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В статье предложен метод обеспечения достоверности измерений в системах технического мониторин-
га — каскадная модель C-LPC-AE, сочетающая извлечение информативных спектральных признаков на
основе линейного предсказательного кодирования (LPC) и двухступенчатую архитектуру сверточных ав-
тоэнкодеров. Метод предназначен для диагностики состояния подшипников и одновременной верификации
корректности работы измерительных датчиков, что особенно актуально в условиях цифровой индустрии,
где требуется высокая автономность и надежность систем мониторинга. Первая ступень каскада, обучен-
ная на сигналах исправного подшипника при нормальном креплении датчика, выполняет обнаружение
аномалий по ошибке реконструкции. Вторая ступень, обученная на данных с ослабленным креплением
акселерометра, анализирует природу аномалии и позволяет дифференцировать аномалии подшипника от
искажений сигнала, вызванных нарушением монтажа датчика. Ключевым преимуществом подхода явля-
ется отсутствие необходимости в данных с реальными отказами оборудования: обучение осуществляется
исключительно на легко воспроизводимых состояниях — нормальном режиме и моделируемой неисправно-
сти крепления. Эксперименты проведены на данных, полученных с испытательного стенда SpectraQuest,
включающего подшипники с искусственно созданным дефектом внешнего кольца. Результаты демонстри-
руют высокую чувствительность модели к фактическим дефектам подшипника и нарушениям монтажа
сенсора. Использование LPC-признаков обеспечивает компактное представление сигнала и снижает вычис-
лительную нагрузку, что делает предложенный подход перспективным для внедрения в промышленные
системы диагностики в реальном времени.

Ключевые слова: вибродиагностика, диагностика подшипников, ослабленное крепление датчика, ав-
тоэнкодер, обнаружение аномалий, технический мониторинг, линейное предсказательное кодирование,
спектральный анализ, достоверность измерений.

ОБРАЗЕЦ ЦИТИРОВАНИЯ
Галышев Д.В., Яковенко А.Д., Ибряева О.Л., Шестаков А.Л. Контроль достоверности

показаний средств измерений технического мониторинга с использованием каскада авто-
энкодеров // Вестник ЮУрГУ. Серия: Вычислительная математика и информатика. 2025.
Т. 14, № 4. С. 5–24. DOI: 10.14529/cmse250401.

Введение

С развитием цифровой индустрии и переходом к автономным системам техническо-
го мониторинга все большее значение приобретает достоверность данных, поступающих
от средств измерений. Надежность принимаемых решений, особенно в условиях полной
или частичной автоматизации, напрямую зависит от качества входных сигналов. Даже при
использовании высокоточных алгоритмов диагностики и прогнозирования, недостоверные
измерения могут привести к ложным срабатываниям, неверной интерпретации состояния
оборудования и, как следствие, к экономическим потерям или аварийным ситуациям [1, 2].

Одной из типичных причин искажения данных является нарушение монтажа измери-
тельных датчиков, в частности — ослабление крепления акселерометра. Такое нарушение
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может изменить механическую жесткость узла, сместить резонансные частоты датчика и
существенно повлиять на спектральный состав сигнала, даже при отсутствии дефектов в
самом объекте диагностики. В результате система мониторинга может интерпретировать
эти артефакты как признаки неисправности оборудования, что снижает ее доверие и эф-
фективность.

Эта проблема особенно актуальна в задачах вибродиагностики, где подшипники каче-
ния, являясь критически важными элементами механических систем в авиационной, ав-
томобильной и станкостроительной отраслях [3], требуют непрерывного мониторинга. На-
дежность их работы напрямую влияет на безопасность и экономическую эффективность
эксплуатации оборудования [4]. Традиционные методы диагностики основаны на анализе
вибрационных сигналов с применением подходов временной и спектральной обработки [5].
Методы временного анализа, как правило, опираются на статистические характеристики
сигнала [6, 7], в то время как спектральный анализ позволяет выявлять частотные ком-
поненты, характерные для конкретных типов дефектов [8–10]. Особое внимание уделяет-
ся анализу в области резонансной частоты датчика, где амплитуда сигнала, связанного с
дефектом, значительно возрастает, что повышает чувствительность диагностики [11–13].
Однако традиционные подходы зачастую требуют ручного подбора признаков и остаются
чувствительными к шумам и внешним помехам, что ограничивает их эффективность на
ранних стадиях обнаружения неисправностей.

Современные подходы, основанные на машинном и глубоком обучении, демонстрируют
высокую точность диагностики [14, 15], но сталкиваются с рядом ограничений: высокой
вычислительной сложностью [16, 17], необходимостью в больших объемах размеченных
данных и чувствительностью к шумам и артефактам [18]. Методы аугментации данных,
переноса обучения и генеративных моделей [19–22] частично решают проблему нехватки
обучающих выборок, но по-прежнему требуют доступа к данным с реальными дефектами.

В этом контексте особый интерес представляют методы обнаружения аномалий [23–25],
в частности — автоэнкодеры, обучающиеся только на нормальных режимах работы [26–28].
Однако и они подвержены ложным срабатываниям, возникающим из-за шума, ограниченно-
го объема обучающих данных или нестандартных режимов работы [29]. Одним из факторов,
провоцирующих ложные срабатывания, являются искажения, вызванные неисправностью
самого измерительного оборудования. Так, например, нарушение крепления акселерометра
может изменить его резонансную частоту [1, 2], что приводит к искажению спектрального
состава сигнала и, как следствие, снижает повторяемость и надежность исходных данных,
на которых впоследствии строится весь процесс обработки.

В данной работе предлагается каскадная модель C-LPC-AE, направленная на обес-
печение достоверности измерений в системах технического мониторинга. Подход сочета-
ет линейное предсказательное кодирование для компактного представления спектральных
данных и двухступенчатую архитектуру автоэнкодеров, где первая модель выявляет от-
клонения от нормы, а вторая верифицирует корректность работы измерительного датчика.
Обучение осуществляется без привлечения данных о реальных отказах оборудования, что
делает метод практичным для промышленного применения. Для предварительной обработ-
ки применяется метод линейного предсказания (LPC), позволяющий сжать спектральную
информацию до компактного набора коэффициентов.

Предложенный метод решает три ключевые задачи: обеспечение достоверности измере-
ний, снижение вычислительной сложности за счет компактных LPC-признаков и выявление

Подход на основе каскада автоэнкодеров для повышения достоверности данных
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артефактов, возникающих вследствие сбоев в измерительном оборудовании. Результаты мо-
гут быть востребованы не только в вибродиагностике, но и в более широком классе систем
мониторинга, где критически важно различать реальные неисправности оборудования и
искажения, вызванные нарушениями в работе измерительной аппаратуры.

Основные результаты и вклад данной работы заключаются в следующем:
1. Разработана модель обработки вибросигналов, объединяющая LPC-анализ и каскадную

архитектуру нейросетей, что позволяет разделять аномалии в состоянии оборудования
и в работе средств измерений.

2. Предложен двухэтапный алгоритм верификации данных, не требующий примеров ре-
альных отказов оборудования для обучения.

3. Предложен метод, сочетающий спектральный анализ и линейное предсказательное ко-
дирование (LPC), обеспечивающий компактное и информативное представление дан-
ных при низкой вычислительной нагрузке.

4. Экспериментально подтверждена эффективность подхода в дифференциации двух ти-
пов отклонений: дефектов подшипника и искажений сигнала, вызванных нарушением
монтажа акселерометра, что критически важно в автоматических системах контроля.

5. Предложенный метод соответствует требованиям цифровой индустрии к автономно-
сти, надежности и вычислительной эффективности, что делает его перспективным для
внедрения в интеллектуальные средства измерений нового поколения.
Статья организована следующим образом. В разделе 1 описывается предложенный ме-

тод C-LPC-AE, включающий этапы предобработки сигналов на основе линейного предска-
зательного кодирования, извлечения компактных признаков и построения каскадной архи-
тектуры автоэнкодеров для дифференциации аномалий. В разделе 2 представлены экспе-
риментальные данные, описывается установка SpectraQuest, процедура формирования вы-
борок и этапы выделения LPC-признаков, включая выбор оптимального порядка модели и
визуализацию признакового пространства. В разделе 3 приведены параметры архитекту-
ры автоэнкодеров и результаты тестирования каскадной модели на различных состояниях
подшипника и датчика. В заключении обобщаются полученные результаты и обсуждается
применимость предложенного подхода для автоматического контроля достоверности пока-
заний средств измерений в условиях цифровой индустрии.

1. Предлагаемый метод каскада автоэнкодеров с признаками
линейного предсказательного кодирования C-LPC-AE

1.1. Линейное предсказательное кодирование

Для извлечения информативных признаков из временного сигнала в предлагаемом ме-
тоде применяется линейное предсказательное кодирование (LPC, Linear Predictive Coding).
Этот подход широко используется при обработке акустических и вибрационных сигналов и
зарекомендовал себя, в частности, в задаче классификации дефектов подшипников, где поз-
волил сжать исходный амплитудный спектр до 50 коэффициентов, тем самым значительно
снизив вычислительную сложность модели [30].

Ключевым предположением метода LPC является предположение о том, что n-й обра-
зец временного ряда можно аппроксимировать взвешенной суммой Q предыдущих образ-

Д.В. Галышев, А.Д. Яковенко, О.Л. Ибряева, А.Л. Шестаков
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цов [31]:

\^s[n] =  - 
Q\sum 

i=1

ai \ast s[n - i], (1)

где s — временной ряд, Q — порядок модели, а ai — коэффициенты модели. Таким обра-
зом, предсказание в любой момент времени представляет собой линейную комбинацию Q

предыдущих отсчетов. Остаточный сигнал определяется как:

e[n] = s[n] - \^s[n]. (2)

Задача сводится к нахождению коэффициентов ai, минимизирующих энергию остаточ-
ного сигнала:

p =
\sum 

e2[n] =
\sum 

n

\Biggl( 
s[n] +

Q\sum 

i=1

ai \ast s[n - i]

\Biggr) 2

. (3)

Для вычисления оптимальных коэффициентов частные производные функции p по ai

приравниваются к нулю:

\partial p

\partial ak
= 2

\sum 

n

\Biggl( 
s[n] +

Q\sum 

i=1

ai \ast s[n - i]

\Biggr) 
s[n - k], (4)

где k = 1, Q.
Уравнение (4) можно переписать в виде системы Q линейных уравнений Юла—Уокера,

выраженных через автокорреляционные функции:

\sum 

n

s[n]s[n - k] +

Q\sum 

i=1

ai
\sum 

n

s[n - i]s[n - k] = 0 (5)

или, эквивалентно,
Q\sum 

i=1

aiR[i - k] =  - R[k] (6)

для k = 1, Q, где R[m] =
\sum 

n s[n]s[n - m] — автокорреляция сигнала с лагом m.
В матричной форме система записывается как:

Ra =  - r, (7)

где

\bfR =

\left( 
     

R[0] R[1] \cdot \cdot \cdot R[Q - 1]

R[1] R[0] \cdot \cdot \cdot R[Q - 2]
...

...
. . .

...
R[Q - 1] R[Q - 2] \cdot \cdot \cdot R[0]

\right) 
     

, (8)

\bfa =
\Bigl[ 
a1 a2 \cdot \cdot \cdot aQ

\Bigr] T
, (9)

\bfr =
\Bigl[ 
R[1] R[2] \cdot \cdot \cdot R[Q]

\Bigr] T
. (10)

Матрица \bfR имеет структуру Теплица, что позволяет эффективно решать систему (7)
с помощью рекурсии Левинсона—Дарбина. Этот метод последовательно строит модели от
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первого до Q-го порядка, обновляя коэффициенты на каждом шаге с вычислительной слож-
ностью \scrO (Q2) вместо \scrO (Q3) при прямом обращении матрицы.

1.2. Предобработка сигналов

Сигналы акселерометра по каждой из трех осей предварительно преобразуются в ам-
плитудный спектр с использованием быстрого преобразования Фурье. Для дальнейшего
анализа выбирается ограниченный диапазон частот: нижняя граница подбирается так,
чтобы исключить низкочастотные составляющие, как правило, обусловленные механиче-
скими шумами и вибрациями, не связанными с состоянием подшипника; верхняя граница
определяется с запасом, чтобы гарантировать покрытие резонансной частоты датчика.

Полученный спектр содержит значительное число коэффициентов, что затрудняет их
прямое использование в моделях машинного обучения из-за высокой размерности и избы-
точности. Для снижения вычислительной сложности и извлечения информативных при-
знаков спектральные данные далее обрабатываются методом линейного предсказательного
кодирования (LPC), описанным в разделе 1.1. Этот шаг позволяет сжать спектральную ин-
формацию до фиксированного набора LPC-коэффициентов, переходя от обработки длин-
ных спектров к более компактному и устойчивому к артефактам представлению. Получен-
ные таким образом коэффициенты для каждой из осей датчика объединяются в единую
матрицу:

\bfS =

\left( 
  
a1,1 a1,2 \cdot \cdot \cdot a1,p

a2,1 a2,2 \cdot \cdot \cdot a2,p

a3,1 a3,2 \cdot \cdot \cdot a3,p

\right) 
  , (11)

где p — порядок модели LPC.
В зависимости от конфигурации измерительного узла для анализа может использо-

ваться как одна, так и несколько осей акселерометра. В данной работе рассматривается
трехосевой вариант как наиболее общий: использование всех трех каналов позволяет за-
действовать избыточность данных, повысить устойчивость к шуму и улучшить способность
модели выявлять аномальные состояния. При необходимости методика может быть адап-
тирована и для одноосевого сенсора.

