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The paper considers a problem of setting the automatic control systems (ACS) including two-
position and three-position PID-controllers. The problem can be generally solved by a method of di-
rect simulation analysis of transient response in ACS. To perform a parametric identification of
the models of controlled objects, the numerical procedures of determining the optimal parameters of
their differential equations have been developed for both experimental transient response curves and
transient functions of the working closed systems. The algorithms of digital implementation for
the relay controllers are presented. The results of process simulation in two-position and three-
position systems are analyzed. The outcomes of the research can be used to select the relay controller
settings.
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Introduction

Today no one of the complex technological systems or objects can operate being non-automated.
Automation provides high quality of the system and object operation as well as a considerable saving in
power and material resources. The systems and objects are also known to have a significant number of
controlled sections fitted with the positional executive units that can be replaced only under extremely
disadvantageous conditions. In this case, even providing that there are modern microprocessor control-
lers with a large set of regulating algorithms in their libraries, the only possible solution of an automa-
tion problem is application of position PID-controllers [1-2]. It should be noted that the technical im-
plement of the discrete outputs for controlling the positional executive units is much more accessible
than the analog ones. As a result, the number of the control circuits maintained by a single controller
increases substantially while the control system cost reduces as a whole.

The control quality problem

It is well known that the position PID-controllers usually operate in oscillatory mode (two-position
controllers can work only in oscillatory regime) which is undesirable in terms of operating quality of
the automatic control systems (ACS). The quality of ACS operation should be acceptable as it defines
the automation efficiency. The problem is being solved by a choice of a controller settings. However,
the approximate graphical or grapho-analytical methods are still used to estimate the dynamic parame-
ters of the objects [3—5], so the problem of the setting calculation for such systems remains actual [6].
The accuracy of analysis and control circuit adjustment performed by using these methods does not meet
modern requirements while the labour input is high. Therefore, it is reasonable to apply the direct simu-
lation transient analysis to ACS by using computer. In this case the questions of the desired setting accu-
racy, complete transient analysis, and reducing the amount of relevant graphical layouts and manual cal-
culations are settled.

Parametric identification of the models of controlled objects

The calculation of the controller settings begins with estimating the dynamic parameters of a control
object, so let us consider the problem.

It is common knowledge that the dynamic properties of a great number of control objects can be
presented by the following types of differential equations:
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aydx(t)/ dt+x(t)=kU(t—1);
a,d*x(t) / dt* + aydx(t) ] dt + x(t) = kU (1 - 1) ,

(1)
)

where x(¢) is a controlled coordinate, U is a control action, ¢ is time, t is delay time, k is the transi-
tion factor of an object, ¢; and a, are the coefficients of the differential equations.

It is found that the differential equations describe the dynamic properties of specific objects with
a desired accuracy only if the coefficients q; , a,, and k as well as the delay time t are determined satis-

factorily (it is evident that for the model (1) there is no coefficient a,). Let us consider a solution of

the problem.

Suppose that an experimental transient response curve of a control object is known. Let us regard
the information specified by the curve and the structure of the models (1) and (2) as initial data for solving
an identification problem. An experimental response of the object to any input action U can be basically
used instead of the experimental transient response curve. Let us formulate the identification problem as
follows. It is required to find the values of the coefficientsa,,a,, k and the delay time t such that

the identification criterion
I(k,ay,ay,7) =Y [x" (1,) = x(t;)T (3)
i=1

has a minimal value. Here x% is an experimental value of the object output, x is a calculated value
which is determined from the model of the object (1) or (2) for equal input action U, ¢; are the time

moments used for identification, » is a number of experimental points.

The identification problem was solved with a program implementing the method of coordinate des-
cent. The problems of one-dimensional minimization obtained in so doing were solved by golden section
search subprogram. To perform a numerical integration of the equations (1) or (2), the Runge — Kutta me-
thod was applied with accuracy proportional to the quantic time step. It is obvious that in this case the dif-
ferential equation (2) was previously presented as a set of first order differential equations that is a normal
Cauchy form. To provide the desired calculation accuracy, the program is developed in such a way that
each time interval between two experimental points contains an integer number of the calculated steps.

The developed identification procedure was tested for a large set of the experimental transient re-
sponse curves given in [4-5]. In each case the identification results had an adequate quality level. For
example, Fig. 1 shows both an experimental transient curve and the curve calculated by the adjusted dif-
ferential equation, for the water-water heater through the “delivery water flow rate — temperature of
the water leaving a heater” channel. The experimental curve is full and the calculated one is dashed.
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50 \ relatively. The flow rate of the water being

heated was supported as a constant equal to
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Fig. 1. Experimental and calculated transient curves
for a water-water heater

one /I /n is equal to 0.42 °C, that is wholly
satisfactory.
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The identification procedures for the dynamic properties of the control objects were developed from
the transfer function of the operating ACS [7]. The necessity can be explained a follows.

