УДК 330.46 DOI: 10.14529/ctcr170106

О ПРИМЕНЕНИИ ПРОИЗВОДСТВЕННЫХ ФУНКЦИЙ ВИДА VES-ФУНКЦИЯ ДЛЯ МОДЕЛИРОВАНИЯ ФУНКЦИОНИРОВАНИЯ ЭКОНОМИЧЕСКИХ СИСТЕМ

А.В. Кутышкин, Г.А. Сокол

Югорский государственный университет, г. Ханты-Мансийск

Представлены результаты моделирования функционирования экономических систем с использованием производственных функций с переменной эластичностью замещения труда капиталом (VES-функции). В настоящее время известные аналитические зависимости для VES-функций построены на основе предположений о существовании связей определенного вида между показателем фондовооруженности экономической системы и предельной нормой замещения фактора труда фактором капитала. Однако данные предположения, с одной стороны, в определенной степени ограничивают возможности построения производственных функций типа VES-функция, а с другой стороны, требуют предварительной проверки выполнения этих предположений на ретроспективных данных о функционировании рассматриваемой экономической системы. Предложенный в статье алгоритм построения производственной функции типа VES-функция не имеет указанных ограничений. Сравнительный анализ результатов моделирования функционирования экономических систем, полученных с использованием уже известных аналитических зависимостей для VES-функций и предложенного авторами алгоритма построения производственных функций этого вида, показал целесообразность использования данного алгоритма для решения задач подобного вида. При моделировании использовались статистические данные о функционировании экономических систем, опубликованные в открытой печати.

Ключевые слова: производственная функция, замещение труда капиталом, эластичность замещения труда капиталом, переменная эластичность.

Введение

Определение основных показателей как функционирования экономических систем, так и производственной деятельности предприятий достаточно часто осуществляется с использованием производственных функций (ПФ). Последние являются одним из инструментов экономикоматематического моделирования процесса производства, если его рассматривать как открытую систему, входами которой являются затраты ресурсов (материальных и людских), а выходы представляют собой производимую продукцию. Производственные функции также используются для анализа влияния ряда ключевых факторов (входов) на результаты процесса производства (выходы), поскольку ПФ в целом отражают достаточно устойчивые количественные соотношения между его входами и выходами.

чены аналитические выражения с учетом ключевых свойств неоклассических производственных функций.

Вместе с тем, сложность экономических систем, для описания функционирования которых применяются неоклассические производственные функции вида CES-функции, не всегда позволяет утверждать, что значения эластичности замещения труда капиталом о в рассматриваемых системах постоянны, так как данная ситуация является не такой распространенной для реальных экономических систем. Необходимо также принятие дополнительных допущений, обосновывающих возможность использования производственных функций этих видов, описывающих частные случаи функционирования этих систем, для моделирования их функционирования, что, в конечном итоге, снижает точность получаемых прогнозных оценок.

Видом неоклассических производственных функций, учитывающим изменения значений эластичности замещения труда капиталом σ в экономических системах, являются VES-функции (variable elasticity substitution production function). В настоящее время известны следующие варианты аналитического представления производственной функции вида VES-функция.

Реванкар [1] и ряд других авторов [2] принимали, что предельная норма замещения труда капиталом γ характеризуется следующей зависимостью от фондовооруженности k рассматриваемой экономической системы:

$$\gamma = \alpha + \beta k, \begin{cases} \beta > 0, \\ -\alpha / \beta < k. \end{cases}$$

Тогда σ определяется зависимостью:

$$\sigma(k) = 1 + \left(\frac{\alpha}{\beta}\right)k^{-1}, \frac{\sigma(k) < 1, \sigma(k) > 1,}{dk} < 1, \frac{d\sigma(k)}{dk} > 1\right\}, \alpha < 0, \alpha > 0,$$

а VES-функция имеет вид:

$$Y = Ae^{\lambda t} \left[\left(1 + \beta \right) K L^{\beta} + \alpha L^{1+\beta} \right]^{\frac{1}{1+\beta}}. \tag{1}$$

Фергюсон [3], в свою очередь, предложил величину γ оценивать выражением:

$$\gamma = k \left(\frac{1}{\alpha + \beta k} - 1 \right), \begin{cases} 0 < \alpha < 1, \\ 0 < \alpha + \beta k < 1. \end{cases}$$

На основании этого им были получены следующие зависимости для σ и VES-функции:

$$\sigma(k) = 1 - \frac{\beta k}{\left(\alpha + \beta k\right)^2 - \alpha}, \begin{cases} \sigma(k) < 1, \sigma(k) > 1, \\ \frac{d\sigma(k)}{dk} < 1, \frac{d\sigma(k)}{dk} > 1, \end{cases} \beta < 0, \beta > 0.$$

$$Y = Ae^{\lambda t} K^{\alpha} L^{1-\alpha} e^{\beta k}.$$

$$(2)$$

Сато и Хоффман [4], предложив непосредственно эластичность замещения труда капиталом σ представлять в виде: $\sigma(k) = a + bk$, получили общий вид модифицированной VES-функции для данного случая взаимосвязи σ и k:

$$g = F\left(\frac{K}{L}, 1\right) = A \exp \int \frac{dk}{k + ck^{1/a} (a + bk)^{1/a}}.$$
 (3)

Полученная зависимость в дальнейшем была приведена к виду:

$$Y = AK^{\frac{a}{1+c}} \left[L + \left(\frac{b}{1+c} \right) K \right]^{\frac{ac}{1+c}}.$$
 (4)

Все параметры A, a, b, c, α , β , λ представленных выше зависимостей, определяющих VES-функцию, оценивались на основании статистического анализа ретроспективных данных, характеризующих функционирование экономической системы.