1.3. Каскад автоэнкодеров

После преобразования сигналов акселерометра и вычисления LPC-коэффициентов объ-
единенная матрица признаков подается на вход первого автоэнкодера. Данная модель обу-
чается исключительно на данных нормальных рабочих режимов оборудования и предна-
значена для первичного обнаружения аномалий. Для определения факта аномалии приме-
няется порог, рассчитываемый по правилу пяти сигм:

Threshold = \mu train + 5\sigma train, (12)

где \mu train — среднее значение ошибки восстановления на обучающей выборке, а \sigma train — ее
стандартное отклонение. Если ошибка восстановления превышает заданный порог, счита-
ется, что в сигнале зафиксирована аномалия, и данные передаются на обработку второму
автоэнкодеру.

Второй автоэнкодер выполняет функцию оценки достоверности показаний средства из-
мерения и обучается на сигналах с ослабленным креплением датчика, что позволяет от-
личать реальные дефекты подшипника от искажений, вызванных некорректной установ-
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кой акселерометра. Таким образом, осуществляется верификация корректности измерений
и исключение ложных диагностических заключений, вызванных сбоями в работе измери-
тельной системы, что особенно важно в системах технического мониторинга в условиях
цифровой индустрии, где критичны надежность и автоматический контроль достоверности
поступающих данных.

Если ошибка восстановления на втором автоэнкодере превышает порог (12), ситуация
интерпретируется как наличие реального дефекта подшипника. В противном случае анома-
лия, зафиксированная первым автоэнкодером, рассматривается как следствие неправиль-
ного крепления датчика.

Структура предлагаемой модели каскада автоэнкодеров показана на рис. 1. Ее ключевое
преимущество заключается в том, что обучение обеих моделей (на нормальном состоянии
и на состоянии с ослабленным креплением) возможно на данных, полученных в реальных
условиях эксплуатации, без необходимости собирать труднодоступные и редко встречаю-
щиеся записи о фактических отказах.

Рис. 1. Схема предлагаемой модели каскада автоэнкодеров

Следует учитывать, что ошибка восстановления каждого из автоэнкодеров может со-
держать случайные колебания даже при отсутствии реальных отклонений в сигнале. Это
может привести к ложным срабатываниям системы. Для повышения надежности диагно-
стики и снижения влияния таких колебаний производится сглаживание ошибки реконструк-
ции с использованием скользящего окна.

2. Постановка эксперимента и выделение LPC признаков
из данных

2.1. Экспериментальная установка

Экспериментальные данные для исследования были получены на испытательной уста-
новке SpectraQuest, оснащенной трехосевым вибропреобразователем AP2038P-100 с часто-
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той установочного резонанса в осевом направлении 35 кГц. В рамках эксперимента ис-
пользовались два дюймовых подшипника: один исправный, который служил эталоном, и
один с искусственно введенным дефектом внешнего кольца, что позволяло моделировать
аномальное состояние подшипника. Частота вращения подшипников в ходе испытаний фик-
сировалась на уровне 50 Гц, что соответствует номинальному режиму работы двигателя.
Опора, на которой установлен диагностируемый подшипник и акселерометр, показана на
рис. 2.

Рис. 2. Опора с закрепленным на ней акселерометром

В ходе эксперимента были записаны четыре типа сигналов, соответствующих следую-
щим состояниям подшипников: исправный подшипник, исправный подшипник с ослаблен-
ным креплением датчика, подшипник с дефектом внешнего кольца и подшипник с дефек-
том внешнего кольца и ослабленным креплением датчика. Имитация плохого закрепления
осуществлялась путем ослабления фиксирующего винта на четверть оборота.

Сначала проводилась серия экспериментов с исправным подшипником, при этом пооче-
редно регистрировались сигналы как для нормального, так и для ослабленного крепления
датчика. Из-за небольшой перестановки датчика после каждого ослабления отдельные се-
рии экспериментов не являются точными повторениями, что вносит разнообразие в данные.
Аналогично проводилась серия экспериментов с подшипником, имеющим дефект внешнего
кольца. Частота дискретизации сигналов во всех экспериментах составляла 100 кГц. Пер-
вые четыре фрагмента каждого эксперимента записывались в течение 2.5 минут, пятый
фрагмент — 2 минуты. Таким образом, суммарная длительность сигналов для каждого
класса составила 12 минут.

На рис. 3 показано, что во временной области сигналы для нормального и ослаблен-
ного крепления датчика практически неразличимы, однако при переходе к амплитудному
спектру различия становятся заметными. Эти изменения спектра, вызванные неисправно-
стью измерительного средства, могут привести к ложным срабатываниям диагностической
модели, что особенно важно учитывать при разработке систем технического мониторинга.
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Рис. 3. Сигналы и их спектры для исправного подшипника при хорошем и ослабленном
креплении датчика

2.2. Предобработка и выделение LPC-признаков из экспериментальных
данных

На первом этапе обработки исходные временные сигналы были разбиты на короткие
фрагменты фиксированной длины. В соответствии с результатами, представленными в ра-
боте [30], продолжительность фрагмента в 0.2 секунды оказывается достаточной для ре-
шения задач диагностики состояния подшипников. Для увеличения объема выборки при-
менялось скользящее окно с перекрытием 0.1 секунды. Этот подход не только расширяет
количество обучающих примеров, но и сохраняет временную зависимость между соседними
фрагментами, что позволяет учитывать контекст изменения сигнала и снижает вероятность
ложных срабатываний диагностической модели.

При частоте дискретизации 100 кГц каждый фрагмент содержал 20000 отсчетов, а шаг
смещения окна составлял 10000 отсчетов. В результате сегментации для каждого из четырех
классов было получено по 7195 временных рядов.

После сегментации для каждого временного ряда вычислялся спектр Фурье в диапазоне
частот от 500 Гц до 40000 Гц. Такой диапазон исключает низкочастотные компоненты,
напрямую связанные с частотой вращения подшипника, и включает резонансную частоту
датчика, что делает его достаточным для выявления как дефектов подшипника, так и
неисправностей измерительной системы.

Для выбора порядка p модели LPC использовались три стандартные функции потерь:

FPE(p) =
N + (p+ 1)

N  - (p+ 1)
\^\sigma 2, (13)

AIC(p) = N ln \^\sigma 2 + 2p, (14)

MDL(p) = N ln \^\sigma 2 + p ln N, (15)
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где N — количество элементов временного ряда, а \^\sigma 2 — оценка дисперсии. Результаты
расчета функций потерь для полученных сигналов представлены на рис. 4.

Рис. 4. Зависимость функций потерь (FPE, AIC и MDL) от порядка модели LPC

Как видно из рис. 4, все кривые функций потерь сначала быстро убывают при уве-
личении порядка модели, однако после определенного значения их снижение практически
прекращается. Это соответствует классическому правилу «локтя»: порядок модели выби-
рается в точке, после которой дальнейшее увеличение числа коэффициентов не приводит к
существенному улучшению качества восстановления. В рамках данной работы в качестве
компромиссного решения между точностью моделирования и вычислительной эффективно-
стью выбран порядок p = 50. На рис. 5 представлены средние значения LPC-коэффициентов
для всех четырех рассматриваемых случаев, визуализированные в виде изображений в со-
ответствии с матрицей (11).

Рис. 5. Средние значения матриц коэффициентов для каждого из 4 возможных случаев,
представленные в виде изображений
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Для анализа разделимости классов и визуализации полученных признаков 150-мерные
векторы (полученные из матриц LPC-коэффициентов размером 3\times 50) были спроецирова-
ны в двумерное пространство с помощью метода PaCMAP [32], рис. 6. Этот метод сочетает
преимущества нелинейного уменьшения размерности, сохраняя как глобальную структу-
ру данных, так и локальные взаимосвязи между точками, что особенно важно для задач
классификации.

Рис. 6. Отображение полученных после предобработки данных в двухмерном
пространстве с использованием метода PaCMAP

Анализ распределения признаков после снижения размерности демонстрирует четкое
разделение данных для исправного и дефектного подшипника при нормальном закреплении
датчика, а также выраженные различия между сигналами при нормальном и ослабленном
креплении акселерометра.

При этом наблюдается частичное перекрытие кластеров, соответствующих дефектному
и исправному подшипнику в случае ослабленного закрепления. Это указывает на то, что в
таких условиях признаки сигналов становятся сходными, что может привести к тому, что
модель будет классифицировать их как один и тот же класс данных.

3. Параметры и тестирование каскадной модели C-LPC-AE

3.1. Параметры автоэнкодеров

Предлагаемая в данной работе каскадная модель строилась с использованием двух
идентичных сверточных автоэнкодеров, обучаемых на двух различных классах состояний
подшипника. Первый автоэнкодер обучался на данных, полученных с исправного подшип-
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ника при корректном закреплении акселерометра, тогда как второй автоэнкодер использо-
вался для обработки сигналов, полученных при ослабленном креплении датчика.

Архитектура каждого автоэнкодера включает энкодер и декодер, объединенные сим-
метричной структурой. На вход подаются двумерные массивы признаков размером 3\times 50,
где три строки соответствуют измеряемым каналам акселерометра, а 50 столбцов — LPC-
коэффициентам. Такая организация данных сохраняет пространственные взаимосвязи меж-
ду коэффициентами одного порядка.

Энкодер состоит из двух сверточных слоев (Conv2D с ядром 3\times 3 и активацией ReLU) с
промежуточными слоями субдискретизации (MaxPooling2D с окном 2\times 1), что обеспечивает
последовательное сжатие пространственных признаков и выделение устойчивых паттернов.
После сверточных слоев данные переводятся в одномерное представление (Flatten) и про-
ецируются в латентное пространство размерности 8 с помощью полносвязного слоя Dense.

Декодер выполняет обратное преобразование: данные проходят через полносвязный
слой, восстанавливающий пространственную форму (Reshape), затем через два блока уве-
личения размерности (UpSampling2D) и сверточные слои с активацией ReLU. Для кор-
рекции размеров применяется слой Cropping2D, а финальный сверточный слой с линей-
ной активацией формирует выходное изображение, соответствующее реконструированным
входным данным. В качестве функции ошибки применялась среднеквадратичная ошибка
MSE (Mean Squared Error):

MSE =
1

M \cdot p

M\sum 

i=1

p\sum 

n=1

\Bigl( 
\^x(i)n  - x(i)n

\Bigr) 2
, (16)

где x(i)n — значение n-го коэффициента для i-го канала, i = 1, . . . ,M, \^x
(i)
n — соответствующий

восстановленный отсчет. (В нашем случае, M = 3, p = 50.)
Модели 1 и 2, соответствующие классу исправного подшипника и исправного подшип-

ника с ослабленным креплением датчика вибрации, обучались с идентичными гиперпара-
метрами: 50 эпох, размер батча 64, оптимизатор Adam с шагом обучения 10 - 4, выбранными
на основе серии предварительных экспериментов. Для обучения использовались 10 минут
экспериментальных данных, соответствующих 5996 образцам. Окно сглаживания соответ-
ствовало 0.5 секундам.

3.2. Тестирование каскадной модели C-LPC-AE

Для оценки обобщающей способности предложенной каскадной модели автоэнкодеров
тестирование проводилось на отложенных выборках. Первая ступень каскада представляет
собой автоэнкодер, обученный на данных с исправного подшипника с корректным закреп-
лением акселерометра (10 минут, 5996 образцов). На рис. 7 представлены значения его
ошибки реконструкции для различных типов сигналов. Для исправного случая с хорошим
закреплением конец тренировочных данных обозначен штрих-пунктирной линией. Как вид-
но, ошибка реконструкции на тестовых данных несколько выше, чем на обучающих, одна-
ко остается ниже установленного порогового значения, за исключением единичного случая
ложного срабатывания.

Для остальных трех типов данных — аномальный подшипник с хорошим закреплением
датчика, исправный подшипник с ослабленным креплением акселерометра и аномальный
подшипник с ослабленным закреплением — ошибка реконструкции вычислялась на протя-
жении всех 12 минут сигналов и, как можно видеть на рис. 7, во всех случаях превышала по-
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Рис. 7. Ошибка реконструкции первой модели автоэнкодера для разных типов данных

роговое значение. Это демонстрирует способность первой ступени каскадной модели выяв-
лять отклонения от нормального состояния подшипника. Однако данный уровень реакции
модели не позволяет различить, являются ли отклонения следствием аномалии подшип-
ника или ослабления крепления датчика. Для этого необходима вторая ступень каскадной
модели C-LPC-AE, предназначенная для дифференциации источников этих аномалий.

Результаты тестирования второго автоэнкодера, обученного на данных исправного под-
шипника с ослабленным креплением датчика, представлены на рис. 8. Аналогично первой
модели, конец тренировочных данных обозначен штрих-пунктирной линией. Следует отме-
тить, что в тестировании не использовались данные исправного подшипника с корректным
закреплением, поскольку данный автоэнкодер предназначен для обработки сигналов только
в случае выявления отклонений на первой ступени каскадной модели.

Обученная модель демонстрирует высокие значения ошибки реконструкции для ано-
мального подшипника с корректным закреплением датчика, что позволяет уверенно выяв-
лять этот тип отклонения.

