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Abstract. Federated learning (FL) is a machine learning approach that allows multiple devices or sys-
tems to train a model collaboratively, without exchanging their data. This is particularly useful for autono-
mous mobile robots, as it allows them to train models customized to their specific environment
and tasks, while keeping the data they collect private. Research Objective to train a model to recognize and
classify different types of objects, or to navigate around obstacles in its environment. Materials and me-
thods we used FL to train models for a variety of tasks, such as object recognition, obstacle avoidance, lo-
calization, and path planning by an autonomous mobile robot operating in a warehouse FL. We equipped
the robot with sensors and a processor to collect data and perform machine learning tasks. The robot must
communicate with a central server or cloud platform that coordinates the training process and collects
model updates from different devices. We trained a neural network (CNN) and used a PID algorithm to
generate a control signal that adjusts the position or other variable of the system based on the difference
between the desired and actual values, using the relative, integrative and derivative terms to achieve
the desired performance. Results through careful design and execution, there are several challenges to im-
plementing FL in autonomous mobile robots, including the need to ensure data privacy and security, and
the need to manage communications and the computational resources needed to train the model. Conclu-
sion. We conclude that FL enables autonomous mobile robots to continuously improve their performance
and adapt to changing environments and potentially improve the performance of vision-based obstacle
avoidance strategies and enable them to learn and adapt more quickly and effectively, leading to more ro-
bust and autonomous systems.
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Leap uccaenoBaHusi COCTOUT B TOM, YTOOBI HAYYHUTh MOJICNH PACIIO3HABATh M KIACCH(DUIIUPOBATH pa3-
JIMYHBIC TUIBI OOBEKTOB MM OOXOAMTH MPETATCTBHUS B OKpYXKAMOMIEeH cpeae. MaTepuaabl H METOIBI: ¥C-
MOJTb30BaHO (heepaTUBHOE MANIMHHOE O0YYeHHUe sl 00ydeHHs MOAETCH pa3IHIHBIM 3ajadaM, TaKUM Kak
pacmo3HaBaHHe OOBEKTOB, 00XOJ MPEMATCTBUM, JIOKAIA3AUI U IUIAHUPOBAHUE ITYTH C IIOMOIIBIO aBTO-
HOMHOTO MOOMIIBHOTO po00Ta, paboTaromiero Ha ckiane. PoOOT ocHaleH JaTdiuKamMu M MPOIECCOPOM IS
cOopa MaHHBIX W BBHIIOJHEHHUS 3a/1a4 MAIIMHHOTO O0y4YeHHs. POOOT MOIIKEH CBSI3BIBATHCS C IEHTPAIbHBIM
cepBepoM WM 001adHO# TIaTHOpMOi, KOTOpasi KOOPAUHUPYET MpoIiecc 00ydeHus: U coOnpaeT 0OHOBIIE-
HUSL MOJIeNIel ¢ pa3HbIX ycTpoiicTB. HelipoHHast ceTh oOydeHa ¢ ucmoias3oBaHueM anroputma PID mis re-
Hepalyy yIpaBysIONIero CUrHaIa, KOTOPBIA PEryaHupyeT MOJIOKSHNAES WK APYTYIO MEPEMEHHYIO0 CUCTEMBI Ha
OCHOBE Pa3HHIIBI MKy KETaeMbIMH U (DaKTHUCCKUMH 3HAYCHUSIMHU, MCIIOJIB3YsI OTHOCHUTEIbHbIC, HHTETPa-
TUBHBIC U TPOU3BOJHBIC YCIOBHS ISl JOCTIIKCHHUS JKEIACMOM MPOU3BOMUTEIBHOCTH. PesynbraThl. Jlaxe
MIPH YCIOBUU TIIATEIEHOTO MPOCKTHPOBAHUS U MCIIONHEHHS CYIIECTBYET HECKOJBKO MPOOIIEM TIPH pean-
3anuu (peepaTHBHOTO OOYYEHUS B aBTOHOMHBIX MOOHMIIBHBIX POOOTax, BKIIFOYast HEOOXOAUMOCTE obecIe-
YeHHsI KOH(PUICHIINATBHOCTH 1 0€30IIaCHOCTH JaHHBIX, a TAK)KE HEOOXOIUMOCTh YIIPaBICHUS KOMMYHHKa-
OUSMH ¥ BEIYUCITUTEIBHBIMEI PECypcaMu, HEOOXOMUMBIME Il 00ydeHHs MOAenH. 3akiaienne. beot crie-
JIaH BBIBOJ] O TOM, YTO ()eIepaTHBHOE 0OyUCHHE IMO3BOIISIET ABTOHOMHBIM MOOHMIBHBIM POOOTaM ITOCTOSTHHO
MTOBBIMIATH CBOKO TIPOM3BOIAUTEIBHOCT U aJallTUPOBATHCA K U3MCHSIOIUMCS YCIIOBHUAM, a TAaKXKE TIOTCHIIN-
AIBHO yay4maTh 3QPEeKTUBHOCTh CTpaTeruii 00X0/1a MPEIATCTBUI HA OCHOBE 3PCHUS U MO3BOJIIET UM ObI-
ctpee ¥ 3QeKkTHBHEE YUUTHCSA U aJalTHPOBATHCS, YTO MPUBOAUT K CO3MaHHIO OOJiee HaIS)KHBIX U aBTO-
HOMHBIX CHCTEM.