The dynamic properties of the control objects are known to vary significantly when the operation
mode is changed [7]. The greatest variation usually happens to the object’s transition factor which nu-
meric value can change by several times while in operation. The variability of the object’s dynamic pa-
rameters results in the changes of regulation quality values in the systems with constant settings of
the automated controllers when the operation mode varies. The attempts to define and apply the cause-
effect relations for monitoring the dynamic parameter values in order to improve the regulation quality
cannot solve the problem as a whole because of strong instability of interrelations [7]. In the circums-
tances, it seems appropriate to determine the dynamic parameters of the control channels and optimize
the settings of the automatic controllers in the process of the furnaces operation. Thus, the dynamic
properties of the control objects need to be determined while ACS works according to its response on
the step input of the closed-loop transfer function [7-9]. At that, either the assigned disturbance or dis-
turbance by regulating unit (load disturbance) is applied. The latest action can be organized by issuing
the command of transferring the control loop to the manual control mode through the interface connec-
tion channel followed with a quick change of regulating unit position and immediate return to the auto-
matic mode. It is clear that the mathematical model of the whole control loop is to be used in the case.
It should be noted that the developed identification algorithms can be easily modified for a case when it
is necessary to minimize a sum of the magnitudes of the differences between the calculated and experi-
mental values of x coordinate instead of the criterion (3). It can also be modified for the case of a mi-
nimax problem which requires to minimize the maximum deviation of the calculated values from the
experimental ones. The criterion (3) is preferable considering that the parameter estimations obtained by
minimizing the criterion are most credible. Besides, the use of integral identification criteria requires
minor changes in the programs.

Simulation of relay ACS
While simulating, it was considered that two-position PID-controller forms control action as fol-
lows:

U

min >

U;=4U

max ?

if € <g, —A;
if € 2¢,,.; “)
U, if g,,, —A<e <g,,.

1

Here ¢ is an actuating signal calculated by a standard system comparison component, that is, by a for-
mula () =x""(¢)—x(t), where x*(¢) is a set value of the adjustable technological parameter, ¢, is
and U,
maximum of control action values, respectively, i is a number of a calculated time step.

The response value ¢,,, and the width of a hysteresis loop A are viewed as the setting parameters

a response value of PID-controller, A is a width of a hysteresis loop, U, are minimum and

min X

of two-position PID-controller.
An operation algorithm of three-position controller is as follows.

U

U1, if gp<e<(gy+Ay);

U;=qU .- 1f (gg +Ay)<e<(g,—A)); ®)
U1, if (g —A))<e<g;

if e<gg;

min »
i ave>
i

U

max >

if e2g,.

Static characteristic of three-position controller with a description of the added designations is given
in Fig. 2. The transient analysis of two-position ACS for an object with the dynamic properties presented
in Fig.2 demonstrated that, for example, when x'(1)=60°C, U, =0kg/s, U, =2kg/s,
€, =1°C, A=2°C the positive amplitude length (the length of time span where U, = U

i max ) was

equal to 181 s, and the negative amplitude length (the length of time span where U; = U, ) was equal
to 99 s.
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Fig. 2. Static characteristic of three-position controller

The positive amplitude of the controlled value deviation from the preset value was 6.8 °C in
the case while the negative one was 14.0 °C. The controlled value average was equal to 56.4 °C meaning
that there was a sustained deviation of the controlled value average from the preset value. To remove
the error, the settings for the controller were corrected.

Decrease of the two-position controller settings ¢€,,, and A to 0 °C resulted in slight changes of

res
the values of the control quality level. The length of the positive amplitude decreased to 170 s while
the negative one came to 90 s. At that, the positive amplitude of the controlled value deviation from
the preset value was equal to 5.9 °C while the negative one was 13.1 °C.

The presented values of the control quality level are strongly due to the high value of the control
object delay time t . So, the transient analysis for the same conditions as those in the first case but at
1=0s showed that the length of the positive amplitude decreased to 30 s while the negative one came to

15 s. At that, the positive amplitude of the controlled value deviation from the preset value was equal to
1.1 °C while the negative one was only 1.3 °C.

