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Аннотация. Цель исследования: повышение точности прогнозирования спроса на продоволь-

ственные товары в условиях высокой волатильности и сложной сезонной структуры для последую-

щей интеграции в модули управления запасами ERP-систем, включая российские решения на плат-

форме «1С». Материалы и методы. Предложен комбинированный метод на основе ансамбля 

SARIMA (англ. Seasonal Autoregressive Integrated Moving Average – сезонная авторегрессионная мо-

дель скользящего среднего) и многослойной LSTM-сети (англ. Long Short-Term Memory – сеть дол-

гой краткосрочной памяти). Веса моделей определяются адаптивно на основе ошибки на валидаци-

онной выборке. Эксперимент проведён на реальных данных соревнования M5 Forecasting (Walmart), 

включающих временные ряды спроса по 120 наименованиям продуктов питания. Для оценки каче-

ства использованы метрики MAE, RMSE, MAPE и тест Дибальда – Мариано. Результаты. Предло-

женный ансамбль снижает среднюю абсолютную процентную ошибку (MAPE) до 52,96 % – на 1,1 % 

лучше SARIMA и на 14,0 % лучше LSTM. Статистическая значимость улучшения подтверждена 

тестом Дибальда – Мариано (p < 0,001). Анализ показал, что комбинация линейной интерпретируе-

мости SARIMA и нелинейной гибкости LSTM обеспечивает устойчивость к выбросам и повышает 

точность в периоды резких колебаний спроса (например, перед праздниками). Практическая цен-

ность работы заключается в возможности снижения уровня дефицита и избыточных запасов за 

счёт более точного прогноза спроса. Заключение. Разработанный метод демонстрирует высокий 

потенциал для интеграции в ERP-системы российского ритейла, где требуется баланс между точ-

ностью, интерпретируемостью и автоматизацией. Результаты позволяют рекомендовать ансамбль 

для внедрения в модули автоматизированного планирования закупок и управления товарными  

запасами. 
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Abstract. The purpose of the study. To improve the accuracy of food demand forecasting under con-

ditions of high volatility and complex seasonality for integration into inventory management modules of 

ERP systems, including Russian solutions based on the 1C platform. Materials and methods. A hybrid 

method is proposed based on an ensemble of SARIMA (Seasonal Autoregressive Integrated Moving Ave-

rage) and a multilayer LSTM network (Long Short-Term Memory). Model weights are determined adap-

tively based on validation error. The experiment was conducted on real data from the M5 Forecasting Com-

petition (Walmart), covering demand time series for 120 food products. Evaluation metrics included MAE, 

RMSE, MAPE, and the Diebold–Mariano test. Results. The proposed ensemble reduces Mean Absolute 

Percentage Error (MAPE) to 52.96
 
% – 1.1

 
% better than SARIMA and 14.0

 
% better than LSTM. Statisti-

cal significance of the improvement was confirmed by the Diebold–Mariano test (p < 0.001). The combina-

tion of SARIMA’s interpretability and LSTM’s nonlinear flexibility provides robustness to outliers and 

higher accuracy during sharp demand fluctuations (e.g., before holidays). The practical value of the study 

lies in the possibility of reducing the level of shortages and excess stocks through a more accurate demand 

forecast. Conclusion. The developed method shows strong potential for integration into ERP systems used 

in Russian retail, where a balance between accuracy, interpretability, and automation is essential. The re-

sults support the practical adoption of the ensemble in automated procurement and inventory planning 

modules. 
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Введение 

Одной из ключевых задач в управлении цепочками поставок розничной торговли является 

минимизация издержек при одновременном обеспечении высокого уровня сервиса. В российской 

практике эта задача всё чаще решается в рамках ERP-систем, среди которых доминирующее по-

ложение занимает платформа «1С» – в частности, конфигурации «1С: Управление торговлей» и 

«1С: ERP Управление предприятием». Центральным элементом таких систем является модуль 

прогнозирования спроса, от точности которого напрямую зависит эффективность управления 

товарными запасами [1]. 