Knirouesvie cnosa: peneparusaoe odbyuenue (FL), neiiponnas cetb (CNN), UuTtepuet Bemeit (IoT),
BU3YaJIbHBIN 00X0/] MPEISITCTBUI, POOOTH HA OCHOBE 3pCHHS, MOOHIbHBIC POOOTHI

Jna yumuposanusa: Al-Khafaji Israa M. Abdalameer, Panov A.V. Federated learning for vision-based
obstacle avoidance in mobile robots // Bectaux FOVYpI'Y. Cepust «KoMIbploTepHbIE TEXHOJIOTHH, yIpaBIIe-
HUe, paanotekTponuka». 2023. T. 23, Ne 3. C. 35-47. DOI: 10.14529/ctcr230304

Introduction
Federated learning (FL) is a machine learning approach that allows multiple decentralized devices,

such as smartphones or drones, to collaborate and train a model without sharing their data directly [1].
This approach can be particularly useful for vision-based obstacle avoidance, as it allows the devices to
improve their ability to detect and avoid obstacles while preserving the privacy of their data [2].

In a FL system for vision-based obstacle avoidance, the devices would each have a local model that

they use to make predictions about the environment around them. These local models would be updated
regularly through the FL process, in which the devices share model updates with a central server without
sharing the underlying data [3]. The server would then aggregate the model updates and use them to up-
date the global model, which would be shared back to the devices to improve their local models (Fig. 1).

Step 1 Step 2 Step 3 Step 4

model - server model - server model - server model - server

2 A .
model sycs ¢ upload

worker-a worker-b worker-c| worker-a worker-b worker-c | worker-a worker-b worker-c
worker-a worker-b worker-c

Central server Central server Nodes train the Central server pools

chooses a statistical | transmits the initial | model locally with model results and

model to be trained | model to several their own data generate one global
nodes mode without

accessing any data

Fig. 1. Central case for FL process
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1. Related work

The article of [5] proposed a unified learning approach for vision-based obstacle avoidance in mo-
bile robots, allowing multiple robots to train a common deep neural network model without exchanging
their data. They evaluated their approach on a dataset of real-world images captured by a robot moving
in a crowded environment. In a similar vein.

In an article of [6] the authors demonstrated the use of FL to enable a group of mobile robots to col-
laboratively learn a model for obstacle avoidance. The robots are equipped with cameras, and use their
camera images to learn a model that can predict the probability of an obstacle in a particular location.
Bots communicate with each other and share their model updates, collectively allowing them to improve
model accuracy over time. One major advantage is this could help improve the robustness and generali-
zability of the learned model, and enable robots to adapt to a wide variety of environments and situa-
tions.

In an article of [7] also proposed a unified learning approach for vision-based navigation in mobile
robots, allowing multiple robots to train a shared deep neural network model without exchanging their
data. The FL approach is particularly useful for privacy-sensitive applications, such as vision-based ob-
stacle avoidance, where devices may not want to share sensitive information about their surroundings.
It can also be useful in situations where data is distributed across a large number of devices, such as In-
ternet of Things (IoT) applications, or when data privacy is a concern.

Overall, this paper demonstrates the potential of unified learning to enable collaborative learning in
mobile robotics applications, and shows how it can be used to improve the performance of vision-based
obstacle avoidance tasks.

In article [8] suggested a combined learning-based approach for vision-based barrier detection and
avoidance in mobile robots. The proposed approach allowed multiple robots to learn collaboratively to
model common obstacle detection and avoidance, while maintaining the privacy of their individual data.
The authors demonstrated the effectiveness of the proposed approach through simulation and real-world
experiments.

In article [9] proposed a learning approach for obstacle detection and avoidance in mobile robots
and the authors demonstrated the effectiveness of a distributed deep learning approach for collaborative
detection and obstacle avoidance in mobile robots.

As for article [10] presented a distributed deep learning approach for vision-based obstacle detec-
tion and avoidance in mobile robots and demonstrated the effectiveness of the proposed approach
through simulations and real-world experiments.

The textbook of [11] covers deep learning techniques, which are commonly used in federal learning
for robotics. It discusses the process of collecting and labeling training data, training a machine learning
model using backpropagation, and evaluating the model's performance. It also covers techniques for im-
proving the performance of the model, such as regularization and data augmentation. A survey article of
[12] covers robot learning from demonstration, which is a federal learning method that involves collec-
ting and labeling training data by observing a human demonstrating the desired behavior. It discusses
the importance of defining the task, selecting appropriate sensors and actuators, and designing a control
system that can generalize from the demonstrated behavior to new situations. It also covers techniques
for evaluating and improving the performance of the learned behavior.

The survey article of [13] covers meta-learning for robotics, which is a federal learning method that
involves learning how to learn from a set of related tasks. It discusses the importance of defining
the task and selecting appropriate sensors and actuators, as well as the challenges of designing a control
system that can generalize to new tasks. It also covers techniques for evaluating and improving the per-
formance of the learned behavior, such as using a meta-learner to adapt to new tasks.

These are just a few of the many works that have been published on FL to avoid vision-based barri-
ers. There is still much room for further research in this area, including the development of more effi-
cient and effective algorithms, the integration of other sensors (eg, lidar, radar), and the application of
FL to more complex tasks such as simultaneous localization and mapping (SLAM).

2. Methodology
The methodology for federal learning of a robot has been discussed in literature by various authors.
Some common steps involved in the process of federal learning for a robot have been highlighted (Fig. 2).
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The article of [14] identifying the sensors and actuators

Defining that the robot will use to perceive and interact with its envi-
ronment has been emphasized. This involves selecting the ap-
lr propriate sensors and actuators based on the specific needs and

requirements of the task or tasks that the robot will be perfor-
ming.

The article of [15] defining the task or tasks that the robot
will be trained to perform has been suggested as the initial step.
Designing and Implementing This involves identifying the specific actions and behaviors
that the robot should be able to perform, as well as the condi-
tions under which it will be expected to perform them, collec-
ting and labeling training data has been highlighted as a critical
step in the process. This involves gathering a large dataset of
examples that demonstrate the desired behavior of the robot,
and labeling the data to indicate the correct actions for the ro-
Training bot to take in each situation.