Сделанные упомянутыми выше авторами допущения относительно характера взаимосвязей между γ , σ и k, обеспечивают изменения значений σ в зависимости от величины k, а также выполнение требований, предъявляемых в целом к неоклассическим производственным функциям. Применение же приведенных выше вариантов VES-функций предполагает дополнительное обоснование возможности описания изменений величин γ и σ принятыми зависимостями.

В работе [5] предложена более общая методика построения неоклассических производственных функций вида VES-функции и представлены результаты реализации этой методики применительно к данным о функционировании экономики СССР в период с 1947 по 1966 г. [6]. Сравнительный анализ полученных расчетных значений У и значений этого показателя, полученных с использованием производственных функций вида СЕS-функции [6], показывает более высокую точность оценок рассматриваемого показателя, получаемых по методике работы [5].

В данной статье представлены результаты использования приведенных выше производственных функций вида VES-функции и CES-функции, методика построения которых приведена в работе [5], для оценки значений Y и значений модифицированной производственной функции g(k) для данных, характеризующих функционирование экономик США и Японии [2, 4].

1. Построение б-однородных производственных функций типа VES-функция

Идентификация структуры производственной функции осуществляется в результате решения следующей системы дифференциальных уравнений [7]:

$$\begin{cases}
\frac{g'(k)}{g(k)} = \frac{\delta}{\gamma(k) + k}, \\
\frac{\gamma'(k)}{\gamma(k)} = \frac{1}{k\sigma(k)}.
\end{cases} (5)$$

Здесь δ — показатель однородности производственной функции; k — фондовооруженность: k = K/L; g(k) — модифицированная производственная функция:

$$Y = f(K,L) = L^{\delta} f(1,k) \Rightarrow \frac{Y}{L^{\delta}} = y = f(1,k) = g(k);$$
(6)

 $\gamma(k)$ – предельная норма замещения труда капиталом:

$$\gamma(k) = \frac{\delta g(k) - kg'(k)}{g'(k)}; \tag{7}$$

 $\sigma(k)$ – эластичность замещения труда капиталом для δ -однородной производственной функции:

$$\sigma(k) = \frac{1}{k} \left(\frac{d\gamma(k)}{dk} \right)^{-1}.$$
 (8)

Величина $\sigma(k)$ задается некоторой функцией, а $\gamma(k)$ и g(k) определяются из решения системы (5). Непосредственно f(K,L) определяется по функции g(k) согласно (6).

В работе [5] доказано существование и единственность решения системы (5), что позволяет осуществить построение δ -однородной производственной функции типа VES-функция в следующей последовательности.

При заданном значении δ (предполагается, что выбор значения $\delta \in (0,1]$ осуществляется согласно предварительно сформулированному оптимизационному критерию) достаточно построить функцию g(k), которую можно определить следующими выражениями с учетом структуры функции $\sigma(k)$:

$$\gamma(k) = b \cdot \exp\left(\int_{a}^{k} \frac{dt}{\sigma(t)t}\right);\tag{9}$$

$$g(k) = c \cdot \exp\left(\int_{a}^{k} \frac{\delta dt}{\overline{\gamma(t) + t}}\right),\tag{10}$$

где a, b, c – некоторые положительные постоянные.

В качестве $\sigma(k)$ можно выбрать, например, некоторую непрерывную, в том числе, и кусочнолинейную функцию.

При построении функции g(k) необходимо обеспечить выполнение основных свойств неоклассических производственных функций, в том числе:

$$\frac{dg(k)}{dk} > 0 \Rightarrow \delta g(k) - k \frac{dg(k)}{dk} > 0; \tag{11}$$

$$\frac{d^2g(k)}{dk^2} < 0 \Rightarrow \delta(\delta - 1)g(k) + 2k(1 - \delta)\frac{dg(k)}{dk} + k^2 \frac{d^2g(k)}{dk^2} < 0.$$

$$\tag{12}$$

Исходными данными для построения неоклассической δ -однородной производственной функции типа VES-функция являются множества значений объемов выпуска продукции $Y = f(L,K) - Y = \{Y_i\}, \ (i=1,...,n)$ и соответствующие значения $K = \{K_i\}, \ L = \{L_i\}$ в стоимостном или индексном исчислении, характеризующие функционирование рассматриваемой экономической системы в каждый момент времени T_i в течение определенного интервала времени $[T_1, T_n]$. Также задаются значения показателя однородности $\delta_j:\delta_j\in]0,1]$. По этим данным определяются значения фондовооруженности рассматриваемой экономической системы: $k_i=K_i/L_i$ и значения функции $g^{\delta_j}(k_i)$ при фиксированном значении δ_j :

$$g^{\delta_j}(k_i) = \frac{Y_i}{L_i^{\delta_j}}.$$

Далее выполняются следующие процедуры.

- 1. Значения функции $g^{\delta_j}(k_i)$ упорядочиваются по возрастанию значений k_i , формируя ряд g_{lj} $(l=1,...,n_l;\,n_l=n)$.
- 2. Значения g_{lj} апроксимируются функциями \tilde{g}_{lj} , удовлетворяющими требованию

$$F_j = \sum_{l=1}^{n_l} \left(g_{lj} - \tilde{g}_{lj} \right)^2 \to \min. \tag{13}$$

