РЕГУЛЯТОР ИЗМЕРИТЕЛЬНОГО ТОКА С АДАПТАЦИЕЙ

Г.И. Волович, И.Р. Адыгамов

Рассматривается цифровое адаптивное управление источником тока, нагруженным на активно-индуктивный двухполюсник, в случае, когда параметры двухполюсника изменяются в очень широких пределах. Приводится алгоритм идентификации нагрузки и алгоритм настройки регулятора. Применен нерекурсивный алгоритм, базирующийся на использовании входного воздействия почти прямоугольной формы. По вычисленным параметрам двухполюсника выбирается коэффициент усиления регулятора, обеспечивающий частоту среза примерно в 20 раз меньше, чем частота выборки аналого-цифрового преобразователя регулятора. Приведены структура и результаты моделирования адаптивного регулятора тока в пакете VisSim при различных нагрузках.

Ключевые слова: адаптация, регулирование тока.

Введение

Измерением сопротивления постоянному току обмоток силовых трансформаторов выявляются дефекты:

- в местах соединений ответвлений к обмотке;
- в местах соединений выводов обмоток к выводам трансформатора;
- в местах соединения отпаек к переключателю;
- в переключателе в контактах переключателя и его сочленениях.

Для измерения сопротивления постоянному току обмоток трансформаторов большой мощности к контролируемой обмотке прикладывают постоянное напряжение и, после установления тока через обмотку, измеряют этот ток и падение напряжения на обмотке и находят сопротивление как отношение этих величин [1].

Такой способ занимает значительное время, так как индуктивность обмоток трансформаторов может быть значительной, и время установления тока до 0,999 от установившегося значения

$$t_{0,999} = 6.9 \frac{L_{\rm T}}{R_{\rm T} + R_{\rm \Pi}},\tag{1}$$

где $L_{\rm T}$ – индуктивность обмотки; $R_{\rm T}$ – сопротивление обмотки; $R_{\rm H}$ – сопротивление соединительных проводов, может достигать нескольких десятков минут.

Для сокращения времени установления тока во многих приборах, выпускаемых промышленностью, например, DWR-10, Accu-Trans, ПТФ-1, МЭН-3 и др., применяются электронные регуляторы с обратной связью по току. Это позволяет сократить время переходных процессов измерительной цепи в несколько раз. Дальнейшее сокращение времени измерения затрудняется тем обстоятельством, что параметры нагрузки источника тока (контролируемой обмотки) могут различаться в зависимости от типа трансформатора в десятки тысяч раз и при использовании регулятора с неизменными параметрами может быть, что в каких-то случаях система «регулятор тока – обмотка трансформатора» будет иметь недостаточные запасы устойчивости, а в других – чрезмерное время установления тока.

Таким образом, необходимо настраивать параметры регулятора тока в соответствии с параметрами нагрузки, т. е. регулятор должен быть адаптивным. Процесс адаптации в данном случае должен состоять из двух этапов – идентификации нагрузки и настройки регулятора.

Идентификация параметров испытуемой обмотки

Блок-схема регулятора тока представлена на рис. 1. Здесь обозначено: МК — микроконтроллер; ЦАП — цифроаналоговый преобразователь; АЦП — аналого-цифровой преобразователь; УМ — усилитель мощности; ДТ — датчик тока; R_{Π} — сопротивление соединительных проводов; $R_{\rm T}$, $L_{\rm T}$ — соответственно, сопротивление и индуктивность обмотки контролируемого трансформатора.