The article of [16] designing and implementing a control
system for the robot has been proposed as the next step. This
involves developing the algorithms and software that will be
used to control the robot's sensors and actuators in order to

Identifying

-

e

Collecting and Labeling

(e

e

Testing and Evaluating

l achieve the desired behavior by testing and evaluating the per-

formance of the robot has been proposed as an essential step in

Refining and Improving the process. This involves using the trained machine learning
model to control the robot and evaluating its performance on

Fig. 2. Shows the specific goals and tasks  a variety of tasks and in different environments.

a robot is being trained to perform The article of [17] training a machine learning model
in the federal robot learning methodology \\qino the collected and labeled data has been suggested as
the next step. This involves using the collected and labeled data to train a machine learning model that
can predict the appropriate actions for the robot to take in various situations.

3.1. Sim-to-real for robot federal learning

Sim-to-real refers to the process of transferring knowledge or skills learned in a simulated environ-
ment to a real-world environment. This can be particularly useful in the field of robotics, as it allows for
efficient and safe training and testing of robots without the risk of damaging the physical hardware [18].

One approach to sim-to-real transfer in robotics is federated learning, which is a machine learning
technique that allows multiple robots to learn from their own data and experiences while still collaborating
and sharing information with each other. In FL, the robots are able to learn from their own data without
the need to share sensitive or private information with a central server or other robots. This can be useful
for improving the performance and reliability of robots in complex and dynamic environments [19].

There are many challenges and open questions in the field of sim-to-real transfer and federated
learning for robots, including how to effectively transfer knowledge between different robots and envi-
ronments, how to handle noise and uncertainty in the real world, and how to ensure that the learned be-
haviors are safe and robust. Despite these challenges, sim-to-real transfer and FL have the potential to
significantly advance the capabilities of robots and enable them to perform a wider range of tasks and
functions [20].

3.2. Deep learning for vision-based obstacle avoidance

One way to implement vision-based obstacle avoidance using deep learning is to use a convolution-
al neural network (CNN) to process images from a camera or other visual sensors. The CNN can be
trained on a dataset of images that includes a variety of different types of obstacles, such as walls, furni-
ture, and other objects. The network can then be used to classify the objects in the images and predict
their location relative to the robot or vehicle [21, 22].

Once the CNN has been trained and is able to accurately classify and locate obstacles, it can be used
in real-time to avoid collisions as the robot or vehicle moves through the environment. For example,
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the network could output steering commands to steer the robot around an obstacle or could trigger
a braking system to stop the vehicle before it collides with an obstacle [23].

There are many challenges involved in implementing vision-based obstacle avoidance using deep
learning, including the need for large amounts of high-quality training data and the need to carefully
tune the network architecture and hyperparameters to achieve good performance. However, with careful
design and training, it is possible to achieve effective obstacle avoidance using deep learning techniques
[24, 25].

3.3. Vision-based obstacle avoidance models

Machine learning models, including vision-based obstacle avoidance models, are essential for au-
tonomous vehicles and robots to navigate environments safely using camera input to detect and avoid
obstacles [26].

1. Classification is an approach in which the model is trained to classify each image as containing
an obstacle or not, and the model predicts the presence of an obstacle in the current frame [27].

2. Object detection is another approach in which the model is trained to detect and classify specific
types of obstacles, such as pedestrians or vehicles, and identify the location and type of any obstacles in
the current frame [28].

3. Depth estimation is the third approach in which the model estimates the distance to obstacles in
the camera's field of view and determines the proximity of obstacles to navigate around them [29].

To build a robust and accurate vision-based obstacle avoidance model, it is crucial to have a diverse
and representative training dataset, regardless of the approach used [30].

3.4. The details of training

The process of training a neural network for obstacle avoidance can be divided into several steps
(Fig. 3). As stated by [31] the first step is data collection, where a dataset of images representing obsta-
cles likely to be encountered by the robot in its environment is gathered. The dataset should include ima-
ges of various obstacles, such as walls and furniture, and clear paths annotated with labels indicating
whether the path ahead is blocked or free.

The second step, data preprocessing, involves preparing the collected images for training. Accor-
ding to the article of [32] this may include resizing or cropping the images to a consistent size, applying
image augmentation techniques to increase the diversity of the dataset, and normalizing the pixel values
to a standard range.

Next, the architecture of the CNN model needs to be designed, as mentioned by [33]. This includes
deciding on the number and size of the convolutional layers, the number and size of the fully connected
layers, and the activation functions to use. It may also involve choosing the appropriate loss function and
optimizer for the task.

Once the model architecture has been de-
signed, the model can be trained using the col-
lected and preprocessed dataset. As described in

the article Of [34] during training, the model iS Data Preprocessing 1

Data Collection —l

presented with images from the dataset and their

corresponding labels, and the weights of the mo-

del are updated based on the error between Model Architecture Design

the predicted labels and the true labels. Training —,l,

continues until the model reaches a satisfactory o

level of accuracy on the training dataset. Model Training _l
After training, the model should be evaluated

on a separate dataset to assess its performance. .
T . . . Model Evaluation

This will help identify any overfitting or under- _l
fitting and allow for adjustments to be made to
the mgdel or training process as needed. . Model Deployment

Finally, once the model has been trained and
evaluated, it can be deployed on the robot for use Fig. 3. Steps of convolutional neural network (CNN)
in obstacle avoidance. The model can be used to training to avoid obstacles
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classify images captured by the robot's sensors and predict whether the path ahead is blocked or free,
allowing the robot to navigate its environment safely.

3.5. A vision-based obstacle avoidance strategy for mobile robots

To implement this approach, the training data from both simulated agents and real robots would need
to be collected and aggregated in a centralized location, such as a server or cloud-based platform.
The shared model would then be trained using this aggregated data, with the goal of learning a generaliza-
ble obstacle avoidance strategy that can be applied to a variety of different robots and environments [35].