С учетом неравенства $0 < \sigma \le 1$ и следующих ограничений, включая ограничения (11), (12), в которых дифференциальные неравенства заменяются на их разностные аналоги:

$$\delta_{l}\tilde{g}_{lj} - k_{l} \frac{\tilde{g}_{l+1j} - \tilde{g}_{lj}}{k_{l+1} - k_{l}} > 0 ; {14}$$

$$\frac{\tilde{g}_{l+1j} - \tilde{g}_{lj}}{k_{l+1} - k_l} > 0; (15)$$

$$\delta_{j} \left(\delta_{j} - 1 \right) \tilde{g}_{lj} + 2k_{l} \left(1 - \delta_{j} \right) \frac{\tilde{g}_{l+1j} - \tilde{g}_{lj}}{k_{l+1} - k_{l}} + k_{f}^{2} \frac{\frac{\tilde{g}_{l+2j} - \tilde{g}_{l+1j}}{k_{l+2} - k_{l+1}} - \frac{\tilde{g}_{l+1j} - \tilde{g}_{lj}}{k_{l+1} - k_{l}}}{k_{l+1} - k_{l}} < 0; \tag{16}$$

$$\frac{\tilde{g}_{l+2j} - \tilde{g}_{l+1j}}{\frac{k_{l+2} - k_{l+1}}{k_{l+1} - k_{l}}} - \frac{\tilde{g}_{l+1j} - \tilde{g}_{lj}}{\frac{k_{l+1} - k_{l}}{k_{l}}} < 0;$$
(17)

$$\sigma_{lj} = \frac{\left(k_{l+1j} - k_{lj}\right)\left(\gamma_{l+1j} + \gamma_{lj}\right)}{\left(\gamma_{l+1j} - \gamma_{lj}\right)\left(k_{l+1j} + k_{lj}\right)} \le 1; \tag{18}$$

$$|\gamma_{l+1}| - |\gamma_l| > 0, \tag{19}$$

где

$$\gamma_{lj} = \delta_j \cdot \tilde{g}_{lj} \frac{k_{l+1j} - k_{lj}}{\tilde{g}_{l+1j} - \tilde{g}_{lj}} - k_{lj} . \tag{20}$$

- 3. На основании значений \tilde{g}_{li} в соответствии с (18), (20) определяются значения величин γ_{li} и σ_{li} .
- 4. Полученные значения σ_{lj} при допущении $\sigma_{n_l} = \sigma_{n_l-1} = \sigma_{n_l-2}$ апроксимируются кусочнолинейными функциями с параметрами:

$$e_{l} = \frac{\sigma_{l+1j} - \sigma_{lj}}{k_{l+1} - k_{l}}, d_{l} = \frac{\sigma_{lj} \cdot k_{l+1} - \sigma_{l+1j} \cdot k_{l}}{k_{l+1} - k_{l}}, (l = 1, ..., n_{l}).$$
(21)

При этом полагается, что

- для участка $[0, k_1] \sigma_i(k) = \sigma_{1i}$;
- для участка $[k_{n-2}, \infty]$ $\sigma_i(k) = \sigma_{n-2i}$.
- 5. Согласно (9) с учетом (21) рассчитываются значения γ_{lj} ($l=1,\ldots,n_l$):

$$\overline{\gamma}_{lj} = \overline{\gamma}_{l-1j} \cdot \exp \left(\int_{k_l}^{k_{l+1}} \frac{dt}{(e_l \cdot t + d_l)t} \right).$$

Для l=1 значение $\overline{\gamma}_{lj}$ определяется выражением (18).

- 6. Полученные значения $\overline{\gamma}_{lj}$ по аналогии с (21) апроксимируются кусочно-линейными функциями вида $v_l \cdot t + w_l$.
- 7. На основании (10) при допущении, что для l=1 значение $\overline{g}_{lj}=\tilde{g}_{lj}$, рассчитываются значения функции g_{li} :

$$\overline{g}_{lj} = \overline{g}_{l-1j} \cdot \exp\left(\int_{k_l}^{k_{l+1}} \frac{\delta_j dt}{(v_l \cdot t + w_l) + t}\right),\,$$

где v_l, w_l – параметры кусочно-линейных функций, используемых для аппроксимаций $\overline{\gamma}_{lj}$.

8. Определяется относительная погрешности ϵ_{lj} :

$$\varepsilon_{lj} = \left| \frac{\overline{g}_{lj} - g_{lj}}{g_{lj}} \right|, \tag{22}$$

характеризующая степень расхождения между значениями g_{lj} и g_{lj} , и соответствующая величина среднеквадратического отклонения $s_{\epsilon_{li}}$.

Из всех вариантов построенных функций g_{lj} выбирается тот, который обеспечивает наименьшее значение среднеквадратического отклонения $s_{\epsilon_{lj}}$ величин ϵ_{lj} и представляющий собой в конечном итоге неоклассическую δ -однородную производственную функцию типа VES-функция, описывающую функционирование рассматриваемой экономической системы в течение определенного интервала времени $[T_1, T_n]$.

Совокупность, приведенных выше процедур п. 1–8, в целом формирует алгоритм построения δ -однородной производственной функции типа VES-функция. Этот алгоритм был реализован с помощью пакета MATLAB 7.0. Минимизация функции F_j (13) при ограничениях (14)–(19) осуществлялась с использованием модуля Optimization Toolbox 2.2 данного пакета, предназначенного для поиска экстремумов функций нескольких переменных при наличии ограничений. Поскольку в этом модуле используются ограничения нестрогого вида (\leq 0), то правая часть ограничений (14), (15), (20) была заменена на положительную константу α . Величина α принималось равной значению параметра TolFun данного модуля, который обеспечивает прекращение итераций поиска экстремума функции при достижении точности по ее значению: α = TolFun = 10^{-6} .

2. Апробация алгоритма построения δ-однородной производственной функции типа VES-функция

Апробация данного алгоритма была осуществлена при построении δ -однородных производственных функций типа VES-функция по данным, характеризующим функционирования эконо-

мики США в периоды с 1947 по 1968 г. [2] и с 1909 по 1960 г. [4], а также по данным, характеризующим функционирование экономики Японии в период с 1930 по 1960 г [4].