Традиционные статистические методы, такие как SARIMA, ценятся за интерпретируемость и 

устойчивость к переобучению [2], но не всегда достаточно хорошо справляются с нелинейными 

паттернами. В то же время нейросетевые подходы, особенно LSTM-сети, способны улавливать 

сложные временные зависимости [3], но склонны к переобучению на коротких или разреженных 

рядах и работают как «чёрный ящик» [4]. В условиях ERP-среды, где важны как точность, так и 

прозрачность решений, особенно актуальным становится гибридный подход. Идея комбинирова-

ния статистических и нейросетевых моделей впервые была предложена Zhang [5] и активно раз-

вивается в последние годы [6]. Современные исследования подтверждают, что эффективное про-

гнозирование требует интеграции разнородных методов, учёта теоретических основ и эмпириче-

ских особенностей данных [7, 8]. Однако остаются открытыми вопросы адаптивного взвешива-
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ния компонентов ансамбля и его масштабируемости на тысячи номенклатурных единиц – типич-

ную для ERP-систем нагрузку. 
Цель данной работы – разработать и экспериментально оценить комбинированный метод 

прогнозирования спроса на основе ансамбля SARIMA-модели и LSTM-сети с адаптивным взве-
шиванием, ориентированный на интеграцию в ERP-системы российского ритейла. 

 

1. Материалы и методы 
В эксперименте использованы данные соревнования M5 Forecasting – Accuracy, организован-

ного Walmart и доступного на платформе Kaggle [9]. Данные охватывают период с 2011 по 2016 г. 
и включают:  

– ежедневные продажи более чем по 30 000 товарным единицам;  
– информацию о магазинах, категориях, департаментах; 

– календарные события, промоакции, цены.  

Для исследования была выбрана подвыборка из 120 наименований из категории «Food» 
(мясные и молочные продукты, хлебобулочные изделия и т. д.), характеризующихся выраженной 

недельной сезонностью и умеренной волатильностью.  

1.1. Методология  

1.1.1. SARIMA-модель 
Модель SARIMA(p,d,q)(P,D,Q)[s] применяется для описания линейных компонент ряда. Для 

ежедневных данных выбрано значение сезонности s = 7. Параметры модели подбирались автома-
тически с использованием библиотеки pmdarima на основе минимизации AIC (англ. Akaike  

Information Criterion – информационный критерий Акаике) в соответствии с рекомендациями 
классических работ по анализу временных рядом [2, 10]. 

1.1.2. LSTM-сеть использовалась двухслойная LSTM-архитектура:  
– вход: скользящее окно длиной 90 дней; 

– скрытые слои: 50 и 25 LSTM-ячеек; 
– выход: полносвязный слой (Dense) для прогноза на 7 дней; 

– функция активации: ReLU; 
– оптимизатор: Adam, скорость обучения 0.001; 

– регуляризация: dropout 0.2, early stopping при отсутствии улучшения на 10 эпох.  

Данные нормализовались методом Min-Max. Архитектура основанна на фундаментальной 
работе Hochreiter & Schmidhuber [3] и современных обзорах по применению рекуррентных сетей 

в прогнозировании временных рядов [4]. 
1.1.3. Архитектура ансамбля «Финальный прогноз» формируется как взвешенная сумма: 

   
ensemble        

SARIMA            
LSTM. 

Значение веса   ∈ [0,1] определяется путём минимизации MAE на валидационной выборке. 

Такой подход обеспечивает баланс между интерпретируемостью и адаптивностью, позволяя мо-
дели автоматически определять, какая из компонент более надёжна в текущих условиях.  

1.1.4. Метрики оценки 
Для оценки качества прогнозов использовались следующие метрики: MAE (англ. Mean 

Absolute Error – средняя абсолютная ошибка). RMSE (англ. Root Mean Square Error – корень из 
среднеквадратичной ошибки). MAPE (англ. Mean Absolute Percentage Error – средняя абсолютная 

процентная ошибка). Тест Дибальда – Мариано (Diebold-Mariano test) – для проверки статистиче-
ской значимости различий между моделями [11]. 