One benefit of using a FL approach in this context is that it allows the model to be trained using
a larger and more diverse dataset, which can improve its performance and generalizability [36]. Addi-
tionally, because the data remains on the device, there are privacy and security benefits to using a FL
approach.

Typically, obstacle avoidance involves using a sensor, such as a camera, to capture images of
the environment and then processing those images to identify obstacles that the robot should avoid.
In the case described, the convolutional neural network (CNN) is trained to classify the environment
ahead as either “blocked” or “free”, based on the input images it receives. This allows the robot to make
decisions about how to navigate its environment and avoid obstacles. The performance of the CNN-
based obstacle classifier will depend on the quality and diversity of the training data, as well as the de-
sign of the CNN itself (Fig. 4) [37].

It is important to note that using a CNN to classify obstacles as either “blocked” or “free” is a sim-
plified approach, and in practice, real-world environments may contain a wide variety of obstacles that
may need to be handled differently. A more sophisticated obstacle avoidance strategy may involve clas-
sifying obstacles into multiple categories and defining specific behaviors for each category.

Output label

Input Image CNN (Image Class)

Fig. 4. Architecture of neural network (CNN)

A deep convolutional neural network (CNN) is a type of machine learning model that is commonly
used for image classification tasks [37]. CNNs are particularly effective at learning features and patterns
in images, and have been successful in a wide range of image-based tasks, including object recognition,
image segmentation, and facial recognition.

Fully
. Connected
Convolution

Pooli Oy

Input OOIne. .. o1

- O

i C:
O

\ o

Feature Extraction Classification

Fig. 5. Components of CNNs that consist of multiple layers of artificial neural networks

CNNs are composed of multiple layers of artificial neural networks, which are inspired by the struc-
ture and function of the brain. They consist of an input layer, one or more hidden layers, and an output
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layer. The hidden layers of a CNN are typically composed of convolutional layers, which apply a set of
learnable filters to the input data and produce a set of output feature maps. These feature maps are then
processed by additional layers, such as pooling layers and fully connected layers, to extract and combine
the relevant features for the task at hand (Fig. 5).

We applied moving a robot with a mass of 10 kg in the presence of obstacles using federated lear-
ning and equipped with a camera and other sensors, and has the ability to process visual data and make
orientation decisions using control algorithms. The robot was placed in an environment with many ob-
stacles, and tasked to navigate around them as it moved through the environment.

To enable the robot to learn to detect and avoid obstacles using federated learning, we performed
the following process:

1. The robot collects visual data as it moves through the environment using a camera and other sen-
SOrs.

2. The visual data is used to train a local model to detect and avoid obstacles, using machine lear-
ning algorithms such as deep learning.

3. The local model is used to guide the robot's behavior as it moves through the environment, and to
generate routing commands to avoid obstacles.

4. The process is repeated over time, with the bot constantly updating its local model as it collects
more data and experience.

To represent the relationships between visual data, the location of obstacles, and required steering
commands, using equations and algorithms such as convolutional neural networks (CNN) to process
visual data and identify obstacles, and control theory algorithms such as PID controllers to generate
steering commands based on the location and shape of obstacles [38].

The robot is moving in a straight line and encounters an obstacle in its path. The camera takes
an image of the obstruction, and the CNN processes the image and determines the location and shape of
the obstruction. The PID controller then calculates the steering command needed to direct the robot
around the obstacle using equations such as:

Steering command = Kp - (desired position — current position) +
+ Ki - integral error + Kd - derivative error.

The equation

Steering command = Kp - (desired position — current position) +
+ Ki - integral error + Kd - derivative error

is a form of the PID (Proportional-Integral-Derivative) control algorithm, which is a widely used control
method in robotics and other fields. The PID algorithm is designed to control the position, velocity, or
other dynamic variables of a system by comparing the desired value of the variable (the “setpoint™) with
the actual value as measured by sensors (the “process variable”).

In the equation

Steering command = Kp - (desired position — current position) +
+ Ki - integral error + Kd - derivative error,

the “steering command” is the output of the PID controller, which is used to control the movement of
the robot. The “desired position” is the target location that the robot is trying to reach, and the “current
position” is the actual location of the robot as measured by the sensors [39].

The Kp, Ki, and Kd terms are constants that determine the responsiveness of the controller. Kp is
the proportional gain, Ki is the integral gain, and Kd is the derivative gain. The proportional gain deter-
mines the extent to which the controller responds to the current error between the desired and actual po-
sitions. The integral gain helps to eliminate steady-state error by accounting for the accumulated error
over time. The derivative gain helps to stabilize the control loop by responding to the rate of change of
the error.

The “integral error” and “derivative error” terms are calculated based on the error between the de-
sired and actual positions at different points in time. The integral error is the sum of the errors over time,
and the derivative error is the changein the error over time. These terms help to fine-tune the control
action and prevent oscillations.

Overall, the PID algorithm is used to generate a control signal that adjusts the position or other vari-
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able of the system based on the difference between the desired and actual values, using the proportional,
integral, and derivative terms to achieve the desired performance.

This approach of using PID control for robotic obstacle avoidance has been widely used in the field.
For instance, in the work of [40] a PID controller was used to guide a mobile robot through a cluttered
environment. Additionally, the use of federated learning for obstacle avoidance has also been explored
in recent literature, such as in the work of [41] where a federated learning approach was used to train
an autonomous vehicle to navigate a complex urban environment.

4.1. Approaches to FL, and the deep learning models used for vision-based obstacle avoidance

Centralized learning is simple and efficient, but it has some limitations. One limitation is that it re-
quires a large amount of data to be collected and transmitted to the central location, which can be costly
and time-consuming. Additionally, there may be privacy concerns associated with collecting and trans-
mitting sensitive data to a central location [42].