В табл. 1 приведены:

- производственные функции вида VES-функция ПФ1 (1) и ПФ2 (2) (здесь и далее обозначения авторов);
 - регрессионные зависимости оценки значений σ для VES-функций ПФ1 (1) и ПФ2 (2). В табл. 2 совместно приведены следующие данные:
- значения Y реальный национальный доход экономики США в млн долларов 1958 г., значение которого получено делением величины национального дохода в текущих ценах каждого года на индекс-дефлятор валовой продукции (real income originating in millions of 1958 dollars, derived by dividing real income originating in current dollars by Implicit Price Deflator for Goods Output) [2, c. 687];
- значения Y, рассчитанные с использованием производственной функции вида VES-функция $\Pi\Phi 1$ (см. табл. 1) и по предложенному в данной статье алгоритму построения неоклассической δ -однородной (при $\delta=1$) производственной функции типа VES-функция, обозначенная авторами, как функция $\Pi\Phi 3$;
- значения эластичности замещения фактора труда фактором капитала для функции $\Pi\Phi 1 \sigma_{\Pi\Phi 1}$ (см. табл. 1) и рассчитанные по предложенному алгоритму при определении величины $\Pi\Phi 3 \sigma_{\Pi\Phi 3}$;
- величины относительной погрешности аппроксимации ε_{lj} (22) исходных данных Y, среднего значения относительной ошибки $\overline{\varepsilon}_{j}$ и ее среднеквадратическое отклонение $s_{\varepsilon_{lj}}$ для функций $\Pi\Phi 1$ и $\Pi\Phi 3$.

Зависимости для VES-функций

Таблица 1

ПΦ	Интервал	Вид производственной функции [2]	Интервал	Значения о
ПФ1	1943–1968	$Y = 6,2705e^{0,0183t} \left(7,7501KL^{6,7501} - \dots - 0,3025L^{7,7501}\right)^{0,129}$	1947–1963	$1 - 0,0448k^{-1}$
ПФ2	1943–1968	$Y = 21,5091e^{0,0181t}K^{0,4657}L^{0,5343}e^{-2,5361k}$	1947–1963	$1 + \frac{ak}{\left[b - ak\right]^2 - b}$ $a = 2,5361;$ $b = 0,4657$

Для указанных величин ε_{lj} , $\overline{\varepsilon}_j$ и $s_{\varepsilon_{lj}}$ были приняты следующие обозначения: $\Pi\Phi 1 - \varepsilon_{\Pi\Phi 1}$, $\overline{\varepsilon}_{\Pi\Phi 1}$, $s_{\varepsilon_{\Pi\Phi 1}}$; $\Pi\Phi 3 - \varepsilon_{\Pi\Phi 3}$, $\overline{\varepsilon}_{\Pi\Phi 3}$, $s_{\varepsilon_{\Pi\Phi 3}}$.

Значения производственных функций ПФ1 и ПФ3, рассчитанные за период с 1947 по 1968 г. для экономики США

Таблица 2

Год	Y	ПФ1	$\sigma_{\Pi\Phi 1}$	$\epsilon_{\Pi\Phi 1}$	ПФ3	$\sigma_{\Pi\Phi3}$	$\epsilon_{\Pi\Phi 3}$
1947	77 657	80 706	0,6450	0,0393	79 790	0,1303	0,0275*
1948	83 484	84 846	0,6503	0,0163	85 049	0,1303	0,0187
1949	79 274	82 733	0,6524	0,0436	83 339	0,1303	0,0513
1950	91 946	88 320	0,6549	0,0394	89 332	0,0188	0,0284
1951	101 840	96 303	0,6564	0,0544	97 694	0,1477	0,0407
1952	102 199	100 519	0,6578	0,0164	102 117	0,0003	0,0008
1953	109 438	107 124	0,6593	0,0211	109 033	0,0303	0,0037
1954	102 252	104 651	0,6559	0,0235	106 043	0,0565	0,0371
1955	116 237	110 348	0,6572	0,0507	112 000	0,0028	0,0365
1956	119 274	115 481	0,6570	0,0318	117 214	0,0428	0,0173
1957	118 988	118 442	0,6551	0,0046	119 921	0,0393	0,0078
1958	107 741	113 938	0,6527	0,0575	114 810	0,0158	0,0656

Окончание табл. 2

Год	Y	ПФ1	$\sigma_{\Pi\Phi 1}$	$\epsilon_{\Pi\Phi 1}$	ПФ3	$\sigma_{\Pi\Phi 3}$	$\epsilon_{\Pi\Phi3}$
1959	122 448	120 550	0,6549	0,0155	122 076	0,0112	0,0030
1960	122 276	123 970	0,6559	0,0139	125 692	0,0469	0,0279
1961	120 357	124 050	0,6570	0,0307	125 902	0,0659	0,0461
1962	130 589	130 202	0,6583	0,0030	132 401	0,0833	0,0139
1963	135 569	133 921	0,6598	0,0122	136 341	0,0612	0,0057
1964	144 393	139 093	0,6611	0,0367	141 943	0,1527	0,0170
1965	156 481	148 015	0,6624	0,0541	151 161	0,1381	0,0340
1966	172 171	160 303	0,6637	0,0689	163 861	0,1404	0,0483
1967	172 015	166 292	0,6654	0,0333	170 307	0,1973	0,0099
1968	181 604	173 278	0,6674	0,0458	177 808	0,1623	0,0209
Среднее	е значение $\overline{\epsilon}_{I}$	П Φ1		0,0324	Среднее значение $\overline{\epsilon}_{\Pi\Phi 3}$		0,0255
Среднен	квадратическ	сое отклонен	ие $s_{\varepsilon_{\Pi\Phi 1}}$	0,0184	Среднеквадр отклонение		0,0178

^{*} Здесь и далее выделены значения относительной погрешности ε_{lj} , характеризующие лучшее приближение исходных значений Y расчетными, полученными с использованием предлагаемой δ -однородной производственной типа VES-функция по отношению к ПФ1, ПФ2 (см. табл. 1).

