result, it is easy to see that in this case the formulas (8) and (4) are almost identical taking
into account the formula (5). What was required to show.

Finally, the trivial “approximation” takes place for the third group of the mesh (i. e. for the
boundary lines of \Omega ) because of Dirichlet boundary conditions in the problem.

2.2. Deferred correction procedure

The deferred correction (DC) method is a simple and proven procedure that enables the use
of high order approximation schemes in codes initially written for low order schemes. Let, in
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general case, there be a difference scheme as a result of approximation of the original differential
equation (1) on the nine-point stencil (Fig. 2a) of the following kind

aP\Phi P = aE\Phi E+aW\Phi W +aN\Phi N +aS\Phi S+aEE\Phi EE+aWW\Phi WW +aNN\Phi NN +aSS\Phi SS+b. (9)

In turn, let the difference scheme of lower order approximation for the same equation (1) be
as follows

aLP\Phi P = aLE\Phi E + aLW\Phi W + aLN\Phi N + aLS\Phi S + b. (10)

It is easy to see, adding to both sides of equation (9) the combination of aLP\Phi P  - \sum 
nb

aLnb\Phi nb,

composed of the terms of equation (10), the DC procedure results in a five-point equation

aLP\Phi 
k+1
P =

\sum 

nb

aLnb\Phi 
k+1
nb +

\sum 

nb

(aLnb  - anb)\Phi 
k
nb +

\sum 

nnb

annb\Phi 
k
nnb + (aLP  - aP )\Phi 

k
P + b, (11)

where k is number of iteration, nb = \{ E,W,N, S\} , nnb = \{ EE,WW,NN,SS\} . It is clear that
the solution of equation (11) tends to the solution of equation (9) with the convergence of the
iterative process (i. e., with \Phi k+1  -  -  - \rightarrow 

k\rightarrow \infty 
\Phi k). At the same time, one can use any previously

created methods for solving SLAE with five-diagonal matrices to solve modified system on the
base of equation (11).

Further in the article the DC procedure will be denoted as DSPt5, since the Patankar scheme
with the profile of unknown \Phi of the fifth degree is used to the lower order approximation.

2.3. Compensatory transform technology

As was mentioned above, the DC method is usable when a lower order approximation
on a truncated five-point stencil takes place. Otherwise, one must apply other more general
technology to transform a nine-diagonal matrix of SLAE to a five-diagonal one. Precisely that
kind of a procedure, the so-called compensatory transform technology, is offered in the work.
The major idea of the compensatory transform technology is to express the iterative increment
of the sought-for solution in the “extreme” nodes of the stencil (in the Fig. 3 they are marked
in cyan) through the increment in the “internal” nodes (white and black nodes of the stencil).
So, the “extreme” nodes of the stencil are excluded and the matrix of the system of equations is
transformed from nine-diagonal to five-diagonal one.

Fig. 3. The scheme of the compensatory transform of the nine-point stencil into five-point one
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The transformation formula has the first or second order of accuracy depending on the
number of the “internal” nodes of the difference stencil used in the expression. For example, in
the case of uniform grid the formula of the first order accuracy for node EE is as follows

\Delta \Phi k+1
EE = \theta 

\Bigl( 
2\Delta \Phi k+1

E  - \Delta \Phi k+1
P

\Bigr) 
,

and the formula of the second order of accuracy for the same node is as follows

\Delta \Phi k+1
EE = \theta 

\Bigl[ 
3
\Bigl( 
\Delta \Phi k+1

E  - \Delta \Phi k+1
P

\Bigr) 
 - \Delta \Phi k+1

W

\Bigr] 
.