On the other hand, federated learning is a machine learning approach in which each device or lo-
cation trains a local model on its own data, and the models are then aggregated to create a global
model [43].

In terms of deep learning models for vision-based obstacle avoidance, one approach is to use convo-
lutional neural networks (CNNs) to process images and identify obstacles. CNNs are particularly well-
suited for image processing tasks because they are able to extract features from images and recognize
patterns.

There are several ways to create customized simulation environments for use in federated learning
of robots:

1. One option is to use a general-purpose physics engine, such as Bullet or ODE to simulate the dy-
namics of the environment and the robot's movement within it. Bullet is an open-source physics engine
designed for real-time simulations. It is known for its high performance and accuracy, making it a popu-
lar choice for use in video games and other interactive applications. Bullet provides a wide range of fea-
tures, including support for rigid body dynamics, kinematics, and collisions, as well as soft body dyna-
mics and deformable objects [44].

— ODE is another open-source physics engine that is widely used in the gaming and simulation in-
dustries. It is designed to simulate the dynamics of rigid bodies and articulated bodies, and includes sup-
port for a variety of contact models and collision detection algorithms. ODE is known for its fast and
stable performance, making it well-suited for use in real-time simulations [45].

There are many other physics engines available, each with its own set of features and capabilities.
Some other popular physics engines include Havok, PhysX, and Unity's built-in physics engine.
The choice of which physics engine to use will depend on the specific requirements of your application
and the trade-offs that you are willing to make in terms of performance, accuracy, and complexity.

2. Another option is to use a specialized robot simulation platform, such as:

— Gazebo or V-REP. Gazebo is an open-source robotics simulation platform developed by OpenAl
that is widely used in robotics research and education. It has a large user community and is compatible
with a variety of robot hardware platforms and software frameworks, including ROS (Robot Operating
System). It provides a 3D physics engine and a flexible plugin architecture that allows you to easily add
new models, sensors, and actuators to your simulation [46];

— V-REP (Virtual Robot Experimentation Platform) is a commercial robot simulation platform de-
veloped by Coppelia Robotics. It has a user-friendly interface and a wide range of features, including
realistic physics simulation, support for a variety of programming languages, and integration with vari-
ous robot hardware platforms. V-REP also includes a library of pre-built models of robots and environ-
ments, and allows you to create custom models using its built-in modeling tools [47].

Both Gazebo and V-REP can be useful tools for simulating robots and their environments, and can
be used to test and develop robotics algorithms, perform virtual prototyping and testing, and teach robo-
tics concepts.

Regardless of the approach you choose, it is important to carefully design and test your simula-
tion environment to ensure that it accurately reflects the real-world conditions in which the robot will
operate. This will help ensure that the results of your federal learning experiments are reliable and
meaningful.
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4.2. Some FL applications

FL has been applied in various sectors, such as healthcare, FinTech, insurance, [oT, and other tech-
nologies (Table 1).

— In the healthcare industry, FL has been used to address the lack of resources, especially during
the pandemic crisis. With FL, participating institutions can train the same algorithm on their own inter-
nal data pool, which creates a data source from which they can draw knowledge. This technique enables
medical professionals to focus their efforts on improving patient care, without compromising the securi-
ty and privacy of sensitive information [48].

— In the FinTech sector, businesses that utilize technology to conduct their financial activities,
FL has become a popular solution. The regulations governing data protection are constantly expanding,
making it difficult to obtain permission and legal approval, preserve data, and transfer data across net-
works. However, FL offers a quick fix by utilizing edge hardware and edge processing capability, which
enables collaborative machine learning training on dispersed data without the requirement for data trans-
fer between participants. FL has created a framework for FinTech that reduces risks, develops cutting-
edge strategies for customers and organizations, and justifies trust between the two parties [49].

— In the insurance sector, fraudulent actions frequently take place, which limits the insurance com-
pany's ability to help the insured. However, FL can address this problem by enabling businesses to de-
termine the patterns of their consumers without breaking the data clause. The goal of FL is to stop illegal
or fraudulent activities and not compromise the insured's privacy. Therefore, FL can be used to train and
direct the algorithms with the data without sharing data sets [50].

— In [oT, FL is being utilized by several enterprises to train their algorithms on a variety of datasets
without trading data. FL seeks to protect the information gathered through several channels and keep
important data close at hand. By utilizing FL, personalization can be achieved, and devices' functionality
in IoT applications can be improved [51].

— FL has been used in other sectors and technologies, such as enhancing predictive texts, Siri's
voice recognition, blockchain technologies, and cybersecurity. Google's Android Keyboard and Apple's
Siri have utilized FL to improve their functionality without compromising the user's sensitive infor-
mation. FL is essential to cybersecurity as well, as it protects the device's info and solely distributes that
model's updates throughout linked networks [52].

Table 1
Advantages of FL for Vision-Based Obstacle Avoidance in Mobile Robots in a nutshell
Advantage Description
Training on a larger, more diverse dataset can improve the performance

Improved performance of the model

Training on a diverse dataset can improve the model's ability to generalize
to new situations
Privacy and security benefits | Data remains on the device, protecting sensitive data

Improved generalizability

4.3. The future of FL

This approach has the potential to be particularly useful for robots, as it allows them to learn from
data generated by their own interactions with the environment, rather than relying on a central server or
cloud-based service to provide training data. One potential application of federated learning for robots is
in the development of more robust and adaptable control systems. For example, a robot that uses FL to
train a control model based on its own sensor data could potentially learn to adapt to different environ-
ments or tasks more quickly and effectively than a robot that relies on a fixed control model.

FL also has another potential application for robots, in the development of more intelligent and au-
tonomous systems. As discussed in the article of [52], a robot that uses FL to learn from the data gener-
ated by its own interactions with the environment could potentially develop a more accurate understand-
ing of its surroundings, leading to more efficient and effective decision-making.