В табл. 3, аналогичной по своей структуре табл. 2, представлены данные для функций $\Pi\Phi 2$ (см. табл. 1) и $\Pi\Phi 3$.

Значения производственных функций ПФ2 и ПФ3, рассчитанные за период с 1947 по 1968 г. для экономики США

Год	Y	ПФ2	$\sigma_{\Pi\Phi 2}$	$arepsilon_{\Pi\Phi 2}$	ПФ3	$\sigma_{\Pi\Phi 3}$	$\epsilon_{\Pi\Phi3}$
1947	77657	80832	0,2799	0,0409	79790	0,1303	0,0275
1948	83484	84914	0,2714	0,0171	85049	0,1303	0,0187
1949	79274	83780	0,2677	0,0568	83339	0,1303	0,0513
1950	91946	88342	0,2637	0,0392	89332	0,0188	0,0284
1951	101840	96306	0,2610	0,0543	97694	0,1477	0,0407
1952	102199	100502	0,2587	0,0166	102117	0,0003	0,0008
1953	109438	107087	0,2560	0,0215	109033	0,0303	0,0037
1954	102252	104664	0,2619	0,0236	106043	0,0565	0,0371
1955	116237	110343	0,2596	0,0507	112000	0,0028	0,0365
1956	119274	115482	0,2600	0,0318	117214	0,0428	0,0173
1957	118988	118473	0,2632	0,0043	119921	0,0393	0,0078
1958	107741	114007	0,2673	0,0582	114810	0,0158	0,0656
1959	122448	120589	0,2637	0,0152	122076	0,0112	0,0030
1960	122276	123991	0,2619	0,0140	125692	0,0469	0,0279
1961	120357	124050	0,2600	0,0307	125902	0,0659	0,0461
1962	130589	130179	0,2578	0,0031	132401	0,0833	0,0139
1963	135569	133870	0,2550	0,0125	136341	0,0612	0,0057
1964	144393	139011	0,2528	0,0373	141943	0,1527	0,0170
1965	156481	147901	0,2505	0,0548	151161	0,1381	0,0340
1966	172171	160151	0,2482	0,0698	163861	0,1404	0,0483
1967	172015	166090	0,2450	0,0344	170307	0,1973	0,0099
1968	181604	173010	0,2414	0,0473	177808	0,1623	0,0209
Среднее	значение $\overline{\epsilon}_{\rm I}$	П Φ2		0,0334	Среднее знач	чение $\overline{\epsilon}_{\Pi\Phi 3}$	0,0255
Среднеквадратическое отклонение $s_{\varepsilon_{\Pi\Phi2}}$				0,0191	Среднеквадр отклонение		0,0178

Оценка точности аппроксимации исходных данных Y производственными функциями $\Pi\Phi 1$, $\Pi\Phi 2$ (см. табл. 1) и построенной по предложенному в данной статье алгоритму δ -однородной производственной функции типа VES-функция ($\Pi\Phi 3$) осуществлялась сопоставлением соответствующих значений величин $\epsilon_{\Pi\Phi 1}$, $\epsilon_{\Pi\Phi 2}$, $\epsilon_{\Pi\Phi 3}$, $\overline{\epsilon}_{\Pi\Phi 1}$, $s_{\epsilon_{\Pi\Phi 2}}$, $s_{\epsilon_{\Pi\Phi 3}}$.

В табл. 4 совместно приведены:

- значения величины величин z = Y/L (в обозначениях данной статьи z по сути является модифицированной производственной функцией g (6) при $\delta = 1$), которые были рассчитаны авторами работы [4, с. 459], по ретроспективным данным Y, K, L выраженных в долларах США 1929 г. для экономики США;
- расчетные значения величины g из работы [4, с. 459] (обозначенные здесь и далее авторами данной статьи, как $g_{\Pi \Phi 4}$) и полученные на основе предложенного в данной статье алгоритма построения неоклассической δ -однородной (при $\delta = 1$) производственной функции типа VES-функция $g_{\Pi \Phi 3}$;
- значения эластичности замещения фактора труда фактором капитала для функции $g_{\Pi\Phi 4}$ $\sigma_{\Pi\Phi 4}$ [4, с. 459] и рассчитанные по предложенному алгоритму при определении величин $g_{\Pi\Phi 3}$ и $\Pi\Phi 3$ $\sigma_{\Pi\Phi 3}$;
- величины относительной погрешности аппроксимации ε_{ij} (22) исходных данных g, среднего значения относительной ошибки $\overline{\varepsilon}_{j}$ и ее среднеквадратическое отклонение $s_{\varepsilon_{ij}}$ для функций $g_{\Pi\Phi 4}$ и $g_{\Pi\Phi 3}$.

Для указанных величин ε_{lj} , $\overline{\varepsilon}_j$ и $s_{\varepsilon_{lj}}$ были приняты следующие обозначения: $g_{\Pi\Phi 4} - \varepsilon_{\Pi\Phi 4}$, $\overline{\varepsilon}_{\Pi\Phi 4}$, $s_{\varepsilon_{\Pi\Phi 4}}$; $g_{\Pi\Phi 3} - \varepsilon_{\Pi\Phi 3}$, $\overline{\varepsilon}_{\Pi\Phi 3}$, $s_{\varepsilon_{\Pi\Phi 3}}$.