Here \Delta \Phi k+1 = \Phi k+1  - \Phi k – is increment of the sought-for solution, \theta is a parameter of
compensation, which should be in the range 0 \leq \theta \leq 1 [2]. It is easy to verify that the application
of the above formulas will lead out to the following expressions for the transformed coefficient in
the nearby point E

\=aE = aE + 2\theta aEE ,

\=aE = aE + \theta (3aEE + aWW )

for the first and second order of accuracy respectively. Transformed coefficients for other nearby
points W,N, S are written in a like manner. As a result, the transformed five-point difference
equation is arrived as follows

\=aP\Phi 
k+1
P =

\sum 

nb

\=anb\Phi 
k+1
nb +\=b, (12)

where for the first order of accuracy

\=aP = aP + \theta (aEE + aWW + aNN + aSS) ,

\=b = b + aEE

\bigl[ 
\Phi k
EE  - \theta 

\bigl( 
2\Phi k

E  - \Phi k
P

\bigr) \bigr] 
+ aWW

\bigl[ 
\Phi k
WW  - \theta 

\bigl( 
2\Phi k

W  - \Phi k
P

\bigr) \bigr] 
+

+ aNN

\bigl[ 
\Phi k
NN  - \theta 

\bigl( 
2\Phi k

N  - \Phi k
P

\bigr) \bigr] 
+ aSS

\bigl[ 
\Phi k
SS  - \theta 

\bigl( 
2\Phi k

S  - \Phi k
P

\bigr) \bigr] 
,

and for the second order of accuracy, respectively

\=aP = aP + 3\theta (aEE + aWW + aNN + aSS) ,

\=b = b + aEE

\bigl\{ 
\Phi k
EE  - \theta 

\bigl[ 
3
\bigl( 
\Phi k
E  - \Phi k

P

\bigr) 
+\Phi k

W

\bigr] \bigr\} 
+ aWW

\bigl\{ 
\Phi k
WW  - \theta 

\bigl[ 
3
\bigl( 
\Phi k
W  - \Phi k

P

\bigr) 
+\Phi k

E

\bigr] \bigr\} 
+

+ aNN

\bigl\{ 
\Phi k
NN  - \theta 

\bigl[ 
3
\bigl( 
\Phi k
N  - \Phi k

P

\bigr) 
+\Phi k

S

\bigr] \bigr\} 
+ aSS

\bigl\{ 
\Phi k
SS  - \theta 

\bigl[ 
3
\bigl( 
\Phi k
S  - \Phi k

P

\bigr) 
+\Phi k

N

\bigr] \bigr\} 
.

In the further, the compensatory transform technique of the first order of accuracy will be
denoted as C1 and of the second order – as C2.

3. Computed results and discussion

3.1. Nomenclature of methods and the research strategy

In general, eight different methods are used to solve the problem formulated in the first
section of the article. Nomenclature of methods (abbreviations and their expansions) is presented
in Tab. 1. The solution of the problem is calculated with five uniform grids of different resolution:
501\times 501, 1001\times 1001, 2001\times 2001, 3001\times 3001, 4001\times 4001. Thus, the number of unknowns
in generating SLAE varies from about 25\times 104 (coarse mesh) to 16\times 106 (fine mesh).

The research strategy is a comparative analysis of the characteristics of the convergence of the
methods for solving SLAE (see Tab. 1) for each of the mesh partitions of the problem domain \Omega .
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Table 1
Iterative methods for SLAE solutions construct

No. Type of Method Abbreviation expansion
transform

1 DCPt5 LR2sK Deferred Correction Procedure with profile of the fifth degree
polynomial + Line-by-Line Recurrent Method of the second
order, accelerated in Krylov subspaces [19]

2 C2 LR2sK Compensatory Transform Technology of the second order
accuracy + Line-by-Line Recurrent Method of the second order,
accelerated in Krylov subspaces

3 C1 LR1sK Compensatory Transform Technology of the first order
accuracy + Line-by-Line Recurrent Method of the first order,
accelerated in Krylov subspaces [19]

4 C1 LR1 Compensatory Transform Technology of the first order
accuracy + Line-by-Line Recurrent Method of the first order

5 C2 LR2 Compensatory Transform Technology of the second order
accuracy + Line-by-Line Recurrent Method of the second order

6 – BCGSt9 B Bi-Conjugate Gradient Stabilized Method [17] for nine-diagonal
matrix of SLAE with preconditioner on the base of explicit Buleev
method [2, 18]

7 DCPt5 BCGSt B Deferred Correction Procedure with profile of the fifth degree
polynomial + Bi-Conjugate Gradient Stabilized Method
for five-diagonal matrix of SLAE on the base of explicit Buleev
method

8 – BSOR9 Block Successive Over Relaxation Method [2] for nine-diagonal
matrix of SLAE

The maximum effective value of the iteration parameter was selected for each method in each
calculation, since all methods use the iteration parameters. In other words, an upper estimate of
the effectiveness was made for each method. This approach made it possible to correctly identify
the advantages of one methods in relation to others because all methods were placed in the same
conditions.