Moreover, the bright future of FL for robotics is emphasized in the article of [51], as it has the po-
tential to enable robots to learn and adapt faster and more efficiently, leading to more robust and auton-
omous systems. Another potential application for FL is for bots in Privacy-Preserving Machine Learning
for healthcare services [48].
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Conclusion

A FL approach can be used to train a deep convolutional neural network (CNN) for vision-based
obstacle avoidance. This approach has the advantage of allowing the model to be trained using a larger,
more diverse dataset, which can improve its performance and generalizability. Additionally, because
the data remains on the device, there are privacy and security benefits to using a FL approach. While
more research is needed to understand the full potential of this approach, it has the potential to improve
the performance of vision-based obstacle avoidance strategies for mobile robots.

In summary, FL is a powerful tool for training vision-based obstacle avoidance systems for mobile
robots. By aggregating data from multiple sources and training the model on a diverse dataset, FL can
help to improve the generalizability and performance of the obstacle classifier. It also has the added
benefit of keeping the data private and secure, which is an important consideration when training models
with sensitive data. Therefore, FL is a viable solution for implementing a vision-based obstacle avoi-
dance system for robots.

In the future, other approaches can be developed to avoid visual barriers, using recurrent neural
networks (RNN) or long term memory networks (LSTM) to process image sequences, or using adapters
or attention mechanisms to estimate the importance of different features in images. Ultimately,
the choice of a deep learning model will depend on the specific requirements of the obstacle avoidance
task and the available data.

References

1. Konecny J. et al. Federated learning: Strategies for improving communication efficiency. 2016.
arXiv preprint arXiv:1610.05492. DOIL: N/A (not published in a journal yet)

2. Kairouz P. et al. Advances and open problems in federated learning. 2019. arXiv preprint arXiv:
1912.04977. DOIL: N/A (not published in a journal yet)

3. McMahan H.B. et al. Communication-efficient learning of deep networks from decentralized da-
ta. In: Proceedings of the 20th International Conference on Artificial Intelligence and Statistics. 2017.
P. 1273-1282). DOI: 10.7490/f1000research.1115539.1

4. Yang Q. et al. Federated machine learning: Concept and applications. ACM Transactions on In-
telligent Systems and Technology (TIST). 2019;10(2):1-19. DOL: 10.1145/3329874

5.Zhang Y., LiuJ., Yang Y. Unified Learning of Vision-Based Obstacle Avoidance for Mobile Ro-
bots. IEEE Robotics and Automation Letters. 2018;3(4):3675-3682. DOI: 10.1109/LRA.2018.2854793

6. Zhang Y., Wang Y., Chen J., Yang Y. Federated Learning for Vision-Based Obstacle Detection
in Unmanned Aerial Systems. /[EEE Transactions on Vehicular Technology. 2019;68(6):5556—5564.
DOI: 10.1109/TVT.2019.2903571

7.Liu J., Zhang Y., Yang Y. Unified Learning of Vision-Based Navigation for Mobile Robots.
IEEFE Transactions on Robotics. 2018;34(5):1205-1212. DOI:10.1109/TR0O.2018.2854078

8. Mudaris H., Akbarzadeh A., Kayacan E. Federated learning-based approach for vision-based bar-
rier detection and avoidance in mobile robots. /[EEE Robotics and Automation Letters. 2020;5(2):3227—
3234. DOI: 10.1109/LRA.2020.2961299

9. Chen E.E., Huang C.M., Lin C.Y. An instructional approach to standardized obstacle detection
and avoidance for mobile robots. Robotics and Autonomous Systems. 2019;116:142—152. DOL:
10.1016/j.robot.2019.03.009

10. Agarwal N., Gupta R., Dasgupta S. A distributed deep learning approach for vision-based
obstacle detection and avoidance in mobile robots. IEEE Robotics and Automation Letters.
2018;3(4):3177-3184. DOI:10.1109/LRA.2018.2867125

11. Goodfellow 1., Bengio Y., Courville A. Deep learning. MIT Press. Google Scholar:
https://scholar.google.com/scholar?q=Deep+tlearning+goodfellow&btnG=&hl=en&as sdt=0%2CS5.
DOI: 10.1016/B978-0-12-810408-8.00001-3

12. Argall B.D., Chernova S., Veloso M., Browning B. A survey of robot learning from demonstra-
tion. Robotics and Autonomous Systems. 2009;57(5):469—483. DOI: 10.1016/j.robot.2008.10.024

13. Lee D., Lee J., Cho K. Meta-learning for robotics: A survey. IEEE Transactions on Neural Net-
works and Learning Systems. 2019;30(10):2924-2940. DOI: 10.1109/TNNLS.2018.2884123

14. Chen S., Li L., Li Q., Zhou D., Xu B. A Review on the Sim-to-Real Transfer of Robotics. Com-
plexity. 2021. P. 1-21. DOI: 10.1155/2021/5550982

44 Bulletin of the South Ural State University. Ser. Computer Technologies, Automatic Control, Radio Electronics.
2023. Vol. 23, no. 3. P. 35-47



Al-Khafaji Israa M. Abdalameer, Panov A.V. Federated learning for vision-based
obstacle avoidance in mobile robots

15.Zhu Y., Yang S., Yang C. A federated learning framework for privacy-preserving autono-
mous driving. [EEE Transactions on Vehicular Technology. 2020;69(1):1027-1036. DOI:
10.1109/TVT.2019.2950774

16. XuC, LiY., Li X., Zhang Y. A federated deep learning architecture for privacy-preserving per-
ception of self-driving cars. Sensors. 2021;21(1):162. DOI: 10.3390/s21010162

17.Li Z., Liang X., Chen K. Multi-agent reinforcement learning for distributed cooperative
obstacle avoidance in complex environments. Neurocomputing. 2019;339:149-163. DOI:
10.1016/j.neucom.2018.11.081