2014, том 14, № 2

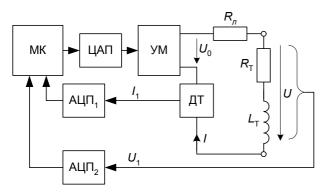


Рис. 1. Блок-схема регулятора тока

Идентификация осуществляется на этапе нарастания измерительного тока. Для ускорения этого процесса на выходе УМ устанавливается максимальное напряжение $u_0 = U_{\rm M}$. Процессы в цепи описываются уравнением

$$L_{\rm T}\frac{di(t)}{dt} + i(t)R_{\rm T} = u(t). \tag{2}$$

Уравнения измерения:

$$u_1(t) = u(t), i_1(t) = i(t) + \eta(t),$$
 где $\eta(t)$ – помеха. (3)

АЦП передают микроконтроллеру последовательность измеренных значений $u_1(t_k) = u_{1k}$,

 $i_1(t_k) = i_{1k}$. Проинтегрировав (2) на интервале от t_k до t_{k+1} , найдем

$$L_{T} \int_{i_{k-1}}^{i_{k}} di + R_{T} \int_{t_{k-1}}^{t_{k}} i dt = \int_{t_{k-1}}^{t_{k}} u dt ,$$

или приблизительно

$$L_{\mathrm{T}}(i_{k} - i_{k-1}) + R_{\mathrm{T}} \frac{i_{k} + i_{k-1}}{2} T = \frac{u_{k} + u_{k-1}}{2} T, \tag{4}$$

где T – интервал дискретизации по времени.

Поменяв в уравнении (4) k на k-1, получим вместе с (4) систему из двух уравнений, относительно неизвестных параметров L_T , R_T , которая в векторно-матричной форме имеет вид:

$$\mathbf{I}_k \cdot \mathbf{\theta}_k = \mathbf{U}_k \,, \tag{5}$$

где I_k – матрица токов размера 2×2, причем

$$i_{11(k)} = i_{11(k-1)} + i_k T, \quad i_{12k} = i_{12(k-1)} + i_{11(k)} T, \quad i_{21k} = i_{11(k-1)}, \quad i_{22k} = i_{12(k-1)},$$
(6)

 $\mathbf{\theta}_k = [L_k \ R_k]^{\mathrm{T}}$ — вектор оценки параметров обмотки трансформатора; \mathbf{U}_k — вектор выборок напряжений, причем компоненты вектора

$$u_{1(k)} = u_{1(k-1)} + u_{(k)}^* T, \quad u_{2(k)} = u_{1(k-1)}, \quad u_{(k)}^* = u_{(k-1)}^* + u_{(k)}^* T.$$
 (7)

Вектор оценки параметров на *k*-й выборке находится решением уравнения (5)

$$\mathbf{\theta}_k = \mathbf{I}_k^{-1} \cdot \mathbf{U}_k \ . \tag{8}$$

По достижении измерительным током 0,95 от заданного значения идентификация заканчивается и параметры регулятора устанавливаются согласно последней оценке параметров контролируемой обмотки.

Настройка регулятора

В системе используется пропорциональный регулятор. Структурная схема системы представлена на рис. 2. Здесь обозначено: *К* – коэффициент передачи регулятора;

$$A = K_{\rm C}/(R_{\rm T} + R_{\rm II}), \tag{9}$$

причем $K_{\rm C}$ – коэффициент передачи датчика тока, $\tau = L_{\rm T}/(R_{\rm T} + R_{\rm H})$.

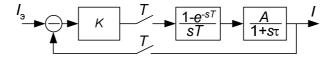


Рис. 2. Структурная схема системы

Дискретная передаточная функция звена первого порядка с запоминающим элементом нулевого порядка имеет вид [2]

$$W^*(z) = \frac{z-1}{z} Z\left\{\frac{W(s)}{s}\right\},\tag{10}$$

причем

$$W(s) = \frac{A}{1 + s\tau}. ag{11}$$

Подставив (11) в (10), после преобразований получим

$$W^*(z) = A \frac{1 - d}{z - d},\tag{12}$$

где $d = \exp(-T/\tau)$.

