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Abstract. Federated learning is utilized for automated ground robot navigation, enabling decentralized
training and continuous model adaptation. Strategies include hardware selection, ML model design, and
hyperparameter fine-tuning. Real-world application involves optimizing communication protocols and
evaluating performance with diverse network conditions. Federated learning shows promise for machine
learning-based life learning systems in ground robot navigation. Research objective: to explore the use of
federated learning in automated ground robot navigation and optimize the system for improved performance
in dynamic environments. Materials and methods. The research utilizes federated learning to train ma-
chine learning models for ground robot navigation. Hardware selection, ML model design, and
hyperparameter fine-tuning are employed. Communication protocols are optimized, and performance is
evaluated using multiple gaming machine algorithms. Results. The results show that decreasing the learning
rate and increasing hidden units improve model accuracy, while batch size has no significant impact. Com-
munication protocols are evaluated, with Protocol A providing high efficiency but low security, Protocol B
offering a balance, and Protocol C prioritizing security. Conclusion. The proposed approach using federated
learning enables ground robots to navigate dynamic environments effectively. Optimizing the system in-
volves selecting efficient communication protocols and fine-tuning hyperparameters. Future work includes
integrating additional sensors, advanced ML models, and optimizing communication protocols for im-
proved performance and integration with the control system. Overall, this approach enhances ground robot
mobility in dynamic environments.
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Annomayun. OenepatnBHOE 00yYCHHUE HCIIONB3YETCS U aBTOMATU3MPOBAHHOIN HAaBHUTAIlMH Ha3eM-
HBIX POOOTOB, OOecTIeunBas JeleHTpaIn30BaHHOE 00yUeHrEe U HePEPBIBHYIO afanTtanuto moaenu. Ctpare-
THM BKJIIOYAIOT BBIOOp 00OpyIOBaHUS, pa3pabOTKy MOJENHM MAIIMHHOTO OOY4EHHS U TOHKYIO HAaCTPOUKY
TUneprapaMeTpoB. PeansHoe mpuiokeHHe BKIIOUACT B ce0sl ONTUMH3AIMIO MIPOTOKOJIOB CBSA3U U OLIEHKY
MMPOU3BOAUTCIBHOCTH B PA3JIMYHBIX CECTEBBIX YCJIOBUAX. @enepaTI/IBHoe O6y‘-IeHI/Ie IMOKa3bIBACT NIEPCIICKTU-
BBI JJIsI CUCTEM 06yIIeHI/I$[ JKHU3HHU Ha OCHOBE MAaIlIMHHOT'O o6yquI/m B HaBUT'allUHU HA3€MHBIX pO6OTOB. He.]'lb
HCCJIeI0BAaHMsI: M3y4YHTh HMCIOJIBb30BaHUE (eIepaTHBHOIO OOYyYeHHs B aBTOMATU3UPOBAHHOW HaBHUIallUH
Ha3e¢MHBIX POOOTOB W ONTHMH3HPOBATh CHCTEMY JJIS TOBBIMICHUS MPOU3BOIUTCIFHOCTH B JHHAMUYCCKUAX
cpenax. MaTepuaabl U MeTOAbL. B nccrnenoBanmnu ucmonbs3yercs penepaTuBHOe oOydeHHe s 00yUCHHS
MoOJIeJIeHl MAaITMHHOTO OOYYEHHS HaBHTAIlMH HA3eMHBIX poOOTOB. VCHOiB3yroTCs BHIOOpP 00OPYHOBaHUS,
MPOCKTHPOBAHUE MOJICITH MAIIMHHOTO OOYUYCHHS M TOYHAsI HACTPOWKa runeprnapamMeTpoB. [IpoToOKoIEI cBs-
3 ONTHMHU3UPOBAHEI, a IIPOU3BOAUTEILHOCTS OIICHUBACTCS C MIOMOIIBI0 HECKOIBKUAX allTOPUTMOB HIPOBBIX
aBTOMaTOB. Pe3yabrarpl. Pe3ynpTaThl MOKa3bIBAIOT, YTO YMEHBIIEHUE CKOPOCTH OOYYCHUS U yBEIHMUCHHE
Yuciia CKPBITBIX €AWHHUI] MOBBIIIAIOT TOYHOCTh MOJICIIU, B TO BPEMs KaK pa3MEp MakKe€Ta HEC OKa3bIBACT Cy-
IICCTBCHHOI'O BJIHUAHUWA. OI.[CHI/IBa}OTCH KOMMYHUKAIIMOHHBIC MPOTOKOJIBI: ITPOTOKOJI A o0OecrieunuBaeT BBI-
COKyH0 3()(eKTHBHOCTh, HO HU3KYIO 0€30IMacHOCTh, MPOTOKON B mpeasaraer 6ananc, a mporokon C otnaer
MpPHOPHUTET 0e30MacHOCTH. 3akiouenne. [Ipeqmaraempiii MOAX0, UCTIONB3YIOMMKA (QenepaTuBHOE 00yUe-
HHE, MMO3BOJISICT Ha3eMHBIM poOoTaM (P PEKTHBHO MEPEMENIaThCs B AUHAMHYECKON cpeae. OnTuMu3aius
CUCTEMBI BKJIFOYACT B ceOs BBIOOP 3(P(PEKTUBHBIX MPOTOKOJIOB CBS3HM M TOHKYIO HACTPOHKY THIIEpIIapaMeT-
poB. Bynymas paboTa BriIroYaeT B ceOs HHTETPALIUIO JOMOTHUTEIBHBIX JAaTYMKOB, YCOBEPIICHCTBOBAHHBIX
MoJIeJIell MaTHHHOTO OOYYEHUS M ONTHMHU3AIUIO MPOTOKOJIOB CBSI3H IUIS ITOBBIIICHUS POU3BOIUTEIHHO-
CTH Y WMHTETPAINH C CHCTEMOU yIpaBlcHHU. B memoMm Takoil moaxoi MOBHIIIACT MOOHIHLHOCTh HA3EMHBIX
poOOTOB B TUHAMUYHBIX CPEaX.