3.2. Results: coarse and fine meshes

The most interesting for the analysis is the behaviour of the convergence curves which are the
dependencies of the

\bigm\| \bigm\| Rk
\bigm\| \bigm\| 
2
/
\bigm\| \bigm\| R0

\bigm\| \bigm\| 
2
value on the iteration number or the CPU time of the problem.

Here
\bigm\| \bigm\| Rk

\bigm\| \bigm\| 
2

is Euclidean norm of the residual error at the kth iteration. Such convergence curves
as functions of the iteration number are plotted in Fig. 4 for the coarse and fine meshes. It is not
difficult to see that accuracy of the solution convergence is 10 - 12. The same value of accuracy is
applied in all other results of the work.

Analysis of the curves in Fig. 4a allows the following conclusions. First, the classical block
SOR method (curve 8) is not usable due to a huge number of iteration to converge the method –
more than one thousand. Naturally, there is not enough place for such curve on the graph. Second,
the combination DCPt5 + LR2sK (curve 1) is most effective both in reducing the initial residual
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Fig. 4. Behavior of the convergence curves depending on the iteration number.
Methods: 1 — DCPt5 + LR2sK, 2 — C2 + LR2sK, 3 — C1 + LR1sK, 4 — C1 + LR1,
5 — C2 + LR2, 6 — BCGSt9 B, 7 — DCPt5 + BCGSt B, 8 — BSOR9

error on the first iteration and the total number of iterations for the method convergence. And
finally, third, in whole, the versions with line-by-line algorithm are more powerful with respect
to the variants of the bi-conjugate gradient method. As to calculations with the fine mesh (see
Fig. 4b), here the results coincide qualitatively with the ones on the coarse grid, but, as a rule,
the number of iterations for solution convergence is several times greater. The absence of the
convergence curve of the BSOR9 method is explained by the lack of convergence of the method
– the relative residual error was more than 5\times 10 - 8 after 3000 iterations.

It is obvious that different methods require different amounts of mathematical operations
and, accordingly, different amounts of a CPU time to perform calculations of one iteration.
Again, a researcher is ultimately interested in the time spent by a computer for working out
a solution. Therefore, a comparison of computation times is also of research interest. Yet it is
clear, that only the relative CPU times have a sense here. In other words, only the times of
calculations performed on the same computer can be compared. Precisely such results in the
form of convergence curves are shown in Fig. 5 for coarse and fine meshes. From now on, CPU
time is presented in seconds.

It is easy to see that the combination of DCPt5 + LR2sK methods (curve 1) has not even
got into the “top three winners”. The reason is quite clear: recalculation of the right part of the
system of linear equations by DC procedure at each iteration is a time-consuming activity. Owing
to similar arguments the CPU time of the DCPt5 + LR2sK combination is almost equal to CPU
time of the C2 + LR2sK one for the 4001 \times 4001 mesh (see Fig. 5b). In all other respects, the
relative behaviours of the curves in the graphs of Fig. 4 and Fig. 5 coincide qualitatively.

As is known, the average rate of convergence is one of the most indicative characteristics of
the efficiency of an iterative method which is formulated as follows

Qk = lim
k\rightarrow \infty 

\Biggl( 
 - 1

k
ln

\bigm\| \bigm\| Zk
\bigm\| \bigm\| 
2

\| Z0\| 2

\Biggr) 
, (13)
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Fig. 5. Behavior of the convergence curves depending on CPU time. Methods:
1 — DCPt5 + LR2sK, 2 — C2 + LR2sK, 3 — C1 + LR1sK, 4 — C1 + LR1, 5 — C2 + LR2,
6 — BCGSt9 B, 7 — DCPt5 + BCGSt B, 8 — BSOR9