Характеристическое уравнение системы имеет вид

$$KW^*(z) + 1 = 0,$$
 (13)

откуда с учетом (12) следует условие устойчивости

$$K < \frac{1}{A} \cdot \frac{1+d}{1-d}.\tag{14}$$

Поскольку, как правило, $\tau >> T$, условие устойчивости можно приблизительно записать с учетом (9) в виде

$$K < \frac{2L_{\rm T}}{K_{\rm C}T},\tag{14a}$$

Из условия (14а) следует, что при выборе запаса устойчивости по модулю 20 дБ (десятикратный запас устойчивости), коэффициент передачи регулятора должен рассчитываться по формуле

$$K = \frac{0.2L_{\rm T}}{K_{\rm C}T}.\tag{15}$$

Как видно из (15), коэффициент передачи регулятора не зависит от активного сопротивления измерительной цепи, что позволяет упростить алгоритм идентификации.

Полоса пропускания контура регулирования при выборе K по формуле (15) составляет приблизительно 0,1/T, что, например, при T=0,2 мс гарантирует установление тока при переходе от этапа нарастания к режиму стабилизации за единицы миллисекунд.

Статическая ошибка регулирования тока определяется модулем передаточной функции $KW^*(z)$ при z=1, который при выполнении условия (15) равен

$$|KW^*(1)| = 0.2\tau / T$$
. (16)

Например, для обмотки 500 кВ трансформатора OPHЦ-533000/500 этот коэффициент равен 600 000, а для обмотки 0,4 кВ трансформатора TM-250/10-190. Соответственно, ошибка регулирования в первом случае составит $1,7\cdot 10^{-6}$, а во втором -0,0053.

Результаты моделирования

Для подтверждения теоретических результатов проведено моделирование регулятора в пакете VisSim. Схема моделирования представлена на рис. 3. Модель регулятора (рис. 3, а) соответствует структурной схеме на рис. 2. Для нее справедливы уравнения (2) и (15). Модель идентификатора (рис. 3, б) осуществляет решение уравнений (3)–(8).

На рис. 4 приведены графики переходных процессов установления тока в обмотке с параметрами, близкими к параметрам обмотки высокого напряжения трансформатора OPHЦ-533000/500. Кривая 1 представляет собой переходный процесс регулятора без адаптации, коэффициент усиления которого выбран равным 62,5, исходя из условия устойчивости регулятора во всем диапазоне изменения индуктивности (0,01...2000 Гн). Кривая 2 соответствует переходному процессу регулятора с адаптацией.

Из рис. 4 видно, что в этом случае время установления тока по крайней мере в 4 раза меньше, чем в случае регулятора без адаптации. Кроме того, в этом случае точность стабилизации измерительного тока также заметно выше.

На рис. 5 приведены графики переходных процессов установления тока в обмотке с параметрами, близкими к параметрам обмотки низкого напряжения трансформатора ТМ-250/10. В этом случае графики регуляторов с адаптацией и без нее практически совпадают.