В случае аномального подшипника с ослабленным креплением датчика наблюдается
смешение сигналов, и часть срабатываний модели может интерпретироваться как неис-
правность крепления, а часть — как реальная аномалия подшипника. Это объясняется вы-
сокой схожестью характеристик сигналов при ослабленном креплении, что затрудняет их
однозначное разделение, как было показано на рис. 6. На рис. 8 (нижний график) 37% сра-
батываний указывают на ослабление крепления датчика, а 63% — на наличие аномалии
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Рис. 8. Ошибка реконструкции второй модели автоэнкодера для разных типов данных

подшипника. Такой результат является удовлетворительным: при выявлении проблемы с
креплением датчика достаточно устранить ее механически, после чего модель сможет кор-
ректно зафиксировать реальное аномальное состояние подшипника, что подтверждается
высокой ошибкой реконструкции для данных с аномальным подшипником при правильной
установке сенсора.

Таким образом, каскадная модель C-LPC-AE эффективно различает основные типы
отклонений: нормальное состояние подшипника, аномалии в подшипнике и артефакты,
вызванные ослаблением крепления датчика. В случае аномального подшипника с ослаб-
ленным креплением наблюдается частичное смешение сигналов: часть отклонений может
интерпретироваться как проблема с креплением, а часть — как реальная неисправность
подшипника, что отражает реальную сложность задачи. В практических условиях такие
сигналы можно выделять в отдельную «зону неопределенности», требующую дополнитель-
ной проверки. При устранении механических проблем с креплением датчика сигналы пе-
рестают содержать искажения, вызванные некорректной установкой, и любые превышения
порога реконструкции второго автоэнкодера теперь могут быть надежно интерпретированы
как реальные аномалии подшипника.

Заключение

В данной работе предложен метод обеспечения достоверности измерений в системах
технического мониторинга на основе каскадной архитектуры сверточных автоэнкодеров
C-LPC-AE. Подход сочетает эффективное извлечение информативных признаков на ос-
нове линейного предсказательного кодирования и двухступенчатое обнаружение аномалий
с использованием сверточных автоэнкодеров, что позволяет не только выявлять дефекты
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оборудования, но и дифференцировать их от артефактов, вызванных нарушениями в работе
измерительной системы.

Ключевой особенностью предложенной архитектуры является ее обучение на нормаль-
ных и нештатных состояниях измерительного узла — в частности, на сигналах с ослаблен-
ным креплением датчика. Это устраняет необходимость сбора данных о реальных отказах,
которые редки, труднодоступны и часто не могут быть получены в контролируемых усло-
виях.

Экспериментальные результаты подтвердили высокую чувствительность модели к из-
менениям в состоянии подшипника и способность автоматически фильтровать ложные тре-
воги, вызванные неисправностями сенсоров. Использование LPC-признаков обеспечивает
компактное и информативное представление сигнала, снижая вычислительную нагрузку
и упрощая интеграцию модели в промышленные системы реального времени. Предложен-
ный подход повышает надежность и автономность мониторинга, что особенно важно для
цифровой индустрии.

Исследование выполнено при финансовой поддержке Министерства науки и высше-
го образования Российской Федерации (государственное задание на выполнение фундамен-
тальных научных исследований № FENU-2023-0010 (2023010ГЗ)).
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The paper proposes a method for ensuring measurement reliability in technical monitoring systems – a
cascaded model C-LPC-AE that combines informative spectral feature extraction based on Linear Predictive
Coding (LPC) with a two-stage architecture of convolutional autoencoders. The method is designed for bearing
condition diagnostics and simultaneous verification of sensor operational integrity, which is particularly relevant
in digital industry environments requiring high autonomy and reliability of monitoring systems. The first stage
of the cascade, trained on signals from a healthy bearing with properly mounted sensors, performs anomaly
detection based on reconstruction error. The second stage, trained on data with a loosened accelerometer mount,
analyzes the nature of the anomaly and enables differentiation between bearing faults and signal distortions
caused by improper sensor installation. A key advantage of the approach is that it does not require data from
actual equipment failures: training is performed exclusively on easily reproducible conditions — normal operation
and simulated sensor mounting faults. Experiments were conducted using data from the SpectraQuest test rig,
including bearings with an artificially introduced outer race defect. The results demonstrate high model sensitivity
to actual bearing defects and sensor mounting issues. The use of LPC-based features ensures compact signal
representation and reduces computational load, making the proposed approach promising for integration into
real-time industrial diagnostic systems.

Keywords: vibration diagnostics, bearing diagnostics, loosened sensor mounting, autoencoder, anomaly

detection, technical monitoring, linear predictive coding, spectral analysis, measurement reliability.
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Корректная автоматизация доступа к информации может быть выполнена за счет создания инстру-
ментальных средств, основанных на теории межмодельных отображений и обеспечении коммутативности
преобразований данных. Данная статья посвящена технологии передачи данных между реляционной базой
данных и табличным представлением данных специального вида. Структура таблицы является удобным
средством работы пользователя, поскольку дает возможность не только редактировать данные, синхро-
низированные с базой данных, но и выполнять различные виды анализа с использованием электронных
таблиц. В общем случае размер таблицы может быть огромным. В данной статье предлагается методика
сокращения размера таблицы за счет логических ограничений при загрузке данных. При этом появляются
две проблемы: фиктивные пустые значения и потеря пустых значений, необходимых для редактирования
данных. В работе предложено решение этих проблем за счет использования промежуточного представле-
ния данных в виде запроса к базе данных, в котором присутствуют логические ограничения. Специальная
форма этих ограничений, согласованная со стандартом SQL, является необходимым условием при решении
проблемы пустых значений. Для этой цели формируются подмножества отношений из частичного порядка,
который соответствует ссылочной целостности в базе данных. Полученные подграфы используются для
формирования размерностей таблицы. В заключение статьи представлен анализ корректности преобразо-
ваний.

Ключевые слова: реляционная модель данных, логические ограничения, коммутативность.
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Введение

Для взаимодействия с информационными ресурсами разрабатываются различные при-
ложения, позволяющие делать выборочный просмотр и редактирование данных, представ-
ленных в удобном для пользователей формате. При этом существуют два подхода. Первый
подход подразумевает, что приложение предоставляет пользователю регламентированный
набор функций (например, просмотр расписания занятий на неделю в учебном заведении),
что ограничивает возможности пользователей (например, при составлении семестрового
расписания консультаций и отчетов) и является рутинной работой для программистов. Вто-
рой подход подразумевает гибкий механизм формирования пользовательских представле-
ний данных на основе некоторых эвристических правил и предположений. Использование
эвристик приводит к потере некоторой информации из поля зрения, либо к ошибочному
появлению сведений и документов. Следовательно, на первый план выходит проблема кор-
ректности таких преобразований.
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Проблему корректности интеграции неоднородных данных на основе межмодельных
отображений впервые исследовал Л.А. Калиниченко. В работе [1] представлен способ фор-
мализации моделей данных, обеспечивающий корректное преобразование в процессе вза-
имодействия гетерогенных систем с несколькими базами данных (БД). В основе предло-
женной методики лежат коммутативные преобразования между разнородными моделями
и центральной обобщенной моделью. Предложенная методика позволяет формировать кор-
ректные преобразования данных для одной модели, если произошли какие-либо изменения
в другой. В данной статье методика используется для обоснования корректности преобра-
зований.

В статье [2] рассматривается технология передачи данных из электронных таблиц в ре-
ляционную БД и обратно. При этом БД создается динамически с использованием методов
анализа содержимого электронных таблиц. По содержимому таблиц определяются функци-
ональные зависимости, строится их минимальное покрытие, что достаточно для построения
отношений БД, удовлетворяющих требованиям третьей нормальной формы (3НФ). Загруз-
ка БД осуществляется за счет применения аналога проекции к электронной таблице. В
работе не обсуждается редактирования данных, а только массовая загрузка, и логические
ограничения при этом не используются. Однако такой подход дает возможность сделать
вывод о корректности преобразований.

В статье [3] рассматривается технология управления БД из электронных таблиц без
использования макросов либо встроенных языков программирования. Для этой цели ис-
пользуются формулы в электронных таблицах (операторы реляционной алгебры реализу-
ются с помощью функций). В качестве заготовки создается электронная таблица с пустыми
рабочими листами для данных и рабочими листами, заполненными формулами для запро-
сов. Когда пользователь вводит, изменяет или удаляет данные в рабочих листах данных,
формулы в рабочих листах запросов автоматически вычисляют фактические результаты
запросов к БД. Редактирование данных в БД с использованием электронных таблиц не
предусмотрено. Логические ограничения на данные используются внутри функций. Кор-
ректность преобразований в сфере ответственности программиста.

Для автоматизации составления запросов при подготовке документов на предприяти-
ях [4] была разработана математическая модель для генерации документов путем интегра-
ции приложений Visual Basic for Application (VBA), ActiveX Data Object (ADO) и Extensible
Markup Language (XML). На основе анализа типов данных документов разработаны файлы
конфигурации, настроены шаблоны документов и использован алгоритм автоматической
генерации документов. Данная модель была использована в практических задачах и по-
казала свою эффективность. Технология не предусматривает редактирование данных и их
возврат обратно в БД.

После того, как сформировано пользовательское представление данных возникает про-
блема их редактирования, и возврата новых значений в БД. Для этой цели необходимо
воспользоваться методикой, подложенной в работе [1].

Проблема редактирования данных в БД с использованием пользовательских представ-
лений данных исследовалась в работе [5]. Для обеспечения коммутативности преобразова-
ний использовалась промежуточная модель «Таблица связанных соединений», в которой
дополнительный «вектор вхождений» позволял однозначно идентифицировать отношение
и кортеж в БД, к которым относятся сделанные модификации. Основная идея формиро-
вания «Таблицы связанных соединений» заключается в переборе различных комбинаций
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отношений БД и формировании промежуточной таблицы, если совокупность отношений
в комбинации удовлетворяет условию соединения без потери информации (СБПИ). Далее
промежуточные таблицы объединяются в единую таблицу с удалением подчиненных кор-
тежей. В итоге получается NP-трудная задача. Следовательно, значительные интервалы
времени формирования и преобразования «Таблицы связанных соединений» не позволяют
выполнять работу в оперативном режиме со значительным объемом данных. В данной ра-
боте промежуточное представление данных состоит из одного запроса, что делает задачу
полиномиальной, но усложняет задачу определения пустых значений (в «Таблице связан-
ных соединений» эта задача решается сразу с использованием вектора вхождений). Кроме
того, в данной статье анализ свойства СБПИ (квадратичный алгоритм по памяти и по вре-
мени) заменен проверкой выводимости зависимости с использованием линейного по памяти
и по времени алгоритма.

Редактирование многотабличного запроса к БД рассмотрено в работе [6]. Поскольку ре-
зультирующая таблица (запрос) является реляционной, то алгоритмы формирования этой
таблицы и возврата отредактированных значений в БД удалось сформулировать в терминах
реляционной алгебры без использования промежуточных представлений данных. Реализа-
ция технологии на PostgreSQL показала удовлетворительные результаты на тестовых БД.
Недостатком является то, что реляционная таблица (запрос) не является удобным сред-
ством для работы пользователя.

В данной работе получила развитие технология межмодельных коммутативных пре-
образований [1]. Отказ от биективности состояний моделей данных [7] позволяет работать
только с частью данных, накладывать логические ограничения на формируемые таблицы,
что существенно улучшает восприятие их пользователем.

Статья оформлена следующим образом. В разделе 1 представлено описание задачи и
обсуждение возникающих проблем. В разделе 2 рассмотрена структура и состав логиче-
ских ограничений на данные при их загрузке из БД. Раздел 3 содержит описание способа
формирования размерностей табличного представления данных и анализ размерностей. В
разделе 4 рассмотрены алгоритмы формирования таблицы, синхронизация ее содержимого
с БД и определены условия коммутативности преобразований. Обоснование корректности
преобразований представлено в разделе 5. В заключении приводится краткая сводка ре-
зультатов, полученных в работе, и указаны направления дальнейших исследований.

1. Обсуждение проблемы

В работе [8] рассматривается модель данных «Трансформация», частный случай ко-
торой впервые был представлен в работе [9] под названием «Семантическая трансформа-
ция». Для формального определения «Трансформации» рассмотрим следующие обозначе-
ния: \scrR = \{ R1, R2, . . . , Rk\} — реляционная БД, где Ri — отношения (таблицы), удовлетворя-
ющие требованиям 3НФ; [Ri] — схема отношения Ri (заголовок таблицы); Ri[S] — проекция
Ri, по атрибутам S (вырезка по столбцам). U — конечное множество атрибутов, на которых
задана БД. Связи между отношениями БД устанавливают ограничения ссылочной целост-
ности и удовлетворяют типизированным ациклическим зависимостям включения [10].