Knrouesvie cnosa: GenepatnBHoe 00ydeHHE, OOYUCHUE KHU3HH, aBTOMATHUYCCKas HABHUTAIIHS, HA3eM-
HBI pOOOT, MAIIMHHOE O0y4YeHHE, CIAMSHUE TaTIUKOB, TUHAMHYECKHUE CPEIIBI

Jlna yumupoeanus: Enabling flexible and adaptable navigation of ground robots in dynamic envi-
ronments with live learning / .LM.A. Al-Khafaji, W.Ch. Alisawi, M.Kh. Ibraheem et al. // Bectauk
IOVpI'Y. Cepus «KoMnbeloTepHblE TEXHOJOIMH, yNpaBJIECHUE, paguodnekTpoHuka». 2023. T. 23, Ne 4.
C. 103-111. DOI: 10.14529/ctcr230411

Introduction

Automated navigation of ground robots in dynamic environments, like forests and rocky terrain, is
a complex problem with diverse applications, including search and rescue, environmental monitoring,
and military operations. Successful navigation necessitates real-time adaptation to environment changes
and traversal of various terrains and obstacles. To tackle this, we propose a real-time live learning sys-
tem for ground robot navigation. This system employs federated learning, enabling distributed and pri-
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vacy-preserving collaborative training of a machine learning model. We describe the system's design,
implementation, and experimental results, showcasing its efficacy in navigating diverse dynamic envi-
ronments.

Problem: A critical challenge in developing a life learning system for automated ground robot navi-
gation is ensuring effective adaptation to new environments and situations. This entails continuous
updating and enhancement of the machine learning model using fresh data collected by the robot during
its environment traversal.

1. Related Works

Several studies have explored optimization algorithms (eg, genetic algorithms, particle swarm opti-
mization) to improve sensor integration into ground-based robotic navigation.