2014, том 14, № 2

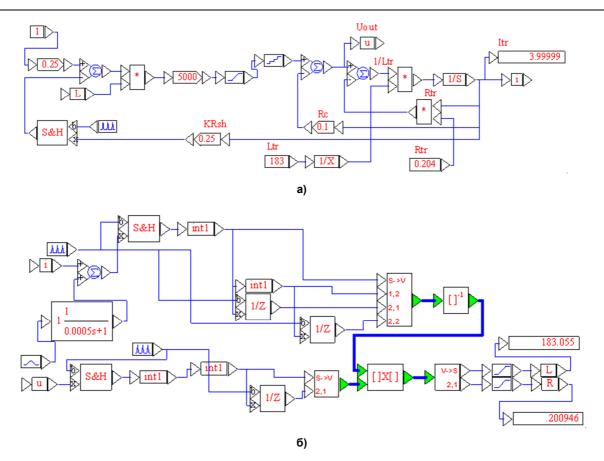


Рис. 3. Схема моделирования регулятора тока: а – регулятор; б – идентификатор

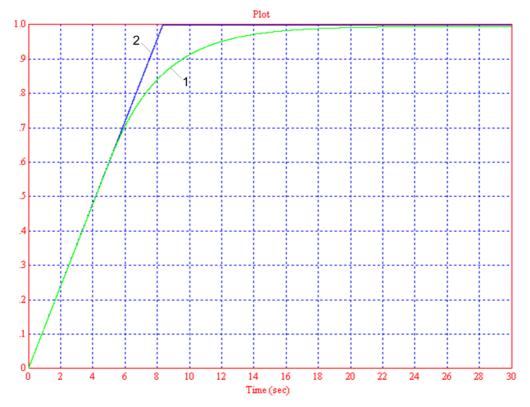


Рис. 4. Графики переходных процессов для обмотки высокого напряжения трансформатора ОРНЦ-533000/500

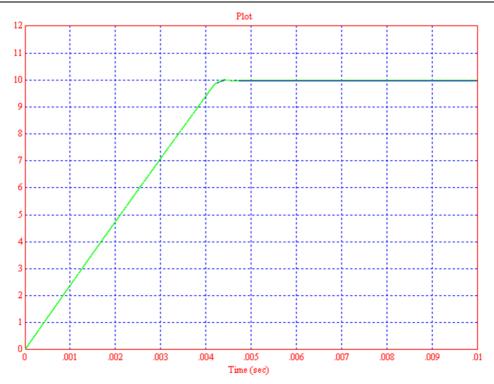


Рис. 5. Графики переходных процессов для обмотки низкого напряжения трансформатора TM-250/10

Выволы

Предложенный метод адаптации регулятора тока, включающий нерекуррентный алгоритм идентификации параметров нагрузки, обеспечивает быстрое установление измерительного тока в широком диапазоне нагрузок.

Литература

- 1. ГОСТ 3484.1–88. Трансформаторы силовые. Методы электромагнитных испытаний.
- 2. Ротач, В.Я. Теория автоматического управления: учеб. для вузов / В.Я. Ротач. 5-е изд., перераб. и доп. M.: Издат. дом MЭИ, 2008. 396 с.

Волович Георгий Иосифович, д-р техн. наук, профессор, профессор кафедры систем управления, Южно-Уральский государственный университет (г. Челябинск); g volovich@mail.ru.

Адыгамов Индис Рахимжанович, аспирант кафедры систем управления, Южно-Уральский государственный университет (г. Челябинск); meteors3x@gmail.ru.

Поступила в редакцию 29 ноября 2013 г.

2014, том 14, № 2

Bulletin of the South Ural State University Series "Computer Technologies, Automatic Control, Radio Electronics" 2014, vol. 14, no. 2, pp. 105–110

REGULATOR OF MEASURING CURRENT WITH ADAPTATION

G.I. Volovich, South Ural State University, Chelyabinsk, Russian Federation, g_volovich@mail.ru,

I.R. Adygamov, South Ural State University, Chelyabinsk, Russian Federation, meteors3x@gmail.ru

This article describes a digital adaptive control of a source of the current loaded on an is active-inductive two-pole, in a case when two-pole parameters change in very wide limits. The algorithm of identification of loading and algorithm of adjustment of a regulator is given. Not recursive algorithm which is based on use of entrance influence of almost rectangular form is applied. On the calculated parameters of a two-pole the factor of strengthening of the regulator gets out, providing frequency of a cut approximately in 20 times it is less, than frequency of sample of the analogue-digital converter of a regulator. The structure and results of modeling of an adaptive regulator of a current in package VisSim are resulted at various loadings.

Keywords: adaptation, current regulation.

References

- 1. GOST 3484.1-88. *Transformatory silovye. Metody elektromagnitnykh ispytaniy* [Power Transformers. Electromagnetic Test Methods].
- 2. Rotach V.J. *Teoriya avtomaticheskogo upravleniya: uchebnik dlya vuzov* [The Automatic Control Theory: the Textbook for High Schools]. Moscow, Publ. house MEI, 2008. 396 p.

Received 29 November 2013