Таблица 4 Значения модифицированных производственных функций ПФ4 и ПФ3, рассчитанные за период с 1909 по 1960 г. для экономики США

Год	g	$g_{\Pi\Phi4}$	$\sigma_{\Pi\Phi4}$	$\epsilon_{\Pi\Phi4}$	$g_{\Pi\Phi3}$	$\sigma_{\Pi\Phi 3}$	$\epsilon_{\Pi\Phi 3}$
1909	0,6710	0,6673	1,0000	0,0056	0,6729	0,0016	0,0028
1910	0,6525	0,6553	1,0000	0,0042	0,6549	0,0207	0,0037
1911	0,6732	0,6732	0,9978	0,0001	0,6816	0,0277	0,0125
1912	0,6626	0,6687	0,9951	0,0093	0,6639	0,0117	0,0020
1913	0,7034	0,7062	0,9923	0,0039	0,7094	0,0191	0,0085
1914	0,6444	0,6582	0,9896	0,0215	0,6553	0,0064	0,0169
1915	0,6587	0,6553	0,9868	0,0052	0,6764	0,0618	0,0268
1916	0,7216	0,7031	0,9841	0,0256	0,7264	0,0363	0,0066
1917	0,6632	0,6374	0,9813	0,0390	0,6813	0,2229	0,0273
1918	0,7200	0,7225	0,9786	0,0035	0,7501	0,0643	0,0418
1919	0,7821	0,7702	0,9758	0,0152	0,7855	0,0514	0,0044
1920	0,7825	0,8132	0,9731	0,0393	0,8088	0,0358	0,0336
1921	0,8611	0,8295	0,9703	0,0367	0,8659	0,0084	0,0056
1922	0,8359	0,8457	0,9676	0,0117	0,8417	0,0231	0,0069
1923	0,8694	0,8810	0,9649	0,0134	0,8730	0,0188	0,0042
1924	0,9380	0,9589	0,9621	0,0222	0,9641	0,0369	0,0278
1925	0,9157	0,9307	0,9594	0,0164	0,9283	0,1504	0,0137
1926	0,9447	0,9730	0,9566	0,0300	0,9466	0,1450	0,0020
1927	0,9460	0,9801	0,9539	0,0360	0,9463	0,1180	0,0003
1928	0,9542	0,9696	0,9511	0,0161	0,9691	0,3676	0,0157
1929	0,9899	1,0130	0,9484	0,0234	0,9938	0,0292	0,0040
1930	0,9751	0,9793	0,9456	0,0043	1,0129	0,0388	0,0388
1931	1,0088	1,0443	0,9429	0,0352	1,0088	0,0142	0,0000
1932	0,9774	0,9120	0,9401	0,0669	0,9892	0,0035	0,0121
1933	0,9432	0,9323	0,9374	0,0116	0,9641	0,3452	0,0221
1934	1,0429	1,0361	0,9346	0,0065	1,0526	0,2258	0,0093

Окончание табл. 4

Год	g	$g_{\Pi\Phi4}$	$\sigma_{\Pi\Phi4}$	$\epsilon_{\Pi\Phi4}$	$g_{\Pi\Phi 3}$	$\sigma_{\Pi\Phi 3}$	$\epsilon_{\Pi\Phi 3}$			
1935	1,1242	1,1188	0,9319	0,0048	1,1437	0,1411	0,0173			
1936	1,1342	1,1184	0,9291	0,0139	1,1349	0,0198	0,0006			
1937	1,1717	1,1818	0,9264	0,0086	1,1812	0,1927	0,0081			
1938	1,1885	1,2137	0,9236	0,0212	1,1983	0,0998	0,0082			
1939	1,2183	1,2159	0,9209	0,0020	1,2260	0,0747	0,0063			
1940	1,2713	1,2461	0,9181	0,0198	1,2772	0,5147	0,0046			
1941	1,3040	1,2398	0,9154	0,0492	1,3186	0,0064	0,0112			
1942	1,3130	1,2878	0,9126	0,0192	1,3200	0,3741	0,0053			
1943	1,3408	1,3382	0,9099	0,0019	1,3428	0,0010	0,0015			
1944	1,4629	1,4688	0,9071	0,0040	1,4639	0,1345	0,0007			
1945	1,5282	1,5651	0,9044	0,0242	1,5324	0,0401	0,0028			
1946	1,4512	1,4975	0,9016	0,0319	1,4526	0,0099	0,0010			
1947	1,4192	1,4393	0,8989	0,0142	1,4261	0,1009	0,0049			
1948	1,4797	1,4840	0,8961	0,0029	1,4973	0,2221	0,0119			
1949	1,5201	1,5336	0,8934	0,0089	1,5223	0,0743	0,0015			
1950	1,6269	1,5482	0,8906	0,0484	1,6439	0,0073	0,0105			
1951	1,6545	1,6115	0,8879	0,0260	1,6545	0,0002	0,0000			
1952	1,6847	1,6990	0,8851	0,0085	1,6905	0,0043	0,0035			
1953	1,7058	1,7296	0,8824	0,0139	1,8057	0,0626	0,0585			
1954	1,7820	1,8101	0,8797	0,0158	1,7994	0,0124	0,0097			
1955	1,8618	1,8231	0,8769	0,0208	1,9434	0,0299	0,0438			
1956	1,6546	1,6654	0,8742	0,0065	1,6546	0,4203	0,0000			
1957	1,8912	1,8893	0,8714	0,0010	1,8912	0,0292	0,0000			
1958	1,9360	1,9507	0,8687	0,0076	1,9360	0,0037	0,0000			
1959	1,9993	1,9678	0,8659	0,0158	1,9993	0,0064	0,0000			
1960	2,0342	2,0131	0,8632	0,0104	0,6444	0,0064	0,6832			
Среднее	значение $\overline{\epsilon}_{I}$			0,0175	Среднее знач	чение $\overline{\epsilon}_{\Pi\Phi 3}$	0,0110			
Среднеквадратическое отклонение $s_{\varepsilon_{\Pi\Phi 4}}$				0,0144	Среднеквадр отклонение		0,0132			