Определим трансформацию Tr как табличное представление данных, где значения мно-
жества атрибутов X = \{ X1, X2, ..., Xm\} задают наименования строк, а значения множества
атрибутов Y = \{ Y1, Y2, ..., Yn\} задают наименования столбцов. Непустые множества атри-
бутов X \subset U и Y \subset U далее будем называть размерностями.
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Особенность трансформации в том, что первые m столбцов таблицы будут озаглавлены
именами атрибутов Xi. Последующие столбцы будут иметь составные имена из n значений
yj,lj атрибутов Yj , j = 1, n. Содержимое i-й строки таблицы состоит из значений:

(xi,1, xi,2, . . . , xi,m, zi,(m+1), zi,(m+2), . . . , zi,(m+p)),

где p — количество столбцов в таблице, озаглавленных значениями атрибутов Y . В i-й
строке и j-м столбце, j = 1,m, содержится значение атрибута Xj . В последующих столбцах
i-й строки содержатся значения zi,l атрибута Z \in U , который далее будем называть мерой. В
рассматриваемой технологии значения меры подлежат редактированию с передачей новых
значений в БД.

С практической точки зрения не целесообразно наличие общих атрибутов в размерно-
стях. Кроме того, мера не должна принадлежать размерностям. Пусть X\cap Y = \emptyset , Z \not \in X\cup Y .
Структура трансформации представлена в табл. 1.

Таблица 1. Пример трансформации
y11 y12

X1 X2 X3 y21 y22 y21 y22

y31 y32 y31 y32 y31 y32 y31 y32

x31 z11 z13 z14 z16 z18
x21 x32 z25

x31 z32 z34 z37
x11

x22 x32 z41 z43 z46

x31 z51 z54 z57
x21 x32 z62 z65 z68

x31 z71 z73 z76
x12

x22 x32 z81 z84 z87

В табл. 1 xip — значения атрибута Xi, yjs — значения атрибута Yj , zij — значения
атрибута Z.

Для каждой размерности строится подграф из частичного порядка, содержащий атри-
буты этой размерности. При этом, множества атрибутов X и Y упорядочиваются в таблице
Tr так, чтобы на верхних уровнях находились атрибуты с меньшим количеством значе-
ний, что сокращает количество дублирований на нижних уровнях. В работе [11] предло-
жен алгоритм для построения таких иерархий в размерностях, в котором используются
функциональные и многозначные зависимости исходной реляционной БД и мощности со-
ответствующих доменов. Для удобства восприятия таблицы значения атрибутов X и Y

упорядочиваются в каком-либо лексикографическом порядке.

Определение 1. Рассмотрим произвольное отношение Ri \in \scrR , пусть W и S – некоторые
подмножества атрибутов [Ri]. Будем говорить, что в Ri реализована функциональная за-
висимость W \rightarrow S, если для любой реализации Ri не могут присутствовать два кортежа
t1, t2 \in Ri, такие что t1[W ] = t2[W ] и t1[S] \not = t2[S].

Определение 2. Множество атрибутов V отношения Ri является потенциальным ключом,
если для любого кортежа t \in Ri совокупность значений t[V ] может присутствовать только
в кортеже t.
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Замечание 1. Один из потенциальных ключей отношения Ri, не содержащий избыточных
атрибутов, назначается первичным ключом Ri.

Очевидным условием существования таблицы Tr является невозможность присутствия
в одной ячейке таблицы более одного значения атрибута меры Z. Это условие реализует-
ся за счет использования функциональных зависимостей в исходной БД. Для множества
отношений R = \{ R\prime 

1, R
\prime 
2, . . . , R

\prime 
p\} \subseteq \scrR , участвующих в формировании Tr, выделяются соот-

ветствующие им индексные файлы, обладающие свойством уникальности. По выделенным
индексным файлам определяется множество реализованных (выполнимых) в БД функцио-
нальных зависимостей F = \{ F1, F2, . . . , Fq\} . Заметим, что зависимость W \rightarrow S будет выво-
дима, если атрибуты S принадлежит замыканию W+

F на множестве зависимостей F [12, 13].
В силу полноты и непротиворечивости системы аксиом функциональных зависимостей [12]
выводимая зависимость является выполнимой в БД, а выполнимая зависимость выводимой.
Следовательно, далее достаточно проверять только выводимость зависимостей.

В качестве промежуточного представления данных будем использовать запрос
«проекция–селекция–соединение» (1), представленный в терминах реляционной алгебры.
Для управления размером таблицы Tr будем использовать логические ограничения на зна-
чения атрибутов.

Q = \pi XY Z(\sigma L(R
\prime 
1 \Join R\prime 

2 \Join . . . \Join R\prime 
p)), (1)

где \Join — операция естественного соединения; \pi — операция проекции, \sigma — операция селек-
ции, L — логическая формула на атрибутах отношений R\prime 

i. Кортежи в соединении отноше-
ний:

Q1 = R\prime 
1 \Join R\prime 

2 \Join . . . \Join R\prime 
p,

подстановка которых в формулу L дает значение FALSE или UNKNOWN, будут отсутство-
вать в Q. Заметим, что Q1 является универсальной реляционной таблицей, удовлетворяю-
щей требованиям первой нормальной формы (1НФ). Далее будем считать, что Q1 соответ-
ствует фактическому содержанию БД на отношениях R. Результат выполнения запроса Q

является источником для формирования трансформации Tr.
Отсутствие значения атрибута Z в ячейке таблицы Tr означает, что в R значениям

атрибутов X и Y не сопоставлено ни одного значения атрибута Z, то есть, в Q1 отсутствует
соответствующий кортеж. Ситуация меняется при наложении ограничения L. Логическое
ограничение может удалить соответствующий кортеж в Q1. В этом случае в R векторам
значений \vec{}xi = (xi,1, xi,2, . . . , xi,m) и \vec{}yj = (y1,j , y2,j , . . . , yn,j) соответствует значение zij , а в
таблице Tr соответствующая ячейка оказывается пустой. Такая ситуация будет вводить в
заблуждение пользователя, и он может попытаться заполнить эту ячейку новым значени-
ем \^zij , что является ошибкой. Возможны ситуации, когда zij в таблице Tr не пусто, а в БД
этому значению не сопоставлены вектора \vec{}xi = (xi,1, xi,2, . . . , xi,m) и \vec{}yj = (y1,j , y2,j , . . . , yn,j),
или этим векторам в БД сопоставлено другое значение \^zij .

Самый простой вариант ошибочного содержимого формулы L — использование ограни-
чения на значения меры Z. В общем случае причина появления ошибочно пустого значения
в таблице Tr определена в утверждении 1.

Утверждение 1. Пусть кортеж t принадлежит Q1, а в Q он удален (L(t)=FALSE), но
остался кортеж t1 совпадающий с t по Y (L(t1)=TRUE), но отличающийся по X, и остался
кортеж t2 совпадающий с t по X, но отличающийся по Y (L(t2)=TRUE). Тогда в Tr на
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пересечении строки \vec{}xi и столбца \vec{}yj будет находиться фиктивное пустое значение, тогда как
в БД ему соответствует значение t[Z].

Причиной появления значения zij , отличного от фактического в БД, может быть раз-
рушение зависимости XY \rightarrow Z.

2. Структура и состав логических ограничений

Формулу L будем задавать в виде конъюнкции логических условий, определенных на
различных атрибутах множества U :

L = L1 \wedge L2 \wedge . . . \wedge Ls. (2)

В формуле (2) Li, i = 1, s, дизъюнкция атомарных логических выражений:

Li = li1(Ai) \vee li2(Ai) \vee . . . liv(Ai), (3)

где логические выражения lij , j = 1, v, определены для одного атрибута Ai \in X \cup Y .
С целью последующего создания программного обеспечения (ПО) атомарные выраже-

ния lij должны быть согласованы со стандартом языка SQL:
1. Арифметические операции сравнения Ai\Theta const, где операция \Theta принимает одно из зна-

чений классической шестерки (\Theta \in \{ =, \not =, >,<,\geq ,\leq \} ), константа const, должна быть
согласована по типу с атрибутом Ai (\Theta -сравнимы), в SQL сравнимыми являются числа
в различных форматах, даты, время ...

2. Операция Ai BETWEEN const1 AND const2 — значение атрибута Ai должно удовлетво-
рять интервальному ограничению. const1 \leq Ai \leq const2. Операция Ai NOT BETWEEN
const1 AND const2 требует, чтобы значение атрибута Ai находилось за пределами ука-
занного интервала.

3. Операция Ai IN List, где List список значений, получит значение TRUE, если в текущем
кортеже значение атрибута Ai будет совпадать с каким-либо значением в списке List.
Операция Ai NOT IN List получит значение TRUE, если значение атрибута Ai будет
отсутствовать в списке List.

4. Ограничение на символьные строки задаются в операции Ai LIKE Str. Операция по-
лучит значение TRUE, если строка, значение атрибута Ai, содержит в себе строку Str,
заданную шаблоном. Обратная операция имеет вид Ai NOT LIKE Str.
Перечисленные варианты операций используют только часть операций языка SQL [14].

Например, не используется предикат EXISTS, поскольку в нем не заданы имена атрибутов,
что исключает возможность явного управления размерностями трансформации Tr.

Естественным требованием к размерностям X и Y является отсутствие неопределен-
ных значений. Для этого достаточно расширить логическую формулу L в запросе (1). С
учетом структуры логической формулы (2) в нее дополняются условия определенности:
конъюнкция операторов Ai \not = emp, где emp обозначает пустое значение, (в команде SQL:
Ai IS NOT NULL) для атрибутов Ai, которые не входят в логическое выражение L, но
принадлежат одной из размерностей. Если атрибут Ai входит в L, то на неопределенном
значении атрибута формула примет значение UNKNOWN, что по умолчанию приведет к
удалению соответствующего кортежа в Q1 вместе с неопределенным значением.

Далее необходимо определиться со способом формирования размерностей Tr и их вза-
имодействием с формулой L.
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3. Анализ размерностей в трансформации Tr

Рассмотрим фрагмент схемы БД учебного заведения (см. рис. 1).

Рис. 1. Фрагмент схемы БД

Обозначение PK соответствует компонентам первичного ключа, стрелками показана
ссылочная целостность, где сдвоенные стрелки указывают на внешние ключи. В скобках
на схеме приведены символические имена атрибутов и отношений.

Самый простой способ формирования размерностей X и Y — получение проекций по
этим множествам атрибутов: \pi X(Q) и \pi Y (Q), однако, при этом возможны потери некото-
рых строк и столбцов в таблице Tr даже если для них логическая формула не принимает
значение FALSE или UNKNOWN. Для демонстрации этого результата сформируем прило-
жение «Сводная ведомость» (см. табл. 2), где X = \{ R2.A2, R2.A4, R1.A3\} , Y = \{ R4.A7,
R4.A9\} , Z = \{ R3.A8\} . Если вычислить X и Y с использованием проекций \pi X(Q) и \pi Y (Q),

Таблица 2. Приложение «Сводная ведомость»

№ Код № ФИО 1 2 3 4 ...
группы группы студента студента Физика Химия История Биология ...

1 Б-211
1 Иванов 3 5
2 Петров 4
3 Сидоров 4 3

2 Х-212
1 Ковалев 3 4
2 Попов 4 5

то строки для групп Б-211 и Х-212 будут отсутствовать в табл. 2, если экзамены по всем
предметам не проводились. Либо будут отсутствовать столбцы, если экзамены по соответ-
ствующим предметам не проводились. Такой результат неприемлем, указанные строки и
столбцы должны присутствовать в таблице с пустыми ячейками для проставления оценок.
В этом случае формирование размерности X выполняется по формуле:

Dim(X) = \pi X(\sigma LX
(R1 \Join R2)),

где LX логическое ограничение на атрибут «Код группы» и/или на атрибут «ФИО студен-
та». Формирование размерности Y выполняется по формуле:

Dim(Y ) = \pi Y (\sigma LY
(R4)),

С.В. Зыкин, В.С. Зыкин, Н.С. Шепелев

2025, т. 14, № 4 31



где LY логическое ограничение на атрибут «Предмет». Способ формирования LX и LY из
формулы L обсуждается далее.

Определение 3. Для обеспечения корректности преобразования данных в БД определим
следующие три ограничения:
1. Отношения R = (R\prime 

1, R
\prime 
2,. . . , R

\prime 
p) образуют частично упорядоченное множество отно-

сительно ссылочной целостности: R\prime 
i \preccurlyeq R\prime 

j если R\prime 
i является главным отношением, а

R\prime 
j — внешним. Частичный порядок содержит один максимальный элемент R\prime 

Z \in R

(Z \in [R\prime 
Z ]), и изолированный элемент принадлежит частичному порядку, если p = 1.

Отношение R\prime 
Z \in R соответствует семантике приложения, поскольку в нем будут реа-

лизованы операции редактирования БД.
2. В отношении RZ множество атрибутов V является потенциальным ключом, для кото-

рого V \subseteq XY , Z \not \in V и V \rightarrow XY .
3. Только одно отношение R\prime 

Z в R содержит атрибут Z.

Замечание 2. В рассмотренном приложении V = \{ R3.A1, R3.A2, R3.A7\} , R4 \preccurlyeq R3,
R2 \preccurlyeq R1 \preccurlyeq R3, в силу транзитивности R2 \preccurlyeq R3.

Частичный порядок на отношениях БД может иметь вид, представленный на рис. 2.
Связи задают ссылочные ограничения целостности, соответствующие типизированным за-

Рис. 2. Частичный порядок для ограничений целостности

висимостям включения [10]. Максимальный элемент частичного порядка RZ на рис. 2 яв-
ляется внешним отношением для всех остальных отношений R1 . . . R6 (все они являются
главными для RZ). R1 является внешним для отношений R4 и R5, R2 является внешним для
отношений R5 и R6. Частичный порядок позволит вводить во внешние отношения только
те данные, которые имеют совпадающие значения связанных атрибутов в главных отно-
шениях. В противном случае ввод данных будет заблокирован системой управления базой
данных (СУБД).