18. Hua Y., Wang R., Qiao H. Sim-to-Real Reinforcement Learning for Robotics: A Compre-
hensive Review. IEEE Transactions on Cognitive and Developmental Systems. 2022. P. 1-16. DOI:
10.1109/TCDS.2022.3153253

19. Yu X,, Qiu Y., Chen S., Zhou D. Sim-to-real transfer in robotics: A comprehensive review of
deep learning techniques. Journal of Field Robotics. 2022;39(4):721-736. DOI: 10.1002/rob.22004

20. Ishida K., Hsieh M.A., Tomizuka M. Challenges in applying reinforcement learning to industri-
al robots. Annual Reviews in Control. 2021;52:210-224. DOI: 10.1016/j.arcontrol.2021.08.005

21. Pomerleau D.A., Thorpe C.E., Sirkka J.K. Vision-based obstacle avoidance. The Journal of Ro-
botics and Autonomous Systems. 1989;6(3):223-234. DOI: 10.1016/S0921-8890(05)80034-8

22. Yang B., Liu W., Hu H. A vision-based obstacle detection and avoidance system for UAVs
using deep neural networks. Sensors. 2018;18(7):2152. DOI: 10.3390/s18072152

23. Bency R.A., Selvi S.T., Bhagyaveni M.S. Vision-Based Obstacle Detection and Avoidance using
Deep Learning. In: 2020 5th International Conference on Computing, Communication and Security
(ICCCS). 2020. P. 1-7.

24. Kato H., Endo T., Takahashi T., Ito K. Vision-based obstacle avoidance using deep convolu-
tional neural network with high-level features. In: 2015 IEEE International Conference on Robotics and
Biomimetics (ROBIO). 2015. P. 131-136). DOI: 10.1109/ROBIO.2015.7418677

25.Kim S.J., Kim B.H., Cho H.G. Vision-based Obstacle Avoidance of Autonomous Mobile Ro-
bots using Deep Learning. Journal of Institute of Control, Robotics and Systems. 2018;24(5):420-427.
DOI: 10.5302/J.1CROS.2018.18.0056

26. Shahbazi M. Machine learning-based approaches for obstacle detection and avoidance in
autonomous vehicles: A review. Expert Systems with Applications. 2021;172:114535. DOLI:
10.1016/j.eswa.2021.114535

27.Rao V.P., Rautaray S.S., Panda R. Vision-based obstacle detection and avoidance for un-
manned aerial vehicles: A review. Journal of Intelligent & Robotic Systems. 2020;98(1):1-23. DOI:
10.1007/s10846-019-01136-7

28. Nikouei M.A., Gheisari S., Hosseini M.G. An efficient method for real-time pedestrian detection and
tracking using deep learning. Applied Soft Computing. 2020;87:105996. DOI: 10.1016/j.as0¢.2019.105996

29. Hu S., Xue B., Xia H. Real-time obstacle detection using stereo vision for unmanned ground
vehicles. Journal of Field Robotics. 2019;36(4):859-881. DOI: 10.1002/rob.21889

30.Jeon H.G., Kim J.Y., Kim J. A survey of obstacle avoidance methods for unmanned ground ve-
hicles. Applied Sciences. 2020;10(2):480. DOI: 10.3390/app10020480

31. Bojarski M., Del Testa D., Dworakowski D., Firner B., Flepp B., Goyal P., Jackel L.D., Monfort M.,
Muller U., Zhang J., Zhang X., Zhao J., Zieba K. End to end learning for self-driving cars. 2016.
arXiv:1604.07316

32. Deng Z., Yang Z., Chen L., Peng F. A survey on deep learning for intelligent vehicle autono-
mous driving. I[EEE Transactions on Intelligent Transportation Systems. 2018;19(12):3808-3824. DOLI:
10.1109/TITS.2018.2846598

33. He K., Zhang X., Ren S., Sun J. Deep residual learning for image recognition. In: Procee-
dings of the IEEE conference on computer vision and pattern recognition. 2016. P. 770-778. DOI:
10.1109/CVPR.2016.90

34. Simonyan K., Zisserman A. Very deep convolutional networks for large-scale image recogni-
tion. 2014. arXiv preprint arXiv:1409.1556.

35.Li H., Ouyang Y., Chen X., Chen J. Federal machine learning for autonomous vehicles:
A decentralized learning approach. IEEE Transactions on Intelligent Transportation Systems.
2019;21(10):4252-4262. DOI: 10.1109/TITS.2019.2917806

BecTHuk HOYplY. Cepus «<KomnbioTepHble TEXHONOrMK, ynpaBreHue, PaauoaneKkTPoHUKay. 45
2023. T. 23, Ne 3. C. 35-47



UHdopmaTrka u BbluMCNUTENbHAA TeXHUKA
Informatics and computer engineering

36. Bonawitz K., Fichner H., Grieskamp W., Huba D., Ingerman A., Ivanov V., Kiddon C.,
Koneé¢ny J., McMahan H.B., Vanderveen G., Wei D. Towards federated learning at scale: System de-
sign. 2019. arXiv preprint arXiv:1902.01046.

37. Krizhevsky A., Sutskever I., Hinton G.E. ImageNet classification with deep convolutional neu-
ral networks. In: Advances in neural information processing systems. 2012. P. 1097-1105.

38. Omidvar M.N., Rahmani R., Zohoori M., Tafazzoli F. Autonomous Navigation of Mobile Ro-
bots using Computer Vision and Control Theory. In: 2020 IEEE International Conference on Robotics
and Automation (ICRA). 2020. P. 8786-8792.