При формировании табл. 5, аналогичной по своей структуре предыдущей табл. 4, использовались ретроспективные данные о функционировании экономики Японии в период с 1930 по 1960 г., которые были выражены в иенах 1930 г. [4, с. 459]. В табл. 5 совместно приведены значения модифицированной производственной функции g из работы [4, с. 459], обозначенные $g_{\Pi \Phi 5}$, и значения этой функции, рассчитанные авторами данной статьи $-g_{\Pi \Phi 3}$. Здесь же приведены значения σ для функций $g_{\Pi \Phi 5} - \sigma_{\Pi \Phi 5}$ [4, с. 459] и для $g_{\Pi \Phi 3} - \sigma_{\Pi \Phi 3}$, рассчитанные при определении $g_{\Pi \Phi 3}$, а также значения величин ε_{ij} , $\overline{\varepsilon}_{j}$ и $s_{\varepsilon_{ii}}$, обозначенные следующим образом: $g_{\Pi \Phi 5} - \varepsilon_{\Pi \Phi 5}$, $\overline{\varepsilon}_{\Pi \Phi 5}$,

 $s_{\varepsilon_{\Pi\Phi 5}}$; $g_{\Pi\Phi 3} - \varepsilon_{\Pi\Phi 3}$, $\overline{\varepsilon}_{\Pi\Phi 3}$, $s_{\varepsilon_{\Pi\Phi 3}}$.

Таблица 5 Значения модифицированных производственных функций ПФ5 и ПФ3, рассчитанные за период с 1930 по 1960 г. для экономики Японии

Год	g	$g_{\Pi\Phi 5}$	$\sigma_{\Pi\Phi 5}$	$\epsilon_{\Pi\Phi 5}$	$g_{\Pi\Phi3}$	$\sigma_{\Pi\Phi 3}$	$\epsilon_{\Pi\Phi3}$
1930	0,200	0,2099	0,8051	0,0494	0,2000	0,0078	0,0001
1931	0,206	0,2235	0,8093	0,0850	0,2057	0,0329	0,0015
1932	0,198	0,2081	0,8135	0,0512	0,1980	0,0642	0,0001
1933	0,195	0,2022	0,8176	0,0371	0,1950	0,0881	0,0000
1934	0,206	0,2078	0,8218	0,0087	0,1980	0,0439	0,0386
1935	0,201	0,1937	0,8260	0,0363	0,2010	0,0829	0,0000

Окончание табл. 5

Год	g	$g_{\Pi\Phi 5}$	$\sigma_{\Pi\Phi 5}$	$\epsilon_{\Pi\Phi 5}$	$g_{\Pi\Phi 3}$	$\sigma_{\Pi\Phi3}$	$\epsilon_{\Pi\Phi3}$
1936	0,203	0,1955	0,8302	0,0370	0,2030	0,0087	0,0000
1937	0,216	0,1904	0,8343	0,1184	0,2160	0,0228	0,0000
1938	0,210	0,1960	0,8385	0,0667	0,2099	0,0386	0,0003
1939	0,204	0,1930	0,8427	0,0537	0,2038	0,0513	0,0008
1940	0,196	0,1800	0,8468	0,0815	0,1959	0,0198	0,0003
1941	0,207	0,1913	0,8510	0,0760	0,2067	0,1023	0,0013
1942	0,196	0,1794	0,8552	0,0849	0,1946	0,1683	0,0070
1943	0,192	0,1747	0,8593	0,0902	0,1994	0,2146	0,0388
1944	0,179	0,1644	0,8635	0,0818	0,2210	0,3083	0,2348
1945	0,192	0,1742	0,8677	0,0928	0,2033	0,0700	0,0589
1946	0,123	0,1596	0,8718	0,2979	0,1252	0,0432	0,0176
1947	0,160	0,2069	0,8760	0,2929	0,1609	0,0409	0,0054
1948	0,195	0,2419	0,8802	0,2406	0,1971	0,0439	0,0107
1949	0,230	0,2540	0,8843	0,1044	0,2060	0,0439	0,1043
1950	0,266	0,2757	0,8885	0,0363	0,2749	0,2247	0,0335
1951	0,247	0,2515	0,8927	0,0183	0,2866	0,6354	0,1602
1952	0,261	0,2731	0,8969	0,0464	0,2613	0,0611	0,0011
1953	0,267	0,2709	0,9010	0,0144	0,2709	0,0305	0,0146
1954	0,256	0,2642	0,9052	0,0322	0,2674	0,0226	0,0444
1955	0,271	0,2738	0,9094	0,0103	0,2737	0,0052	0,0099
1956	0,293	0,2821	0,9135	0,0372	0,2945	0,0563	0,0052
1957	0,291	0,2978	0,9177	0,0233	0,2993	0,1185	0,0287
1958	0,294	0,2793	0,9219	0,0500	0,2970	0,0125	0,0102
1959	0,342	0,3026	0,9260	0,1153	0,3436	0,1041	0,0048
1960	1960 0,380 0,3209 0,9302				0,3878	0,1774	0,0206
Среднее	$\overline{\epsilon}_{I}$ значение $\overline{\epsilon}_{I}$	ПФ5		0,0815	Среднее зна	чение $\overline{\epsilon}_{\Pi\Phi 3}$	0,0275
Среднеквадратическое отклонение $s_{\varepsilon_{\Pi\Phi 5}}$				0,0731	Среднеквадр отклонение		0,0508

Заключение и выводы

Сравнение значений $\varepsilon_{\Pi\Phi 1}$, $\varepsilon_{\Pi\Phi 2}$, $\varepsilon_{\Pi\Phi 4}$, $\varepsilon_{\Pi\Phi 5}$ из табл. 2–5 и соответствующих значений $\varepsilon_{\Pi\Phi 3}$ позволяют сделать вывод о том, что построенная авторами производственная функция типа VES-функция позволяет получить более точное приближение от 65 до 80 % значений величины конечного продукта экономической системы Y и модифицированной производственной функции g(k) к соответствующим исходным данным. В остальных точках ошибка приближения не превышает 6,5 %.