4. Формирование содержимого трансформации Tr

Ранее было отмечено, что в трансформации Tr не должно быть фиктивных пустых яче-
ек для атрибута Z с одной стороны. С другой стороны должны присутствовать реальные
пустые ячейки для отсутствующих в БД значений атрибута Z. Для решения этой зада-
чи предлагается правило формирования размерностей Rule1. Рассмотрим это правило для
размерности X.
1. Формируется множество отношений RX из множества отношений R. Каждое из отно-

шений RX должно содержать атрибут множества X.
2. Поиск ближайших общих предков в частичном порядке для множества отношений RX

(см. замечание 3). Выбор одного из предков для построения размерности по X.
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3. Формируется подграф из всех потомков выбранного предка. Все вместе они образуют
множество отношений \{ RX1

, RX2
, . . . , RXd

\} . В этом случае формирование размерности
X выполняется по формуле:

Dim(X) = \pi X(\sigma LX
(RX1

\Join RX2
\Join . . . \Join RXd

)),

где LX логическое ограничение, сформированное по правилу Rule2 (далее).

Замечание 3. Для поиска ближайших общих предков в частичном порядке целесообразно
воспользоваться универсальным алгоритмом топологической сортировки Кана [15], либо
какой-либо модификацией алгоритма Тарьяна [16], который более эффективен при поиске,
но требует предварительной обработки графа. Если направленный граф является деревом,
то общий ближайший предок один, но в частичном порядке их может оказаться несколько.
Множества потомков для каждого из предков будут отличаться друг от друга не только по
составу, но и по семантике. Следовательно, выбор общего предка должен сделать пользо-
ватель из предложенного списка, полученного в алгоритме.

При формировании размерностей используются логические ограничения, сформиро-
ванные по правилу Rule2. Рассмотрим это правило для атрибутов размерности X.

\bullet В формуле (2) конъюнктивный компонент Li, определенный для атрибута Ai, заме-
няем значением TRUE если Ai \in Y \setminus X, в противном случае компонент оставляем без
изменения. Полученную формулу обозначим LX .

Замечание 4. Применив правило Rule1 к множеству атрибутов Y получим размерность

Dim(Y ) = \pi Y (\sigma LY
(RY1

\Join RY2
\Join . . . \Join RYg

)),

где логическая формула LY сформирована по правилу Rule2, в котором атрибуты X и
Y меняются местами, g — количество отношений в подграфе, выделенном в частичном
порядке.

Рассмотрим схему алгоритма Alg1 для формирования Tr:

\bullet Шаг 1. Упорядочивается множество атрибутов X и отдельно упорядочивается множе-
ство атрибутов Y для построения оптимальной иерархии размерностей в соответствии
с алгоритмом [11].

\bullet Шаг 2. Заголовками строк в Tr становится таблица Dim(X), атрибуты в которой
упорядочены в соответствии с шагом 1, а строки отсортированы по значениям атри-
бутов с приоритетом, соответствующим порядковому номеру атрибута в X, получен-
ному на предыдущем шаге. Заголовками первых m столбцов становятся атрибуты X.
Остальные столбцы озаглавлены транспонированной таблицей Dim(Y ), прошедшей
преобразования, аналогичные Dim(X).

\bullet Шаг 3. Последовательно просматриваются кортежи Q. Очередное значение атрибута
Z помещаются в ячейку Tr, соответствующую заголовку строки (xi,1, xi,2, . . ., xi,m)

и заголовку столбца (y1,l1 , y2,l2 , . . ., yn,ln), значения которых получены из текущего
кортежа Q.
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Определим операцию по преобразованию атрибута Z в таблице Tr.

Определение 4. Единичной операцией Op будем считать замену одного значения zij на
новое значение \^zij атрибута Z в таблице Tr. Значения zij и \^zij могут быть пустыми, либо
непустыми. Для дальнейших операций сохраняется старое значение zij .

Алгоритм Alg2 содержимое БД преобразует в соответствии с операцией Op. Рассмотрим
схему этого алгоритма:

\bullet Шаг 1. В таблице Tr определяются векторы для строки \vec{}xi = (xi,1, xi,2, . . . , xi,m) и для
столбца \vec{}yj = (y1,j , y2,j , . . . , yn,j), соответствующие измененному значению \^zij .

\bullet Шаг 2. Поиск кортежа t \in Q, для которого t[XY ] = (\vec{}xi, \vec{}yj). Если кортеж найден, то
переход на шаг 3, в противном случае переход на шаг 4.

\bullet Шаг 3. В отношении RZ поиск кортежа u, для которого u[V ] = t[V ]. Выполняется
замена u[Z] = \^zij . Конец алгоритма.

\bullet Шаг 4. Пусть S = [RZ ] \cap (X \cup Y ) В отношение RZ дополняется новый кортеж u:
u[S \cap X] = \vec{}xi[S \cap X], u[S \cap Y ] = \vec{}yj [S \cap Y ] и u[Z] = \^zij . Атрибуты, не вошедшие в
множество S \cup Z, получают значение emp. Если СУБД прервала операцию в свя-
зи с нарушением ограничений целостности в БД, то переход на шаг 5, иначе конец
алгоритма.

\bullet Шаг 5. Информирование пользователя о возникшей ошибке, возврат значения zij на
прежнее место в Tr. Конец алгоритма.

Замечание 5. Поскольку кортеж u является частью кортежа t, V \subseteq [RZ ] и V \subseteq XY ,
то на шаге 3 u существует. Благодаря транзитивной зависимости V \rightarrow Z и 3НФ кортеж u

единственный в RZ .

Замечание 6. Алгоритм Alg2 целесообразно выполнять асинхронно с редактированием
Tr сразу после операции Op.

После определения всех необходимых компонентов коммутативность преобразований с
использованием (1), Alg1, Alg2 и Op можно представить в следующем виде:

DB\prime (1) -  - \rightarrow Q\prime Alg1 -  -  - \rightarrow Tr\prime 
Op -  - \rightarrow Tr\prime \prime , (4)

DB\prime Alg2 -  -  - \rightarrow DB\prime \prime (1) -  - \rightarrow Q\prime \prime Alg1 -  -  - \rightarrow Tr\prime \prime , (5)

где DB\prime и DB\prime \prime — начальное и конечное состояния БД, Tr\prime и Tr\prime \prime — начальное и конечное со-
стояния трансформации, Q\prime и Q\prime \prime — результаты выполнения запроса Q до и после операции
Op. Следовательно, из DB\prime в Tr\prime \prime можно перейти двумя различными путями, но результат
должен быть один и тот же, что гарантирует корректность выполненных преобразований
в БД.

5. Анализ корректности преобразований

Не сложно убедиться в истинности следующего утверждения, в котором устанавлива-
ется связь между трансформацией и функциональными зависимостями.

Утверждение 2. В таблице Tr отсутствует наложение различных значений атрибута Z

в одной ячейке тогда и только тогда, когда Q удовлетворяет функциональной зависимости
XY \rightarrow Z.
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Действительно, достаточность условия следует из определения 1, необходимость следу-
ет из условия существования Tr.

Следующая лемма дает достаточное условие для реализации зависимости в промежу-
точном представлении данных Q, следовательно, и в Tr.

Лемма 1. Q удовлетворяет функциональной зависимости XY \rightarrow Z, если она реализована
в БД на выделенном множестве отношений R.

Доказательство. Пусть F реализованное множество зависимостей на R. Рассмотрим про-
извольную зависимость Fi \in F . По построению F существует отношение R\prime 

j , в котором
зависимость Fi реализована. Произвольный кортеж t в R\prime 

j становится частью кортежа в Q1

в неизменном виде, поскольку операция естественного соединения выполняется по совпаде-
нию значений одноименных атрибутов в кортежах других отношений. Следовательно, все
кортежи в Q1 удовлетворяют зависимостям F . По условию леммы зависимость XY \rightarrow Z

реализована в R (выводима из F ), следовательно, она реализована в Q1. Поскольку логиче-
ская формула L и последующая проекция только удаляют кортежи из Q1, то они не могут
нарушить зависимость XY \rightarrow Z на множестве кортежей Q.

Замечание 7. Утверждение 2 и лемма 1 гарантируют, что в таблице Tr не появятся
непустое значение zij , отличное от фактического значения в БД.

Теорема 1. Результаты преобразований (4) и (5) совпадают и не содержат фиктивных
пустых значений.

Доказательство. После выполнения преобразований (4) будут определены векторы \vec{}xi, \vec{}yi

и значения атрибута Z: старое zij и новое \^zij . Доказательство построим на сравнении
компонентов преобразований (4) и (5).

Пусть алгоритм Alg2 завершился выполнением шага 3. Состояния DB\prime и DB\prime \prime разли-
чаются одним значением атрибута Z в единственном (V \subseteq XY ) кортеже u отношения RZ :
u[Z] = zij и u[Z] = \^zij соответственно. Множество зависимостей F при этом не изменит-
ся. Поскольку атрибут Z принадлежит только RZ , то результаты выполнения запросов Q\prime 

и Q\prime \prime будут отличаться значением этого атрибута в кортежах t[XY ] = (\vec{}xi, \vec{}yi). Остальные
значения в кортежах Q\prime и Q\prime \prime будут совпадать. Поскольку размерности Dim(X) и Dim(Y )

остаются без изменений, то в результате преобразований (5) будет получено представление
данных Tr\prime \prime .

Пусть Alg2 успешно завершил работу на шаге 4. При дополнении нового кортежа u \in RZ

множество зависимостей F не изменится, поскольку V \subseteq XY и V является потенциальным
ключом в RZ . За счет нового кортежа u в Q\prime \prime появится множество новых кортежей T ,
которых не было в Q\prime . Среди кортежей T найдется хотя бы один кортеж t c определенными
значениями XY , поскольку соответствующие размерности есть в Tr\prime . Остальные будут
отсеяны расширенной логической формулой L. Для кортежа t выполнено t[V ] = u[V ] по
свойству операции естественного соединения, следовательно, t[XY ] = (\vec{}xi, \vec{}yi), поскольку V

потенциальный ключ и зависимость V \rightarrow XY выводима из F . Из леммы 1 следует, что
t[Z] = u[Z]. Следовательно, в результате преобразований (5) получим трасформацию Tr\prime \prime .

Причина появления фиктивного пустого значения определена в условии 1. Способ по-
строения размерностей на основе подграфа и структура логического ограничения L (конъ-
юнкция ограничений) гарантируют, что в Tr не появятся соответствующие строки и столб-
цы, следовательно, не появится фиктивное пустое значение.
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Замечание 8. Раздельное формирование размерностей не препятствует появлению всех
допустимых строк и столбцов, а использование только иерархий в размерностях позволяет
увеличить количество пустых ячеек, доступных для редактирования. В конкретных ситу-
ациях можно подобрать ограничения и размерности, которые дают большее количество не
фиктивных пустых значений, например, использовать дизъюнкцию для различных атрибу-
тов. Однако в общем случае это может привести к ошибкам. К фиктивным пустым ячейкам
в Tr приводит использование в логической формуле L не принадлежащих размерностям ат-
рибутов, в том числе, когда они находятся в отношениях без атрибутов размерностей. Тогда
выполнение условия 3 будет недостаточно, потребуются дополнительные ограничения в ви-
де зависимостей функциональных и/или соединения.

Заключение

В данной статье получила развитие технология автоматического формирования пользо-
вательского представления данных из реляционной БД с использованием таблицы «Транс-
формация». Логические ограничения при формировании «Трансформации» позволяют сде-
лать ее обозримой при работе с произвольными объемами данных. Основной проблемой
является возможное присутствие в таблице фиктивных пустых значений и возможное от-
сутствие реальных пустых значений. Для решения этой проблемы использован специальный
вид логических ограничений, и способ формирования размерностей таблицы, основанный
на ссылочной целостности в БД.

Структура и содержимое «Трансформации» позволяют использовать ее для анализа
данных. В статье предложены алгоритмы синхронизации измененных данных в «Транс-
формации» с БД. Корректность достигается за счет коммутативности соответствующих
преобразований.

В работе [8] представлено экспериментальное программное обеспечение, разработанное
в среде Microsoft Office, которое позволило выявить проблемные места в рассматривае-
мой технологии и найти для них решение. В ближайших планах находится продолжение
исследований «Трансформации» с целью ослабления ограничений на ее структуру и со-
став: увеличение количества одновременно редактируемых атрибутов БД, использование
при редактировании внешних таблиц БД. Разработка экспериментального программного
обеспечения планируется в среде PostgreSQL и Microsoft Office.