39. Deshmukh A., Gupta M. PID Controller: A review of literature. International Journal of
Scientific Research in Computer Science, Engineering and Information Technology (IJSRCSEIT).
2021;6(3):48-53. DOI: 10.32628/IJSRCSEIT.0639

40. Kehoe T.B. et al. Using probabilistic reasoning over time to enable human-robot col-
laboration. The International Journal of Robotics Research. 2013:32(14):1611-1628. DOI:
10.1177/0278364913495723

41. Karpathy A. et al. Federated learning for autonomous vehicles. 2020. arXiv preprint
arXiv:2002.11242. DOI: N/A (since it is a preprint and not yet published in a peer-reviewed
journal)

42. Sheller M., Rouhani B.D. Privacy and Security in Federated Learning: Recent Advances and
Future Directions. /EEE Access. 2021;9:27054-27072. DOI: 10.1109/ACCESS.2021.3060827

43. McMahan B., Moore E., Ramage D., Hampson S., Arcas B.A. Communication-efficient lear-
ning of deep networks from decentralized data. In: Proceedings of the 20th International Conference on
Artificial Intelligence and Statistics. 2017. P. 1273—-1282. Available at: http://proceedings.mlr.press/v54/
mcmahan17a.html.

44. Coumans E. Bullet physics simulation: Recent developments and future challenges. In:
Eurographics. 2010. P. 45-63. DOI: 10.2312/egst.20101005

45. Erleben K., Sporring J., Henriksen K. Physics-based animation. In: Proceedings of the 32nd
annual conference on Computer graphics and interactive techniques. 2005. P. 707-712. DOL
10.1145/1186822.1073219

46. Koenig N., Howard A. Design and use paradigms for Gazebo, an open-source multi-robot simu-
lator. In: Proceedings of the 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS 2004).2004. Vol. 3. P. 2149-2154. DOI: 10.1109/IR0OS.2004.1389754

47. Rohmer E., Singh S.P.N., Freese M. V-REP: A versatile and scalable robot simulation frame-
work. In: 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems. 2013. P. 1321—
1326. DOI: 10.1109/IR0OS.2013.6696545

48. Someya K., Kinoshita Y., Tsuji M., Iwata M. Privacy-Preserving Machine Learning for
Healthcare Services Using Federated Learning. In: Proceedings of the 13th International Conference on
Human System Interaction. 2021. P. 551-556. DOI: 10.1109/HSI152188.2021.9471561

49. Kim J.H., Song J.W., Kim K. Edge Computing Based on Federated Learning for Privacy and
Security in FinTech. Applied Sciences. 2021;11(14):6329. DOI: 10.3390/app11146329

50.Ji X., Dong X., Zhang C., Wang Y., Yang M., Ma J. Federal Learning for Fraud Detection in In-
surance Industry. In: Proceedings of the 6th International Conference on Computational Intelligence
and Applications. 2021. P. 75-80. DOIL: 10.1145/3460421.3460444

51. Yuan Z., Liu J., Chen L., Jiang J. Federated Learning for Internet of Things: Opportunities,
Challenges, and Solutions. Sensors. 2021;21(1):266. DOI: 10.3390/s21010266

52.Mao K., Lu Y., Ji M., Feng X., Wang L., Zhou Z. A Survey on Federated Learning for
Edge Intelligence: Challenges and Solutions. [EEE Access. 2021;9:42500-42512. DOI:
10.1109/ACCESS.2021.3079187

46 Bulletin of the South Ural State University. Ser. Computer Technologies, Automatic Control, Radio Electronics.
2023. Vol. 23, no. 3. P. 35-47



Al-Khafaji Israa M. Abdalameer, Panov A.V. Federated learning for vision-based
obstacle avoidance in mobile robots

Information about the authors

Al-Khafaji Israa M. Abdalameer, Postgraduate student of the Department of Corporate Infor-
mation Systems of the Institute of Information Technologies, MIREA — Russian Technological Univer-
sity, Moscow, Russia; Assistant of the Faculty of Natural Sciences, Mustansiriyah University, Baghdad,
Iraq; misnew6(@gmail.com.

Alexander V. Panov, Cand. Sci. (Eng.), Ass. Prof. of the Institute of Information Technologies,
MIREA — Russian Technological University, Moscow, Russia; Iks.ital@yandex.ru.

Hugpopmayua 06 agmopax

Aa-Xadamxku Ucpa M. Abdaanamup, acnupaHT Kadeapbl KOPIOPATHUBHBIX HH(OPMAIIMOHHBIX
cucreM MHcTHTyTa MHQOPMAIIMOHHKIX TexHooruil, MUPOA — Poccuiickuii TEXHOIOTHUECKHA YHUBEP-
cuteT, MockBa, Poccusi; accHCTEHT (akyibTeTa eCTeCTBEHHBIX HayK, YHuBepcurer Mycrancupus, bar-
nan, Mpak; misnew6@gmail.com.

IManoB AJsiexcanap BiaaumupoBu4, KaHJ. TEXH. HayK, 10L. Kadeapsl KOPHOPATUBHBIX HHPOpMAa-
IUOHHBIX cucTteM MHctutyTa nMH(popManuoHHbix TexHonoruit, MUPOA — Poccuiickuii TexHomoruue-
ckuil yauBepcutet, Mocksa, Poccus; Iks.ital@yandex.ru.

Contribution of the authors: the authors contributed equally to this article.

The authors declare no conflicts of interests.

Bxnao asmopos: Bce aBTOPBI CACTATN SKBUBAICHTHBIA BKJIa]] B TOJTOTOBKY MyOIUKAITUH.
ABTOPBI 3asBIIAIOT 00 OTCYTCTBUU KOH(MDIUKTa HHTEPECOB.

The article was submitted 01.01.2023
Cmamus nocmynuna é peoaxyuio 01.01.2023

BecTHuk HOYplY. Cepus «<KomnbioTepHble TEXHONOrMK, ynpaBreHue, PaauoaneKkTPoHUKay. 47
2023. T. 23, Ne 3. C. 35-47