Used in [1] a genetic algorithm to optimize sensor weights. Used in [2] genetic algorithms for real-
time adaptation of sensor fusion parameters. Introduced in [3] particle swarm optimization to improve
sensor fusion, outperforming genetic algorithms. Proposed in [4] a differential evolution-based method
with superior computation time. Also ant colony improvement was used in [5]. An artificial bee colony
algorithm was used in [6]. In [7] introduced the cuckoo search algorithm. Gravity search algorithm is
introduced in [8]. A harmonious search algorithm is proposed in [9]. The gray wolf optimizer and
the dragonfly algorithm were explored respectively in [10, 11]. The water cycle algorithm and
the smart water droplet algorithm were introduced in [12, 13]. The bacterial feed optimization algorithm
and the artificial fish swarm algorithm were used in [14, 15]. These studies demonstrate the effec-
tiveness of optimization algorithms in improving sensor fusion performance for terrestrial robotic
navigation.

2. Benefits of federated learning

Data privacy: Preserve privacy by training models without centralizing data.

Data security: Reduce risks of breaches or unauthorized access.

e Improved model performance: Learn from diverse, representative data for better generalization
and performance.

e Reduced costs: Save on communication and computational costs by training on decentralized data.

e Personalization: Train personalized models for each device or user.

e Enhanced interoperability: Improve compatibility across devices or systems.

e Increased flexibility: Enable training on data from multiple organizations or systems without coor-
dination.

Federated learning enables flexible, interoperable, and personalized training on decentralized
data [16].

3. Strategies to improve federated learning performance

o Careful hardware selection: Include representative devices in the learning set.

e Design appropriate model and dataset: Choose suitable ML model and effective dataset.

e Fine-tune hyperparameters: Optimize model and federated learning algorithm settings.

e Data preprocessing: Clean, format, and select relevant features.

e Data augmentation: Add synthetic or perturbed data to improve generalization.

e Model compression: Reduce communication and computational costs while maintaining perfor-
mance.

e Ensemble learning: Combine predictions from multiple models for better performance.

e These strategies optimize connectivity, convergence, hardware adaptation, task suitability,
overfitting, and cost efficiency in federated learning [17-20].

Regular monitoring of system performance is crucial to ensure proper functioning and achievement
of performance goals. This is especially important in federated learning, where decentralized nature
makes issue identification and resolution challenging [21]. Possible issues in federated learning:

1. Poor model performance: Adjust model architecture, training dataset, or hyperparameters for im-
provement.

2. Communication issues: Optimize protocols or troubleshoot to address communication problems.
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3. Device failure: Remove or replace failed devices to maintain system integrity.

4. Data privacy and security: Ensure secure handling of data and compliance with privacy regula-

tions.

5. Model drift: Detect and update/retrain the model to adapt to changing data distribution or task

requirements.

6. Resource constraints: Address limitations by adjusting device participation or communication
protocols [22]. Regular monitoring ensures effectiveness, integrity, and issue identification in federated

learning systems.

4. Modeling

Federated Learning: Ground Robot Navigation.

e Use federated learning for automated navigation of a ground robot equipped with sensors.
o Gather representative devices (robots, sensors) for training the machine learning model.

¢ Develop a model to predict the robot's actions based on sensor data.

¢ Define a training dataset with input data (sensor data) and labels (desired actions).

e Train models on each device using federated learning.

e Update and fine-tune models as the robot gathers new data.

e Enables distributed, privacy-preserving navigation improvement.

5. Simulation and Experimental Results

e Ground robot uses cameras and lidars to generate sensor data.

e Machine learning model predicts robot's actions based on sensor data.

e Models on devices are updated and fine-tuned using federated learning.

o Adam optimization algorithm computes gradients to update weights and biases.

e Mean squared error loss function measures prediction accuracy.

o Neural network model with three hidden layers and ReLU activation function.

o Federated learning algorithm updates weights and biases using moment calculations.
¢ Training dataset contains sensor data and corresponding labels.

e Performance evaluated using accuracy metric.

Table 1 shows the machine learning model and the details of the federated learning algorithm.