Значения средней ошибки аппроксимации исходных данных и ее среднеквадратического отклонения (табл. 3–5) для построенной авторами производственная функция типа VES-функция (ПФ3) меньше, чем для ранее разработанных VES-функций (1)–(3). Это позволяет сделать вывод о том, что предлагаемый в данной статье алгоритм построения производственных функций типа VES-функция дает более «устойчивое» приближение расчетных значений величины Y и модифицированной производственной функции g(k) к их исходным значениям.

Таким образом, можно отметить, что предложенный и реализованный алгоритм построения δ -однородной производственной функции типа VES-функция, отвечающей требованиям предъявляемым к неоклассическим производственным функциям, позволяет обеспечить построение указанной функцией с достаточно высокой точностью аппроксимации данных, характеризующих функционирование экономической системы.

Литература

- 1. Revankar, N.S. A Class of Variable Elasticity of Substitution Production Functions / N.S. Revankar // Econometrica. 1971. Vol. 39, no. 1. P. 61–71.
- 2. Knox Lovell, C.A. Estimation and Prediction with CES and VES Production Functions / C.A. Knox Lovell // International Economic Review. 1973. Vol. 14, no. 3. P. 676–692.
- 3. Ferguson, C. Substitution, Technical Progress and Return to Scale / C. Ferguson // American Economic Review. 1965. Vol. LV. P. 296–305.
- 4. Sato, R. Production Function with Variable Elasticity of Factor Substitution: Some Analysis and Testing / R. Sato, R.F. Hoffman // The Review of Economics and Statistics. 1968. Vol. 50. P. 453—460
- 5. Вольных, Е.В. Построение δ -однородной производственной VES-функции / Е.В. Вольных, А.В. Кутышкин, Ю.Г. Никоноров // Сибирский журнал индустриальной математики. 2007. Т. X, № 2 (30). С. 31—44.
- 6. Бессонов, В.А. Проблемы построения производственных функций в российской переходной экономике / В.А. Бессонов. М.: Институт переходной экономики, 2002. 95 с.

Кутышкин Андрей Валентинович, д-р техн. наук, профессор, Югорский государственный университет, г. Ханты-Мансийск; avk_200761@mail.ru.

Сокол Глеб Андреевич, инженер, Югорский государственный университет, г. Ханты-Мансийск; sokolgleb@gmail.com.

Поступила в редакцию 18 ноября 2016 г.

DOI: 10.14529/ctcr170106

ON THE APPLICATION OF THE VES PRODUCTION FUNCTIONS TO SIMULATE THE FUNCTIONING OF ECONOMIC SYSTEMS

A.V. Kutyshkin, avk_200761@mail.ru, G.A. Sokol, sokolgleb@gmail.com

Yugra State University, Khanty-Mansiysk, Russian Federation

The article presents the results of modeling the functioning of economic systems with the use of production functions with variable elasticity of substitution of capital for labor (VES-function). Currently known analytical dependences for the VES-functions are based on assumptions about the existence of links between certain types of assets-an indicator of the economic system and the marginal rate of substitution of labor factor capital. However, these assumptions on the one hand a certain extent, limit the possibility of building production functions such as VES-function, on the other hand require prior verification of these assumptions on historical data on the functioning of the economic system under consideration. The proposed article the algorithm for constructing the production function of type VES-function does not have these limitations. A comparative analysis of economic systems functioning of the simulation results obtained using the known analytical relationships for the VES-function and the authors proposed an algorithm for constructing this type of production functions showed the feasibility of using this algorithm for solving problems of this type. The simulation used the statistics on the functioning of economic systems, published in the open press.

Keywords: production function, substitution of labor by capital, the elasticity of substitution of capital for labor, variable elasticity.

References

- 1. Revankar N.S. A Class of Variable Elasticity of Substitution Production Functions. *Econometrica*, 1971, vol. 39, no. 1, pp. 61–71.
- 2. Knox Lovell C.A. Estimation and Prediction with CES and VES Production Functions. *International Economic Review*, 1973, vol. 14, no. 3, pp. 676–692.
- 3. Ferguson C. Substitution, Technical Progress and Return to Scale. *American Economic Review*, LV, May, 1965, pp. 296–305.
- 4. Sato R., Hoffman R.F. Production Function with Variable Elasticity of Factor Substitution: Some Analysis and Testing. *Review of Economics and Statistics*, 1968, vol. 50, pp. 453–460.
- 5. Volnih E.V. Kutyshkin A.V., Nikiforov Y.G. [Building δ-One-Native Production VES-Function]. *Siberian Journal of industrial mathematics*, 2007, vol. X, no. 2 (30), pp. 31–44. (in Russ.)
- 6. Bessonov V.A. *Problemy postroeniya proizvodstvennykh funktsiy v rossiyskoy perekhodnoy ekonomike* [Problems of Construction of Production Functions in the Russian Economy in Transition]. Moscow, Institute of Transition Economics, 2002. 95 p.

Received 18 November 2016

ОБРАЗЕЦ ЦИТИРОВАНИЯ

Кутышкин, А.В. О применении производственных функций вида VES-функция для моделирования функционирования экономических систем / А.В. Кутышкин, Г.А. Сокол // Вестник ЮУрГУ. Серия «Компьютерные технологии, управление, радиоэлектроника». – 2017. – Т. 17, № 1. – С. 49–60. DOI: 10.14529/ctcr170106

FOR CITATION

Kutyshkin A.V., Sokol G.A. On the Application of the VES Production Functions to Simulate the Functioning of Economic Systems. *Bulletin of the South Ural State University. Ser. Computer Technologies, Automatic Control, Radio Electronics*, 2017, vol. 17, no. 1, pp. 49–60. (in Russ.) DOI: 10.14529/ctcr170106