The simulation also showed that the method of partial inflow (when U,
bypass) under two-position control allows achieving acceptable control quality in each case. For exam-
ple, when x*'(¢)=60°C, U, =lkg/s, U, .. =2kg/s, ¢,,, =1°C, A=2°C the length of the positive
amplitude was only 105 s and the length of the negative amplitude achieved 170 s. In this case, the posi-
tive amplitude of the controlled value deviation from the preset value was equal to 6.8 °C and the negative

one became 4.3 °C. The con-
n trolled value average was equal

to 61.3 °C. Thus the control qual-
60 / /\ /\.. / . a

~/ \/ ity was noticeably improved. The

transient process specific to this
case is demonstrated in Fig. 3.
The ways to improve the control
0 quality in two-position ACS are
/ presented in the papers [10—-14].
The advantages of the three-
position control are well-known
[1-3]. Firstly, it is a possibility
20 to obtain a non-oscillatory tran-
sient process and secondly, all
things being equal, it is a lower
value of both amplitude and fre-
quency of the self-sustained os-
cillations. In Fig. 4 there is
a graph of the non-oscillatory
transient process under the three-

#0 because of applying
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Fig. 3. Transient process in the two-position ACS
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position temperature control in 70
a hot water system with a heater
which dynamic properties are
presented in Fig. 1. This transient
process was achieved under
the following settings of the con-
troller:

60 P I —
/

V(1) =60°C, U, =0kg/s, 0 /

U,.=136kg/s, U, =2kg/s,

g, =5°C, A, =0,5°C,

£,=—5°C, Ay =0,5°C. 2

Consequently, the using of /
the three-position controllers in

the automatic control systems is /

Temperature, °C

more preferable.

0 100 200 300 400 500
Conclusion
The parametric identification
procedure for the dynamic prop-
erties of the control objects, and
the computational models of the two-position and three-position automatic control systems have been
developed. The developed models are recommended for analyzing a system setting quality and choosing
the parameters of the controller settings.

Time, s

Fig. 4. Transient process in the three-position ACS
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K PELLEHUIO 3AOAYMN KAYECTBA HACTPOUKU
PENNEUHbIX PEINYNIATOPOB

C.B. MaHgpepos’, H.A. Tpenun', B.U. MaHgepos?

" BoeHHbIl y4ye6HO-Hay HbIll yeHmp BoeHHO-8030yWHbIX cur «BoeHHO-8030ywHas akademust
um. npogp. H.E. XKykosckozo u FO.A. [azapuHay», ¢punuan 8 2. YensabuHcke,
2 JOxHO-Ypanbckull 2ocydapcmeeHHbill yHusepcumem, 2. YensabuHcK

PaccmaTpuBaeTcs mpoOieMa HACTPOHKHM PEJCHHBIX CHCTEM aBTOMAaTHUECKOTO PEryIHpOBaHHS
(CAP), Bximroyaromux ABYXMO3WUIMOHHBIE W TPEXMO3HIMOHHBIE Pr-perynsTopsl. 3asada B LEIOM
pemaeTcs METOAOM MPSMOTO MOJENBHOIO aHanu3a nepexonHsix npoueccoB B CAP. [lng napamet-
puyeckoil MACHTH(UKAIMUA MoJieliell 0OBEKTOB YIpaBieHHs pa3paOdoTaHbl YHCICHHBIE MPOLETYPHI
OTIpeNieNeHUs] ONTUMAJBHBIX ITapaMeTpoB UX AU (epeHIHaTbHBIX YPaBHEHUH KaK IO 3KCIIEPHMEH-
TaJbHBIM KPHUBBIM pa3roHa, TaK M IO MEPEeXOIHBIM (QYHKIMSIM paOOTAIOMIMX 3aMKHYTBIX CHCTEM.
[IpennoskeHs! anropuTMBI HUGPOBOH pealn3aliy pelelHbIX perysITopoB. [IpuBoauTcs aHamus pe-
3yJIbTaTOB MOJEIUPOBAHUS MIPOLIECCOB B ABYXIO3ULMOHHBIX M TPEXIO3ULMOHHBIX cuctemax. Pe-
3yIbTaThl pabOTHl MOTYT OBITH HCIIOJIB30BAHBI ISl BRIOOPA HACTPOEK PEIICHHBIX PErYIIATOPOB.

Knioueswvie cnosa: cucmema asmomamuiecko2o pe2yiupoeanus, peeinvlii pezyiamop, 00bexm
VApasieHusl, napamempuyeckas uOeHmupuKayus mooenu, Kaiecmeo HACMpOUKY, YUCIEHHbL pac-
yem, nepexooHblil NPoyecc, 8biOOP NAPAMEMPO8 HACMPOUKU.
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