Table 1
Hyperparameters for the Machine Learning Model
and Federated Learning Algorithm
Hyperparameter Value
Learning rate 0.001
Batch size 32
Number of hidden units 100
Activation function RelLU
Decay rate for first moment 0.9
Decay rate for second moment 0.999
Epsilon le-8
The results of the live learning system are shown in the Table 2.
Table 2
Accuracy of the Live Learning System in Different Environments
Environment Accuracy
Dense forest 0.97
Rocky terrain 0.95
Urban area 0.92

Live Learning System: Live learning system achieves high accuracy in dynamic environments for

ground robot navigation.
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Experiments show accuracy of 0.97 in forests, 0.95 in rocky terrain, and 0.92 in urban areas.

Hyperparameter Fine-Tuning: In direct learning system for ground robot navigation, optimize ma-
chine learning model and unified learning algorithm.

Modify hyperparameters (learning rate, batch size, hidden units) to improve model accuracy.

Example: Reinforcement learning trains neural network for navigating unknown environments.

6. Optimization

Optimization maximizes reward function R(s, a) over model parameters 0.

Adjust hyperparameters (learning rate, batch size, hidden units) for accuracy improvement.
Goal: Find 0 values maximizing reward function for effective navigation.

# Define the original hyperparameter values
original learning rate =

improved accuracy =
decreased accuracy =

Fig. 1. Ultra fine tuning

This code compares the original hyperparameter values with the tested values and checks if any im-
provements or decreases in accuracy were observed (Fig. 1). The results are then printed in a Table 3.

Table 3
Results of Ultra-parameter Fine-tuning for Deep Learning Model
Hyperparameter Original Value Tested Value Result
Learning rate 0.001 0.0001 Improved accuracy
Batch size 32 64 No significant change
Hidden units 128 256 Decreased accuracy

From the table, it can be seen that decreasing the learning rate and increasing the number of hidden
units improved the accuracy of the model, while increasing the batch size had no significant impact.
These results can be used to choose the optimal values for these hyperparameters and improve the per-
formance of the direct learning system for ground robot navigation. The following figure shows how to
fine-tune the hyperparameter and analyze the results.
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In the context of Optimization, we will improve the communication protocols used by a unified
learning algorithm for the direct learning system of the ground robot machine navigation. It is the use of
multiple game machine algorithms to evaluate the performance of different protocols under different
network conditions [23].

The optimization problem could be written as:

maximize the reward function R(s, a) over the communication protocol p.

Subject to:

e Efficiency: The communication protocol should be efficient in terms of bandwidth usage and
latency.

e Security: The communication protocol should be secure and protect against unauthorized access
and data breaches.

In this example, the reward function R measures the overall performance of the direct learning sys-
tem, s is the state of the network conditions, and a is the action of selecting a particular communication
protocol. The optimization problem seeks to find the values of p that maximize the reward function and
produce the best overall performance of the system [24, 25].

# Define the communication protocols and their characteristics
protocols = [|

SEEEED-

Fig. 2. Evaluate and compare different communication protocols

This code defines a list of communication protocols with their corresponding efficiency and security
levels (Fig. 2). It then evaluates each protocol's performance.
Table 4 showing the results of the optimization process for different communication protocols.

Table 4
Performance Comparison of Communication Protocols for Ground Robot Auto Navigation
Communication Protocol | Efficiency Security Result
. Improved efficiency, but increased risk
Protocol A High Low p Y
of data breaches

Protocol B Medium High Balanced efficiency and security
Protocol C Low High Decreased efficiency, but improved security
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From the table, it can be seen that Protocol A provides high efficiency but has a low level of security,
Protocol B provides a balance of efficiency and security, and Protocol C has low efficiency but high
security. The optimal protocol would depend on the specific needs and trade-offs of the direct learning
system for ground robot auto navigation [26, 27].

Conclusions

Our study shows that the proposed approach enables ground robots to navigate dynamic environ-
ments efficiently. Optimizing the direct learning system involves addressing challenges like selecting
efficient communication protocols and fine-tuning model hyperparameters. Future work includes inte-
grating additional sensors, advanced machine learning models, and optimizing communication proto-
cols. Integration with the control system can enhance ground robot performance. Overall, this approach
enhances ground robot mobility in dynamic environments.
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