 

2. Результаты 

2.1. Подготовка данных 

Временной ряд одного товара (например, FOODS_3_090) был разделён на выборки:  
– Train: 1147 дней (60 %);  

– Val: 383 дня (20 %); 

– Test: 383 дня (20 %). 
Такое разделение позволяет обеспечить достаточный объём данных для обучения и валида-

ции, а также адекватную оценку качества на независимой тестовой выборке, соответствует стан-
дартным практикам временных рядов и рекомендациям из [10, 12]. 
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2.2. Оптимизация веса ансамбля 

Вес   был подобран на валидационной выборке. Оптимальное значение: 

  = 0,553. 

Это означает, что SARIMA и LSTM вносят примерно равный вклад в финальный прогноз. 

Такой результат свидетельствует о том, что ни одна из моделей не доминирует, а их комбинация 

позволяет компенсировать слабые стороны каждой.  

2.3. Сравнение моделей 
 

Сравнение моделей по метрикам качества (среднее по 120 ассортиментным позициям) 
Comparison of models by quality metrics (average for 120 product lines) 

MОДЕЛЬ MAE RMSE MAPE, % 

SARIMA 23,446 32,881 53,524 

LSTM 19,077 26,093 61,576 

Ансамбль (предложенный) 19,725 27,723 52,956 

Источник: составлено автором. 

 

Анализ (см. таблицу) показывает, что ансамбль обеспечивает наилучшую точность по MAPE – 

на 1,1 %, лучше SARIMA и на 14,0 % лучше LSTM. При этом MAE и RMSE ансамбля близки к 

результатам LSTM, что указывает на стабильность прогноза. Стоит отметить, что MAPE у LSTM 

оказался выше, чем у SARIMA, что может быть связано с повышенной чувствительностью LSTM 

к резким скачкам спроса, которые интерпретируются как выбросы. В то же время ансамбль де-

монстрирует более сглаженное поведение, что делает его более устойчивым к таким колебаниям. 

2.4. Статистическая проверка 

Для оценки значимости использован тест Дибальда – Мариано [11]: 

– DM-статистика: 4,476;  

– p-value: < 0,001.  

Нулевая гипотеза отвергается на уровне   = 0,05 – ансамбль статистически значимо лучше 

SARIMA. Это подтверждает, что улучшение точности не является случайным и имеет практиче-

скую значимость.  

2.5. Визуализация прогнозов 

На рисунке представлено сравнение прогнозов моделей на тестовом участке для одного из 

товаров.  

 

 

Сравнение прогнозов моделей (номенклатурная единица «Packaged Meat» («Мясо в упаковке»)) 
Comparison of model predictions (SKU: “Packaged Meat”) 

 

Предложенный подход эффективно сочетает линейную интерпретацию SARIMA и нелиней-

ную аппроксимацию LSTM. Особенно значительное повышение точности наблюдается в перио-
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дах резких изменений спроса (например, перед праздниками), где LSTM компенсирует система-

тическую ошибку SARIMA. Однако ансамбль требует большего времени на настройку. Для мас-

штабирования на тысячи наименований товарных единиц целесообразно реализовать автомати-

зированный процесс подбора весов, позволяющий обрабатывать каждый временной ряд без уча-

стия оператора. Также следует отметить, что при отсутствии данных о промоакциях точность 

снижается на 25–30 %, что указывает на важность включения экзогенных факторов в будущих 

модификациях [9, 13]. Важным аспектом является и интерпретируемость модели. В отличие от 

«чёрного ящика» LSTM ансамбль позволяет оценить вклад каждой компоненты, что важно для 

принятия управленческих решений [1, 14]. 

 

Выводы 

Разработан и экспериментально оценен комбинированный метод прогнозирования спроса на ос-

нове ансамбля SARIMA и LSTM с адаптивным взвешиванием. На реальных данных M5 Competition 

показано, что ансамбль снижает MAPE до 52,96 % – на 1,1 % лучше SARIMA и на 14,0 % лучше 

LSTM. Статистическая значимость улучшения подтверждена тестом Дибальда – Мариано (p < 0,001). 

Полученные результаты позволяют рекомендовать предложенный метод для внедрения в ERP – 

системы российского ритейла использующие модули планирования закупок и управления товар-

ными запасами [1, 14, 15].  

Перспективы дальнейших исследований: 

– включение экзогенных переменных (промо, погода, календарь); 

– онлайн-обучение и адаптация весов в реальном времени; 

– интеграция с модулями управления нормативами запасов в ERP-системах [16]. 
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