Работа выполнена в рамках государственного задания ИМ СО РАН, проект FWNF-
2022-0016.
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Correct automation of access to information can be achieved by creating tools based on the theory of inter-
model mappings and ensuring the commutativity of data transformations. This paper is devoted to the technology
of data transfer between a relational database and a special type of tabular representation of data. The table
structure is a convenient tool for the user, since it allows not only to edit data synchronized with the database,
but also to perform various types of analysis using spreadsheets. In general case, the table size can be huge.
This paper proposes a technique for reducing table size by applying logical constraints when loading data. This
introduces two problems: fictitious empty values and the loss of empty values needed to edit the data. The work
proposes a solution to these problems by using an intermediate representation of data in the form of a database
query that contains logical constraints. A special form of these constraints, consistent with the SQL standard, is
necessary to deal with the null value problem. For this purpose, subsets of relations are formed from a partial
order that corresponds to referential integrity in the database. The resulting hierarchies are used to form the table
dimensions. The paper concludes with an analysis of the correctness of the transformations.
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АНАЛИЗ ПРОИЗВОДИТЕЛЬНОСТИ ВЫВОДА
МОДЕЛЕЙ ГЛУБОКОГО ОБУЧЕНИЯ

НА ПЛАТЕ BANANA PI BPI-F3 НА ПРИМЕРЕ ЗАДАЧИ
КЛАССИФИКАЦИИ ИЗОБРАЖЕНИЙ
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В работе выполняется анализ производительности вывода известных нейросетевых моделей ResNet-50
и MobileNetV2, обеспечивающих решение задачи классификации изображений, на плате Banana Pi BPI-F3,
которая построена на базе архитектуры RISC-V. Вывод запускается средствами доступных фреймворков:
PyTorch, TensorFlow Lite, Apache TVM и ExecuTorch. Предварительно модели конвертируются в формат
каждого целевого фреймворка. Выполняется проверка корректности решения задачи с использованием
полученных нейронных сетей. Демонстрируется, что показатели качества классификации изображений для
этих моделей хорошо соотносятся с опубликованными значениями. Далее выполняется подбор оптимальных
параметров запуска вывода для каждого фреймворка и модели. Сравнительный анализ производительности
вывода показывает, что ExecuTorch (с XNNPACK-бэкендом) для обеих моделей демонстрирует лучшие
результаты. Для модели ResNet-50 показатель количества кадров, обрабатываемых за секунду (Frames
per Second, FPS), меняется от 2.649 до 3.339 fps при оптимальных параметрах запуска в зависимости от
размера входного набора данных, обрабатываемого за один прямой проход по сети, для MobileNetV2 —
от 11.26 до 29.96 fps. TensorFlow Lite уступает ExecuTorch в среднем в \sim 2.1 раза. PyTorch и Apache TVM
демонстрируют более низкие показатели производительности. Предположительно это связано с тем, что
вывод в этих фреймворках не в полной мере оптимизирован для процессоров архитектуры RISC-V.

Ключевые слова: глубокое обучение, классификация изображений, производительность вывода,
PyTorch, TensorFlow Lite, Apache TVM, ExecuTorch, Banana Pi BPI-F3, RISC-V.
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Введение

Модели и методы глубокого обучения являются эффективными инструментами для
решения различных прикладных задач [1]. Применение глубокого обучения начинается с
построения архитектуры нейронной сети. Далее сеть обучается на выделенном наборе дан-
ных, называемом тренировочной выборкой, и выполняется тестирование на данных, кото-
рые модель «не видела» в процессе обучения. При достижении приемлемых показателей ка-
чества модель внедряется в реальную программную систему, иначе выполняется настройка
параметров обучения и/или модификация архитектуры сети. Внедрение предполагает мно-
гократное решение задачи на новых данных, называемое выводом. Вывод — это прямой
проход по сети с целью получения и последующей обработки ее выхода.

Анализ производительности вывода нейронных сетей является важным этапом в про-
цессе их внедрения в приложения, которые, как правило, должны функционировать в режи-
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ме реального времени на маломощных устройствах. RISC-V [2] — активно развивающаяся
архитектура, которая имеет большие перспективы широкого распространения в подобных
устройствах. Проведение исследований, связанных с анализом производительности выво-
да на устройствах RISC-V, способствует дальнейшему развитию системного и прикладного
программного обеспечения для таких устройств. Также оно имеет значение для плани-
рования специализированных расширений набора команд, ориентированных на ускорение
вывода нейронных сетей.

Цель настоящего исследования состоит в том, чтобы провести сравнительный
анализ производительности вывода двух широко известных моделей ResNet-50 [3] и
MobileNetV2 [4], обеспечивающих решение задачи классификации изображений, при запус-
ке на плате Banana Pi BPI-F3, которая построена на базе архитектуры RISC-V, с использо-
ванием доступных фреймворков глубокого обучения. Исследования по аналогичной темати-
ке проводились ранее для других архитектур [5–8]. Обзор литературы показывает, что для
RISC-V подобные работы только начинают появляться [9–15]. При этом авторы использу-
ют разные тестовые модели, библиотеки для вывода нейронных сетей и устройства RISC-V
для проведения экспериментов. Для платы Banana Pi BPI-F3 результаты бенчмаркинга вы-
вода до настоящего момента не публиковались. Также в отличие от существующих работ
в данном исследовании используется наиболее полный спектр фреймворков, доступных в
настоящее время для вывода на устройствах RISC-V (PyTorch [16], TensorFlow Lite [17],
Apache TVM [18], ExecuTorch [19]). Наряду с этим, реализация вывода и необходимой ин-
фраструктуры разрабатывается в рамках открытой программной системы бенчмаркинга
вывода Deep Learning Inference Benchmark (DLI) [20, 21], вследствие чего является общедо-
ступной и расширяемой с точки зрения тестовых моделей, поддерживаемых фреймворков
глубокого обучения и устройств, используемых для запуска.

Работа построена следующим образом. В разделе 1 дается обзор по тематике анализа
производительности вывода нейронных сетей на процессорах архитектуры RISC-V, отмеча-
ются отличия от существующих исследований. Раздел 2 содержит описание фреймворков
глубокого обучения, доступных для запуска на устройствах RISC-V. В разделе 3 приводится
формальная постановка задачи классификации изображений с большим числом категорий.
Далее (раздел 4) описывается методика анализа производительности вывода глубоких мо-
делей, которая предлагается в [5] и используется в экспериментальной части настоящей
работы. В разделе 5 рассматривается архитектура программной системы DLI и основные
изменения, которые внесены в рамках данного исследования. Раздел 6 посвящен анализу ре-
зультатов экспериментов, полученных при запуске вывода моделей ResNet-50 и MobileNetV2
на плате Banana Pi BPI-F3 средствами доступных фреймворков. В заключении приводится
краткая сводка результатов, формулируются выводы.

1. Обзор литературы

Внедрение нейронных сетей в реальные программные системы — сложный и важный
этап жизненного цикла глубоких моделей. Он предполагает, что построена нейросетевая
модель, которая решает поставленную задачу с высокими показателями качества. Далее
необходимо проанализировать производительность ее вывода на конкретном устройстве,
где будет выполняться многократный запуск. В зависимости от полученных результатов
анализа может осуществляться оптимизация сети, либо изменение архитектуры с целью
получения более «легковесной» и качественной модели. Один из типовых подходов к оп-
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тимизации — квантование весов [22]. Квантование предусматривает понижение точности
весов от формата FP32 к INT8 или UINT8 без существенной потери качества решения
задачи. Технически реализуется с помощью встроенных функций библиотек глубокого обу-
чения, либо специализированных фреймворков (например, NNCF [23]). При этом следует
учитывать, что используемый для вывода инструмент должен поддерживать запуск кван-
тованных моделей.

В настоящем разделе рассмотрим исследования, которые наиболее близки к тематике
анализа производительности вывода на устройствах RISC-V. Авторы [9] описывают про-
цедуру включения и оптимизации P-расширения RISC-V с целью выполнения квантован-
ных нейронных сетей в тензорном компиляторе Apache TVM. В экспериментальной части
приводятся результаты бенчмаркинга группы моделей MobileNet-v1 и Inception-v3 с веса-
ми в форматах FP32 и INT8 на симуляторе Spike с поддержкой P-расширения RISC-V.
В [10] предлагается сравнение двух машин на базе RISC-V и Raspberry Pi для нейросете-
вого вывода на примере группы моделей MobileNet, и даются рекомендации по использо-
ванию этих машин. Это системы Sipeed Maixduino с ускорителем сверточных нейросетей и
Raspberry Pi 4B в сочетании с USB-ускорителем Coral от Google. Авторы [11] оценивают
производительность широкого спектра рабочих нагрузок машинного обучения на RISC-V
с использованием архитектурного симулятора с открытым исходным кодом gem5. Работа
направлена на бенчмаркинг вывода нейросетевых моделей, обеспечивающих решение раз-
личных прикладных задач: классификация изображений, детектирование объектов, семан-
тическая сегментация изображений, оценка глубины сцены и других. Цель работы [12] —
оценить производительность вывода языковых моделей BERT и GPT-2 на 64-ядерной архи-
тектуре RISC-V SOPHON SG2042 с поддержкой векторных инструкций RVV v0.7.1. Про-
водится бенчмаркинг моделей с включением RVV-расширения и без него, при этом ис-
пользуется OpenBLAS и BLIS в качестве бэкендов BLAS для фреймворка PyTorch. В [13]
анализируется производительность вывода кодировщика в составе модели трансформера на
трех маломощных платформах с архитектурой RISC-V. Выполняется исследование вывода
для двух репрезентативных представителей семейства моделей BERT, выявляются узкие
места и возможности оптимизации на процессорах RISC-V: XuanTie C906, C908 и C910.
Авторы [14] исследуют энергоэффективность и производительность квантованных нейро-
сетевых моделей, развернутых на маломощных устройствах с различными аппаратными
архитектурами, включая RISC-V, x86, ARM 64 и ARM 32. Рассматриваются два принци-
пиально разных типа моделей: рекуррентные нейронные сети и большие языковые модели.
При этом оценивается, как эти модели работают в практических сценариях. Измеряется
точность, время выполнения и энергопотребление.

Данная работа является развитием [15], в которой анализируется производительность
вывода сети DenseNet-121 на плате Lichee Pi 4A при запуске средствами инструментария
OpenVINO, библиотеки TensorFlow Lite и компилятора машинного обучения Apache TVM. В
отличие от [15] в данном исследовании OpenVINO не участвует в сравнении вследствие того,
что до настоящего момента многие нейросетевые преобразования не оптимизированы для
RISC-V. Наряду с TensorFlow Lite и Apache TVM здесь еще рассматриваются фреймворки
PyTorch и ExecuTorch. В отличие от других работ, представленных в обзоре, в исследовании
используется другой набор тестовых моделей (ResNet-50 и MobileNetV2). При этом вывод
запускается на устройстве Banana Pi BPI-F3. Также разрабатываемое программное реше-
ние, обеспечивающее сбор результатов качества и производительности вывода нейросетей,
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является открытым (лицензия Apache 2.0) и расширяемым, и может быть использовано для
исследования производительности вывода других моделей, фреймворков глубокого обуче-
ния и устройств RISC-V.

2. Фреймворки глубокого обучения для вывода
на устройствах RISC-V

Для сравнения производительности вывода используется несколько широко известных
инструментов глубокого обучения, которые портированы и оптимизированы (частично или
полностью) их разработчиками для запуска на процессорах архитектуры RISC-V.

1. PyTorch [16] — обширная экосистема c открытым исходным кодом для решения при-
кладных задач с использованием машинного обучения. Инструмент разработан на ба-
зе библиотеки Torch. В настоящее время PyTorch является стандартом де-факто для
обучения и тестирования нейронных сетей вследствие удобства реализации и расши-
ряемости возможностей. В процессе его разработки использован положительный опыт
создания более ранних фреймворков глубокого обучения. Разработчики PyTorch предо-
ставляют интерфейсы для языков С++ и Python, а также обертки для Java.

2. TensorFlow Lite (с сентября 2024 года LiteRT) [17] — библиотека для развертывания
глубоких нейросетевых моделей на мобильных устройствах и микроконтроллерах. Име-
ются интерфейсы для C++, Python и некоторых других языков программирования.

3. Apache TVM [18] — активно развивающийся компилятор моделей машинного обучения
с открытыми исходными кодами. Цель разработки состоит в предоставлении инжене-
рам инструмента для оптимизации и последующего эффективного вывода нейросетевых
моделей на разных устройствах. Обеспечивается широкий спектр программных интер-
фейсов, далее в работе используется Python API.

4. ExecuTorch [19] — относительно новый фреймворк для вывода глубоких нейросетевых
моделей на мобильных и периферийных устройствах, а также на микроконтроллерах.
Он является частью экосистемы PyTorch Edge и обеспечивает эффективное развертыва-
ние различных моделей в формате PyTorch на маломощных устройствах. Разработчики
предоставляют программные интерфейсы для C++, Python и ряда других языков. При
этом поддерживается значительное количество бэкендов, гарантирующих эффективное
исполнение низкоуровневых операций, которые возникают в нейронных сетях, на кон-
кретном аппаратном обеспечении.

Следует отметить, что существуют другие фреймворки, обеспечивающие запуск глу-
боких нейронных сетей на устройствах RISC-V (например, ncnn [24]), но их использование
затруднительно вследствие ограниченных возможностей доступных конвертеров моделей.