where
\bigm\| \bigm\| Zk

\bigm\| \bigm\| 
2
=

\sqrt{} 
\sum 
ij

\Bigl( 
\Phi k
ij  - uij

\Bigr) 2
— is Euclidean norm of the solution error, u — is analytical

solution of the problem. The curves of the average convergence rate for the performed calculations
with coarse and fine meshes are shown in Fig. 6. It goes without saying that the higher the curve
the more efficient the method is. The low-lying curve 8 once again confirms the relative inefficiency
of the classical method BSOR9. The productivities of the other methods are comparable with
each other. And as expected from the previous graphs, the highest curve 1 corresponds to the
most effective method – the combination DCPt5 + LR2sK. The almost direct behavior of the
curves in the logarithmic system of coordinates indicates a power dependence of the average rate
of convergence Qk on the iteration number k.

Fig. 6. Behavior of the average convergence rate curves depending on iteration number.
Methods: 1 — DCPt5 + LR2sK, 2 — C2 + LR2sK, 3 — C1 + LR1sK, 4 — C1 + LR1,
5 — C2 + LR2, 6 — BCGSt9 B, 7 — DCPt5 + BCGSt B, 8 — BSOR9
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Some quantitative results of solving the problem on the coarse and fine grids with the use of
the methods under consideration are presented in Tab. 2. The data in brackets for BSOR9 method
for grid 4001\times 4001 emphasize the lack of the solution convergence with the required accuracy.
Here

\bigm\| \bigm\| Zk
\bigm\| \bigm\| 
\infty value is an infinity norm of the error at the moment of solution convergence. One

Table 2
The results of solving the problem by various methods with various meshes

Mesh
Type of

Method \theta 
Number of CPU \bigm\| \bigm\| Zk

\bigm\| \bigm\| 
\infty transform iterations time, s

– BSOR9 1.9870 1 331 73.3 2.85E-05
– BCGSt9 B 0.99980 63 6.2 2.85E-05

DCPt5 BCGSt B 0.999922 92 32.0 2.88E-05
501\times 501 DCPt5 LR2sK 0.99999945 8 3.8 2.88E-05

C1 LR1 0.999720 36 3.1 2.85E-05
C2 LR2 0.99999350 92 7.4 2.85E-05
C1 LR1sK 0.99930 13 2.1 2.85E-05
C2 LR2sK 0.9999950 13 2.1 2.85E-05
– BSOR9 1.9980 (3 000) (29 833.2) (4.13E-03)
– BCGSt9 B 0.9999979 182 1 655.2 4.46E-07

DCPt5 BCGSt B 0.99999942 343 8 425.9 4.82E-06
4001\times 4001 DCPt5 LR2sK 0.9999999995 7 288.0 4.81E-06

C1 LR1 0.999972 204 1 448.7 4.42E-07
C2 LR2 0.999999953 292 2 120.5 4.42E-07
C1 LR1sK 0.999932 38 463.8 4.46E-07
C2 LR2sK 0.999999920 22 279.2 4.45E-07

can see the norm is reduced by two orders of magnitude with a decrease in the value of the grid
step by only an order of magnitude. It should also be noted that the number of iterations in
this case increases by less than an order of magnitude, while the CPU time is increased by as
much as two orders of magnitude on average. Special attention should be paid to the fact that 8
iterations were required for the method convergence on the 501\times 501 grid, and only 7 iterations
— on the 4001\times 4001 grid, while using the combination DCPt5 + LR2sK. The explanation for
this fact will be presented a little later.

3.3. Influence of the mesh resolution

The influence of the grid resolution on the number of iterations and the CPU time of the
solution convergence is presented in Fig. 7. It is known that an increase in the dimension
of SLAE (a decrease in the magnitude of the grid step), other things being equal, leads to
an increase in the number of iterations [20]. Exactly such regularity takes place in Fig. 7a,
except for curve 1 (the combination DCPt5 + LR2sK), which demonstrates the decrease in the
number of iterations with increasing the grid dimensionality. The reason is that the original
line-by-line recurrent method has a fundamental individuality: as the grid step decreases,
the number of iterations required for convergence decreases [15]. This feature of the method
has been manifested only in the combination DCPt5 + LR2sK. Yet other combinations with
line-by-line recurrent method (curves 2–5) do not demonstrate the features because the presence
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of the approximate compensatory transform technology in the combinations suppresses this
fundamental individuality.

Fig. 7. The number of iterations (KI) and CPU time (TI) required for the convergence of the
method, depending on the grid resolution. Methods: 1 — DCPt5 + LR2sK, 2 — C2 + LR2sK,
3 — C1 + LR1sK, 4 — C1 + LR1, 5 — C2 + LR2, 6 — BCGSt9 B, 7 — DCPt5 + BCGSt B

In the general case, line-by-line recurrent method of the second order LR2 is more efficient
than the one of the first order LR1, regardless of whether this method was accelerated in
Krylov subspaces or not, and the relationship of the curves 2 and 3 confirms this thesis.
However, the locations of the curves 4 and 5 demonstrate the opposite. The reason is that
additional approximate compensatory transformation technology decreases the method stability.
It is necessary to lower the value of compensation parameter \theta in relation to its optimum value
to maintain stability. As an effect, the more parameter \theta differs from its optimum, the slower the
method carries out. And one has to make \theta lower for LR2 than for LR1 due to lower stability of
LR2, which in turn leads to a greater slowdown LR2 in relation to LR1.

And finally, it is not difficult to see that power dependences of the number of iterations KI

and CPU time TI against a mesh resolution take place because graphs are almost direct in the
logarithmic coordinates.

Conclusions

The technology of expanding the use of the line-by-line recurrent method on the case of
SLAE with nine-diagonal matrices arising from the difference approximation of 2D boundary
value problems of higher order was considered in the article. Approximation of the government
differential equation have been carried out using the SMART scheme of the third order of
accuracy. Also, approximation of the second order of accuracy in the near-boundary nodes using
the Patankar scheme instead of classical upwind one of the first order of accuracy was proposed in
the paper. Both the known deferred correction method and the original compensatory transform
technology were used in the work to replace an initial nine-diagonal matrix of SLAE with a
five-diagonal one. The comparative analysis of several modern methods and their combinations
with algorithms for replacement of nine-diagonal matrices with five-diagonal ones to solve SLAE
has been performed to reveal their efficiency in relation to each other.
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Based on the conducted study, one can draw the following conclusions:

1. The compensatory transform technology does not require recalculation of the right part of
the system of equations and, at least, is not inferior in efficiency to the deferred correction
method.

2. The high efficiency of the line-by-line recurrent method is also conserved in the solving of
systems of linear equations with the nine-diagonal matrix when considering two-dimensional
boundary value problems.

3. The number of iterations and, accordingly, the CPU time required for the solution
convergence has a power dependence against the grid resolution for all previously explored
methods.

This paper is distributed under the terms of the Creative Commons Attribution-Non
Commercial 3.0 License which permits non-commercial use, reproduction and distribution of
the work without further permission provided the original work is properly cited.
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В статье исследуется применение неявного итерационного полинейного рекуррентного метода
для решения систем линейных разностных уравнений с девятидиагональными матрицами, которые
возникают при разностной аппроксимации двумерных задач повышенного порядка точности на регулярном
сеточном покрытии области решения. Поскольку изначально неявный итерационный полинейный
рекуррентный метод разработан для решения систем уравнений с пятидиагональной матрицей, в работе
предлагается технология так называемой компенсационной трансформации, позволяющая заменить
исходную девятидиагональную матрицу системы уравнений на пятидиагональную. Эффективность
подобного подхода анализируется путем сравнения параметров сходимости решения модельной краевой
задачи в единичном квадрате как различными вариантами предложенного метода, так и другими
современными высокоэффективными итерационными методами решения систем разностных уравнений.
Задача решается на последовательности сеток от грубой в 501 \times 501 узлов до подробной в 4001 \times 
4001 узлов. Точность сходимости решения определяется по относительной норме невязки, которая в
настоящей работе равняется 10 - 12. Показано, что несмотря на использование промежуточной технологии
компенсационной трансформации, неявный итерационный полинейный рекуррентный метод сохраняет свои
высокие скоростные и разрешающие способности во всем диапазоне сеточного разбиения области решения
задачи.

Ключевые слова: метод сеток, система разностных эллиптических уравнений, итерационный метод,
сходимость решения.
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