3. Постановка задачи классификации изображений

Задача классификации изображений состоит в том, чтобы определить категорию, ко-
торой принадлежит изображение, из допустимого набора классов. При решении задачи на
входе глубокой нейросетевой модели имеется изображение I, как правило, в формате RGB
с разрешением w \times h, где w — ширина, h — высота изображения соответственно. Изобра-
жение I представляется в виде трехмерной матрицы интенсивностей с элементами Iijk , где
i \in \{ 0, 1, . . . , w  - 1\} , j \in \{ 0, 1, . . . , h  - 1\} , k \in \{ 0, 1, 2\} . Интенсивности принимают целые
неотрицательные значения в диапазоне от 0 до 255, либо вещественные значения в диапа-
зоне от 0 до 1, если они нормированы. Выход классификационной нейронной сети — это
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вещественный вектор, каждый элемент которого содержит достоверность принадлежности
изображения к одной из допустимых категорий. Размер вектора соответствует количеству
этих категорий N . Таким образом, нейросетевая модель обеспечивает построение отобра-
жения \phi : I \rightarrow \BbbR N . Цель решения задачи состоит в том, чтобы построить нейронную сеть,
которая для входного изображения формирует вектор достоверностей, где индекс макси-
мального значения отвечает номеру искомого класса.

4. Методика анализа производительности вывода

Общая схема анализа производительности вывода состоит из нескольких этапов [5].
1. Обучение и/или конвертация исходной глубокой модели в форматы различных фрейм-

ворков, которые предполагается использовать для ее вывода на конечном устройстве.
2. Анализ и сравнение качества работы полученных моделей для проверки корректности

предыдущего этапа.
3. Определение оптимальных параметров для запуска вывода.
4. Сжатие и оптимизация моделей.
5. Анализ и сравнение качества оптимизированных моделей.
6. Сравнение производительности вывода с использованием полученного набора моделей.

Сжатие и оптимизация нейронных сетей выходит за рамки данного исследования. По-
этому последовательность изложения результатов соответствует пунктам 1, 2, 3 и 6.

5. Программная реализация

Deep Learning Inference Benchmark (DLI) [20, 21] — программная система, разрабаты-
ваемая в ННГУ, позволяющая собирать показатели качества и производительности вывода
глубоких моделей в автоматическом режиме. Система предоставляет программные интер-
фейсы для вывода на языках C++ и Python, поддерживает вывод с использованием зна-
чительного количества широко известных фреймворков глубокого обучения. DLI включает
следующие основные компоненты (рис. 1).

Рис. 1. Основные компоненты системы Deep Learning Inference Benchmark

1. Framework Build Scripts — независимый компонент, в состав которого входят скрип-
ты для сборки различных фреймворков под архитектуры x86 и RISC-V.
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2. Model converters — независимый компонент, содержащий программный интерфейс
для конвертации моделей из формата одного фреймворка в формат другого.

3. Quantization — независимый компонент, в котором определяется интерфейс для кван-
тования весов моделей с помощью встроенных в различные фреймворки инструментов.

4. ConfigMaker — графическое приложение для автоматизации процедуры формирова-
ния конфигурационных файлов для разных запускаемых компонент системы.

5. Deployment — компонент, обеспечивающий автоматическое развертывание тестовой
инфраструктуры на вычислительных узлах средствами технологии Docker. Информа-
ция об узлах содержится в конфигурационном файле компонента.

6. RemoteController — компонент, выполняющий удаленный запуск экспериментов для
сбора показателей производительности и качества глубоких моделей на вычислитель-
ных узлах с использованием компонент BenchmarkApp и AccuracyChecker соответ-
ственно и последующую агрегацию результатов экспериментов.

7. BenchmarkApp — компонент, реализующий сбор показателей производительности вы-
вода набора моделей с использованием различных инструментов глубокого обучения.
Информация о моделях и параметрах вывода описывается в конфигурационном файле.

8. AccuracyChecker — программная обертка над аналогичным инструментом из состава
OpenVINO, который обеспечивает сбор показателей качества набора моделей. Инфор-
мация о моделях содержится в конфигурационном файле.

9. ResultConverters — вспомогательный компонент, содержащий скрипты для конверта-
ции результатов производительности и качества, которые агрегируются компонентом
RemoteController, в форматы html и xlxs.

10. Inference — компонент, содержащий реализацию вывода моделей глубокого обучения
средствами различных фреймворков. Присутствует поддержка программных интер-
фейсов для языков C++ и Python.

11. Tests — компонент, обеспечивающий автоматическую проверку корректности разрабо-
танных реализаций вывода с помощью различных фреймворков. На текущий момент
проверяется возможность запуска и вывода показателей производительности.

12. DemoAPP — консольное приложение, демонстрирующее работу системы DLI в пра-
вильной последовательности. Использует явно BenchmarkApp, AccuracyChecker и
неявно оставшиеся компоненты системы.

На схеме (рис. 1) полужирными рамками выделены части компонент, которые разра-
ботаны или модифицированы в рамках выполнения настоящего исследования: конвертеры
моделей для TVM и ExecuTorch (компонент Model Converters), реализация вывода сред-
ствами TVM (Python API) и ExecuTorch (C++ и Python APIs) (компонент Inference). От-
метим, что также добавлены обертки для квантования весов глубоких моделей (компонент
Quantization). Эксперименты показывают, что в настоящее время разные версии неко-
торых фреймворков работают нестабильно с квантованными нейросетями на устройствах
RISC-V, поэтому вопросы производительности таких моделей далее не затрагиваются.

6. Вычислительные эксперименты

6.1. Показатели качества

Для оценки качества классификации используется показатель точности top-k (top-k
accuracy). Пусть N — количество допустимых категорий изображений, тогда выход моде-
ли — вектор достоверностей yj = (yj1, y

j
2, ..., y

j
N ) для каждого изображения Ij в выборке,
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где j = 1, S, S — общее количество изображений, yji — достоверность того, что изобра-
жение Ij принадлежит классу i. Если среди k наибольших достоверностей yj

ij1
, yj

ij2
, ..., yj

ijk
,

присутствует достоверность, соответствующая искомому классу, то изображение считается
проклассифицированным корректно. Тогда точность top-k определяется как отношение
числа правильно проклассифицированных изображений к общему их количеству:

topk =

\sum N
j=1 I(lj \in \{ ij1, ij2, ..., ijk\} )

S
, (1)

где lj — номер искомого класса, I(lj \in \{ ij1, ij2, ..., ijk\} ) — индикаторная функция, которая при-
нимает значение 1, если lj \in \{ ij1, ij2, ..., ijk\} , и 0, в противном случае. Далее в экспериментах
рассматриваются точности top-1 и top-5.

6.2. Показатели производительности

Эксперимент предполагает, что набор обрабатываемых данных разбивается на пачки
(batch) равного размера. Решение задачи классификации для пачки данных — это прямой
проход по обученной нейронной сети и вычисление финального вектора достоверностей.
Количество пачек, на которых запускается прямой проход, определяет число таких про-
ходов — итераций. Итерации выполняются последовательно, следующая итерация запус-
кается после завершения предыдущей. Для каждого прямого прохода измеряется продол-
жительность его выполнения ti, i = 1, L, где L — количество итераций. Для оценки про-
изводительности вывода используется показатель числа кадров, обрабатываемых в секунду
(Frames per Second, FPS), который вычисляется как отношение размера входного набора
данных (общего числа изображений) S к суммарному времени выполнения всех итераций:

FPS =
S

\sum L
i=1 ti

. (2)

Отметим, что время вывода с использованием разных фреймворков для одной и той же
модели может отличаться в зависимости от размера входной пачки данных. Чтобы прогно-
зировать время завершения экспериментов, выполняются пробные запуски и для каждого
размера пачки фиксируется разное количество итераций (табл. 1). Выбор максимального
размера пачки обусловлен размерами оперативной памяти устройства.

Таблица 1. Выполняемое количество итераций для каждого
размера входной пачки данных

Размер пачки 1 2 4 8 16 32 64 128
Количество итераций 100 100 85 70 55 40 25 20

6.3. Наборы данных

Для проведения экспериментов используется подмножество изображений валидацион-
ной выборки набора данных ImageNet [25]. Поскольку доступные на сегодняшний день
образцы процессоров архитектуры RISC-V пока существенно отстают от высокопроизводи-
тельных устройств, то вывод глубоких моделей работает относительно медленно. В связи
с этим для проверки точности нейронных сетей используются первые 1 000 изображений
выборки. В случае корректности работы модели такой подход позволяет получить значение
точности классификации, близкое к опубликованному авторами обученной сети. Для анали-
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за производительности вывода выбраны 32 произвольных изображения из той же выборки.
Следует отметить, что для определения показателей производительности также можно ис-
пользовать синтетические входные данные, поскольку количество операций, выполняемых
на прямом проходе, не зависит от контекста изображений.

6.4. Тестовые модели

Анализ производительности вывода выполняется для широко известных классифика-
ционных моделей — ResNet-50 [3] и MobileNetV2 [4]. Эти модели являются сверточными ней-
ронными сетями с остаточными связями. Принципиальное отличие MobileNetV2 от ResNet-
50 состоит в использовании сверток, отделимых по глубине. Классическая свертка пред-
полагает проход трехмерным ядром слева направо и сверху вниз по входной трехмерной
матрице (тензору) и вычисление суммы произведений соответствующих компонент. Сверт-
ка, отделимая по глубине, предусматривает последовательное применение точечной и про-
странственной свертки. Точечная свертка включает вычисление набора одномерных свер-
ток (скалярных произведений) вдоль размерности, соответствующей каналам входной трех-
мерной матрицы. Пространственная свертка предполагает применение двумерных ядер к
каждому каналу входного тензора.

В процессе анализа используются обученные модели ResNet-50 и MobileNetV2 из ре-
позитория torchvision [26]. Модели предварительно загружаются, сериализуются и со-
храняются с помощью встроенной функции ‘torch.jit.save’ библиотеки PyTorch. Затем
они конвертируются и/или компилируются в форматы TensorFlow Lite, Apache TVM и
ExecuTorch (рис. 2).

1. Конвертация в формат TensorFlow Lite. Выполняется с помощью фреймворка
TensorFlow Backend for ONNX [27] в формат ONNX, далее в формат TensorFlow Lite.

2. Конвертация в формат TVM. Обеспечивается посредством вызова встроенной функ-
ции ‘torch.onnx.export’, которая преобразует модель в формат ONNX, после чего полу-
ченное представление передается на вход конвертеру моделей в формат TVM, реализо-
ванному в рамках системы DLI.

3. Конвертация в формат ExecuTorch. Реализуется в два этапа. Вначале выполняется
оптимизация PyTorch-модели с использованием заданного бэкенда с помощью функ-
ции ‘to_edge_transform_and_lower’ библиотеки ExecuTorch. Далее оптимизированная
модель сериализуется в формат ExecuTorch. В работе в качестве бэкенда применяется
библиотека XNNPACK [28], поскольку она оптимизирована для устройств RISC-V.

Модель из torchvision

ExecuTorch
Format

TensorFlow Lite
Format

TVM 
Format

PyTorch
FormatTVMConverter onnx_tensorflow

torch.jit.save(…)to_edge(XNNPACKPartitioner())

Рис. 2. Последовательность конвертации тестовых моделей
в форматы целевых фреймворков

И.С. Мухин, В.Д. Кустикова

2025, т. 14, № 4 47



6.5. Тестовая инфраструктура

Ниже (табл. 2) приведены параметры тестовой инфраструктуры, использованной для
проведения экспериментов. Фреймворки глубокого обучения собираются из исходных кодов
с помощью компиляторов gcc и g++ версии 13.2.0-23ubuntu4bb3.

Таблица 2. Тестовая инфраструктура

CPU, RAM Spacemit (R) X60, 1.6GHz, 8 ядер, 8 потоков, 16GB
Операционная система Bianbu 2.1
Фреймворки PyTorch v2.6.0 (OpenBLAS 0.3.26+ds-1)

TensorFlow Lite v2.14.0 (XNNPACK бэкенд)
Apache TVM v0.14.0
ExecuTorch v0.5.0 (XNNPACK бэкенд)

6.6. Параметры экспериментов

В табл. 3 приведены перебираемые параметры экспериментов. Вывод запускается с
использованием программных интерфейсов для языков C++ и Python. При подборе оп-
тимальных параметров для каждого размера входной пачки данных обеспечивается поиск
оптимального числа потоков, которое устанавливается для обеспечения параллелизма. От-
метим, что в Python API для TVM и ExecuTorch используется значение количества потоков
по умолчанию, равное числу физических ядер. Также TVM позволяет установить уровень
оптимизации модели opt_level в процессе ее предварительной компиляции для вывода.

Таблица 3. Параметры запуска вывода с использованием разных фреймворков

Фреймворк
Программный

интерфейс
Параметры

Размер
пачки

Количество
потоков

Внутренние
параметры

PyTorch
C++ + + —
Python + + —

TensorFlow Lite
C++ + + —
Python + + —

Apache TVM Python + по умолчанию уровень оптимизации opt_level

ExecuTorch
C++ + + —
Python + по умолчанию —

6.7. Результаты экспериментов

Качество классификации изображений. Качество решения поставленной зада-
чи с использованием доступных фреймворков верифицируется средствами компонента
Accuracy Checker системы DLI, который является оберткой над соответствующим ин-
струментом в составе OpenVINO [29]. Возможности указанного инструмента расширены
авторами статьи, поскольку исходная версия не поддерживает вывод глубоких моделей с
помощью TVM и ExecuTorch. Реализация выложена в открытый доступ [30]. Результирую-
щие показатели качества представлены ниже (рис. 3). Из гистограмм можно сделать вывод,
что для обеих моделей полученные значения близки к опубликованным. Отличие для моде-
ли ResNet-50 по метрике top-1 составляет 0.758, по top-5 — 1.166; для модели MobileNetV2
по top-1 — 0.154, по top-5 — 0.778. Отклонения от заявленных значений точности могут
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варьироваться при выборе разных подмножеств валидационной выборки ImageNet. Если
распределение данных в процентном соотношении для подмножества совпадет с распреде-
лением всей валидационной выборки, то значения метрики top-1 должны быть практически
равными. Также отличие может быть обусловлено тем, что некоторые фреймворки в про-
цессе конвертации модели в собственное внутреннее представление изменяют порядок вы-
полнения операций, в связи с чем на данных, где модель дает близкие выходные значения
достоверностей, может изменяться порядок классов при вычислении top-1 или top-5.
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Рис. 3. Качество классификации на множестве из первых 1 000 изображений
валидационной выборки ImageNet

Подбор оптимальных параметров. На данном этапе для каждого допустимого
размера входной пачки данных необходимо подобрать оптимальные параметры запуска.
Фреймворк PyTorch в программных интерфейсах C++ и Python позволяет перебирать ко-
личество потоков. Из полученных результатов (рис. 4) можно видеть, что для обеих тесто-
вых моделей поведение показателя производительности нестабильно. Для модели ResNet-
50 лучшие значения показателя FPS достигаются на размере пачки, равном 1, как для
программного интерфейса языка C++, так и для Python. Отличие во втором знаке по-
сле запятой (\sim 0.044). Такой сценарий получения входных данных характерен для многих
приложений, обеспечивающих обработку видео с низкой частотой, либо не требующих за-
пуска вывода глубокой модели на каждом кадре видеопотока. Для MobileNetV2 ситуация
кардинально противоположная. В целом с увеличением размера пачки повышается про-
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изводительность, при этом максимальная — наблюдается на наибольшем размере входной
пачки изображений. Согласно открытым источникам (официальный форум [31]) PyTorch
собирается для запуска на устройствах RISC-V, но фреймворк не оптимизирован под дан-
ную архитектуру. К сожалению, в доступных процессорах архитектуры RISC-V не хватает
привычных для x86-64 датчиков производительности, и средства профилировки обладают
скромными возможностями. Поэтому сложно указать точные причины подобных артефак-
тов. Следует отметить, что анализ результатов производительности вывода на устройствах
x86-64 для тех же тестовых моделей показывает хорошую масштабируемость.
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Рис. 4. Зависимости числа кадров, обрабатываемых за секунду, от размера входной
пачки данных при разном количестве потоков для фреймворка PyTorch.

Каждый график соответствует определенной тестовой модели, запущенной
с использованием C++ или Python API

TensorFlow Lite по аналогии с PyTorch позволяет перебирать количество потоков для
параллельного исполнения вывода. Результаты экспериментов (рис. 5) показывают хоро-
шую масштабируемость с ростом числа потоков для модели ResNet-50. При этом увели-
чение размера пачки данных не приводит к падению производительности. Поэтому выбор
оптимального размера пачки в основном зависит от скорости получения входных данных в
приложении.

Для MobileNetV2 ситуация несколько хуже, в особенности при использовании макси-
мального числа потоков на малых размерах пачки данных (менее четырех изображений).
На пачках, размер которых превышает 4, проблемы с масштабируемостью постепенно ухо-
дят, но начиная с 32 изображений происходит спад. При этом на 16 изображениях увеличе-
ние числа потоков вдвое приводит к ускорению, близкому к 1.9. Предположительно такой
результат обусловлен особенностями параллельной реализации пространственных сверток,
которые составляют основное преобразование в сети MobileNetV2 и требуют нерегулярного
обхода тензоров. Таким образом, при запуске указанной модели имеет смысл подавать на
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вход пачку данных размера 16 и устанавливать число потоков, равное 8. Если же приложе-
ние не позволяет сформировать пачку, размер которой превышает 2 изображения, то при
параллельном исполнении следует задействовать только 4 потока.

Отдельно следует отметить, что Python API в целом демонстрирует скорость обработки
изображений близкую или немного ниже по сравнению с C++ API для обеих тестовых
моделей вследствие наличия накладных расходов на вызов функций библиотеки C++.
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Рис. 5. Зависимости числа кадров, обрабатываемых за секунду, от размера входной
пачки данных при разном количестве потоков для фреймворка TensorFlow Lite.

Каждый график соответствует определенной тестовой модели, запущенной
с использованием C++ или Python API

TVM позволяет установить уровень оптимизации модели. Ниже приведены (рис. 6) гра-
фики зависимости показателя числа обрабатываемых за секунду кадров от размера вход-
ной пачки данных. Теоретически чем выше уровень оптимизации (opt_level), тем быстрее
должен работать вывод. На практике это утверждение не всегда справедливо. Для моде-
ли ResNet-50, например, на пачках 2, 4 и 8 показатели производительности отличаются
незначительно (второй знак после запятой), а для MobileNetV2 на всех размерах пачки,
за исключением 1 и 128, при opt_level=3 наблюдаются лучшие значения FPS. Отсутствие
эффекта от оптимизации модели ResNet-50 объясняется тем, что основная операция в се-
ти — это классическая свертка, которая изначально хорошо оптимизирована во фреймворке.
Небольшое улучшение производительности вывода MobileNetV2 при изменении уровня оп-
тимизации, вероятнее всего, связано с применением более эффективных стратегий обхода
входных тензоров при реализации сверток, отделимых по глубине. При этом следует отме-
тить «провал» производительности на пачке в 32 изображения и opt_level=1, возникший
предположительно из-за простоев при работе с памятью. Таким образом, для первой те-
стовой модели при каждом размере пачки нельзя однозначно рекомендовать оптимальное
значение параметра opt_level, в то время как для второй — на больших размерах пачки
максимальный уровень оптимизации гарантирует лучшую производительность вывода.
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Рис. 6. Зависимости числа кадров, обрабатываемых за секунду, от размера входной пачки
данных при разном уровне оптимизации модели (opt_level) для фреймворка Apache TVM

ExecuTorch позволяет перебирать количество потоков для параллельного запуска вы-
вода только в C++ API, в Python API данный параметр устанавливается в значение по
умолчанию, равное количеству физических ядер. Ниже приведены результаты определе-
ния оптимального числа потоков для C++ API (рис. 7) и сравнение лучших результатов
C++ API с Python API для каждого допустимого размера пачки данных (рис. 8).
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Рис. 7. Зависимости числа кадров, обрабатываемых за секунду, от размера входной
пачки данных для фреймворка ExecuTorch (C++ API)
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Рис. 8. Сравнение результатов производительности вывода
для Python и C++ APIs фреймворка ExecuTorch

Для модели ResNet-50 фреймворк демонстрирует рост производительности при увели-
чении числа потоков независимо от размера входной пачки данных (рис. 7, слева). Так
для пачки в 32 изображения, на которой достигается максимальная производительность,
с увеличением числа потоков вдвое ускорение в среднем составляет \sim 1.55 раза. При этом
для каждого фиксированного числа потоков с увеличением размера пачки данных FPS
либо не изменяется, либо растет (во втором знаке после запятой). Для сети MobileNetV2
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при запуске в 2 потока также наблюдается увеличение FPS в среднем \sim 1.77 раза, а на 4 и
8 потоках (рис. 7, справа) — нестабильное поведение показателя производительности. При
запуске в 4 потока очевиден «провал» на пачке в 4 изображения, а при запуске в 8 потоков
на размере пачки, равном 8, возникает пик в 28.81 fps, близкий к максимальному значе-
нию производительности (29.96 fps на пачке 128). Как отмечалось ранее, в настоящее время
на RISC-V отсутствуют технические возможности, чтобы достоверно объяснить причины
недостаточного ускорения от параллелизма и других артефактов. Предположительно это
связано с тем, что плата Banana Pi BPI-F3 оснащена не самой быстрой подсистемой па-
мяти, также в процессоре отсутствует внеочередное исполнение инструкций, в результате
чего меньше возможностей для уменьшения простоев из-за работы с памятью. Пик на 8 по-
токах вероятнее всего достигается вследствие удачного расположения данных в памяти.
Подробнее подобные вопросы обсуждаются в [32].

Если сравнивать лучшие результаты производительности, полученные при использо-
вании C++ API, с показателями Python API (рис. 8), то можно сделать следующие вы-
воды. Для модели ResNet-50 показатели в целом отличаются незначительно, Python API
на большинстве размеров входных пачек уступает из-за наличия накладных расходов на
вызов функций библиотеки C++. Аналогичное утверждение справедливо и для модели
MobileNetV2, но эта разница выглядит более существенной для размеров пачки 1, 2 и 4.
В связи с этим в приложениях предпочтительно использовать для вывода C++ API. Обе
тестовые модели имеет смысл запускать на максимально возможном размере пачки дан-
ных 128 в 8 потоков.

Сравнительный анализ. Сравнение показателей производительности, полученных
при оптимальных параметрах запуска вывода (рис. 9), показывает, что ExecuTorch обес-
печивает лучшую скорость обработки изображений независимо от размера входной пач-
ки данных. Для модели ResNet-50 скорость обработки меняется от 2.649 до 3.339 fps при
оптимальных параметрах запуска в зависимости от размера входной пачки данных, для
MobileNetV2 — от 11.26 до 29.96 fps. Вывод средствами TensorFlow Lite уступает ExecuTorch
в среднем в \sim 2.1 раза. Допускаем, что использование более новой версии библиотеки
TensorFlow Lite позволит улучшить показатели производительности. Остальные фрейм-
ворки показывают существенно худшую производительность. Предположительно данный
факт связан с тем, что хотя для PyTorch и Apache TVM официально заявлена поддержка
RISC-V, но они не в полной мере оптимизированы под указанную архитектуру.

Заключение

Активное применение глубокого обучения для решения прикладных задач неизбежно
поднимает вопросы, связанные с анализом производительности вывода моделей на конеч-
ных устройствах, которые используются для многократного прямого прохода. Темпы раз-
вития архитектуры RISC-V и обзор различных источников свидетельствуют об интересе
сообщества к подобным вопросам, что говорит об актуальности результатов исследования.

В работе для классификационных моделей ResNet-50 и MobileNetV2 демонстрируется,
что среди известных фреймворков глубокого обучения, обеспечивающих запуск вывода на
устройствах RISC-V, на текущий момент на плате Banana Pi BPI-F3 лучшую производи-
тельность показывает фреймворк ExecuTorch (с XNNPACK-бэкендом). Для сети ResNet-50,
где преобладают классические свертки с трехмерным ядром и одномерные свертки вдоль
размерности, соответствущей каналам, наблюдается хорошая масштабируемость независи-
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Рис. 9. Лучшие результаты производительности, полученные при использовании
оптимальных параметров запуска вывода. Цвет и тип линий соответствует фреймворку,

маркеры — программному интерфейсу и оптимальным параметрам запуска

мо от размера входной пачки данных. Лучшие показатели производительности для обеих
тестовых моделей достигаются при запуске в 8 потоков. При этом MobileNetV2 на пачках
4, 32, 64 и 128 изображений работает в режиме реального времени (более 25 fps). На прак-
тике выбор оптимального размера входной пачки данных зависит не только от результатов
анализа производительности, но от скорости поступления входных данных в конкретном
приложении (изображений в системах видеоанализа).

Несмотря на то, что Banana Pi BPI-F3 относится к числу маломощных, вывод ней-
ронных сетей на таких устройствах имеет смысл. Эксперименты показывают, что даже на
классическом примере известной «легковесной» сети MobileNetV2 удается обеспечить об-
работку данных в режиме реального времени. Данный факт говорит в поддержку тезиса
о перспективности внедрения процессоров RISC-V в мобильные устройства. Полученные
результаты исследования позволяют сделать вывод, что при развитии архитектуры RISC-
V полезно обратить внимание на возможность аппаратного ускорения операции свертки,
поскольку она является наиболее вычислительно-трудоемкой для большого класса сетей.

Разработанная инфраструктура в рамках программной системы Deep Learning Inference
Benchmark позволяет автоматизировать запуск вывода и агрегацию результатов бенчмар-
кинга вывода глубоких моделей. Система является открытой и расширяемой, поэтому мо-
жет быть использована для анализа производительности вывода в аналогичных исследова-
ниях на новых образцах процессоров архитектуры RISC-V.
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The paper analyzes the inference performance of the well-known neural networks ResNet-50 and MobileNetV2,
which provide a solution for the problem of image classification, on the Banana Pi BPI-F3 board, which is built on
the RISC-V architecture. The inference is launched by available frameworks: PyTorch, TensorFlow Lite, Apache
TVM and ExecuTorch. The models are converted to the format of each target framework. The correctness of the
problem solving is checked using the obtained neural networks. It is demonstrated that the accuracy indicators
of image classification using these models correlate well with the published ones. Then, the optimal parameters
for launching the inference for each framework and model are selected. A comparative analysis of the inference
performance shows that ExecuTorch demonstrates the best results for both models. For the ResNet-50 model, the
number of frames processed per second (FPS) varies from 2.649 to 3.339 fps with optimal parameters depending
on the batch size of images processed in one forward pass through the network, for MobileNetV2 – from 11.26
to 29.96 fps. TensorFlow Lite is inferior to ExecuTorch by an average of \sim 2.1 times. PyTorch and Apache TVM
demonstrate lower performance indicators. Probably, this is due to the fact that they are not fully optimized for
the RISC-V architecture.
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