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The paper deals with the problem of managing distributed projects and programs. These pro-
grams consist of subprograms distributed functionally, administratively or geographically. For in-
stance, a program of regional development includes a subprogram of environmental safety. In this
regard, the main problem of managing distributed programs is the problem of interests' coordination
for all persons concerned. We propose the principle of coordinated planning for designing imple-
mentation plans of distributed programs.
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1. Introduction

Distributed projects (programs) are projects (programs) consisting of subprojects (subprograms)
distributed functionally, administratively or geographically. Functional distribution means that there
exist different functional directions of a project (program) having a dedicated subproject (subprogram)
with a separate manager and team. Among examples, we mention a regional development program
which includes several functional directions such as social development, economic development, envi-
ronmental safety and others. In the case of administrative distribution, there are subprojects (subpro-
grams) in the interests of different administrative or economic institutions. For instance, a regional de-
velopment program includes development subprograms of member cities, municipalities, etc. with sepa-
rate managers and teams. The main feature of functionally and administratively distributed projects
(programs) is the presence of noncoinciding interests pursued by the managers of associated subprojects
(subprograms). Therefore, the major problem in managing functionally and administratively distributed
projects (programs) lies in interests' coordination for all persons concerned (basically, the managers of
subprojects and subprograms). Geographically distributed projects (programs) can be functionally and
administratively distributed and, moreover, have another essential peculiarity. While designing imple-
mentation plans of such projects (programs), one should take into account the transfer time of different
resources (personnel, equipment, materials): this time is often comparable with (or even exceeds!)
the execution time of a job. The reparation and construction of motor roads, railway tracks and bridges
are the examples of such projects.

2. The principle of coordinated planning in distributed projects (programs)’

We study the problem of interests' coordination among the sub-projects (subprograms) of a functionally
or administratively distributed project (program) using the example of a functionally distributed program. All
results can be easily applied to geographically or administratively distributed projects and programs.

Consider a functionally distributed program composed of m subprograms covering different direc-
tions. In the sequel, the program manager will be called the Principal (P), whereas subprogram managers
will be called agents (A).

! This section was written together with Chu Dong Xuan, a postgraduate student at Voronezh State University of Architec-
ture and Civil Engineering (Voronezh, Russia).
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Suppose that there is a state assessment of each direction (in a qualitative or quantitative scale). De-
note by F;, the state assessment of direction i (the goal function of agent i) and by F the goal function of
the Principal. The goal function of the Principal depends on the goal functions of agents:

F=0(F;F;...;F,). )

This can be a linear, additive or matrix convolution.

The Principal has to design a program (a set of projects) in order to maximize the goal function F
under limited resources R allocated to the program. On the other hand, each agent / strives to design
a subprogram maximizing its goal function F;.

Imagine that the Principal ignores the interests of agents during program design. This would cause
a series of negative consequences such as hiding or misrepresentation of information provided by agents
to the Principal, non-fulfillment of program measures, etc. For interests' coordination between the Prin-
cipal and agents, the theory of active systems proposes the principle of coordinated planning [1].
The fundamental idea of this principle is to optimize the Principal's goal function on the set of coordi-
nated plans (i.e., plans such that the goal functions of agents are not smaller than a given threshold). For

formal statement of the coordinated planning problem, designate by F}O the existing state assessment of
direction i. The interests' coordination condition can be a guaranteed increment AF, =v,F of the function
F;, (i.e., the increase by 100y, percent). In this case, the coordinated planning problem acquires the form

F=0(F;F;...;F, ) —> max )
subject to the constraints
F>(1+v,)F’, i=Ln. (3)

3. Problem statement

There are n candidate projects for inclusion in the program. Implementation of each project i incurs
the costs ¢; and yields the economic effect a; for direction j (we comprehend effect as the increment of
the goal function F)). Set x; = 1 if project i is included in the program (x; = 0, otherwise).

The problem. Find x = {xi,i = I,_n} maximizing the functions

Q(Yp2 Y2502V )» Where y, =D ayx,, j=1,m 4)
subject to the constraints
ZCixi <R, ®)
i
leaijZYjF]Q, j=1lm. (6)
i

3.1. SPECIAL CASE. SINGLE-PURPOSE PROJECTS

Consider the following special case of the problem. For each direction j, there exists a set Q; of
projects contributing to it; the sets O; do not intersect. In this case, the problem is treated in two stages.

Stage 1. Solve m knapsack problems: maximize

V=D ax 7
i€Q;
subject to the constraints
Z x¢; <R;, (®)
ieQy
le-aiZ}/jF]p:bj,where 0<R,<R. 9)
ier

For this, solve the standard knapsack problem (7), (8) under R; = R.

As is well-known, solution of the knapsack problem under R; = R yields optimal solutions for all
R; <R. Denote by Y/(R)) the value of the goal function (7) in the optimal solution as a function of R;.
Find the minimum value R; = d; such that Y(d;) > b;. As a result, we obtain a relationship Y(R;), where
d;<R;<R.
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Stage 2. Solve the maximization problem of the function

Y(R)=Y.Y ;(R)) (10)
J

subject to the constraints R; > b;, j=1,m,

m

DR <R. (1D)

J=1

Here we apply dichotomous programming. Each knapsack problem is solved by the backward me-
thod.

Example 1. Consider three directions of a program, see Table 1.

Table 1

Direction 1 Direction 2 Direction 3
123456789 ]|10[11]12
1230501616 |15 (8|18 |24 |18 | 10| 7
16| 51100414 |3 (4312|657

o R =~

Set by =20, b, =34, b; =20, R = 30.
Stage 1. Solve the knapsack problem for direction 1 using dichotomous programming [2]. Fig. 1
shows the dichotomous representation tree of this problem.

Fig. 1

Step 1. Solve the problem for projects 1 and 2. The resulting solution is described by Table 2. Here
the first value indicates the costs and the second value means the economic effect.

Table 2
1 5;30 11;42
0 0;0 6;12
2
1 0 1

The results are combined in Table 3. Actually, this table contains only Pareto optimal variants. For
instance, we eliminate variant (6;12) as being dominated by variant (5;30) (under smaller costs, it yields
higher effect).

Table 3
Variant 0 1 2
Costs 0 5 11

Effect 0 30 42

Step 2. Solve the problem for projects 3 and 4. The solution is illustrated by Table 4. The results
can be found in Table 5.
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Table 4
1 4:16 14;66
0 0;0 10;50
4
3 0 1
Table 5

Variant | 0 1 2 3
Costs 0| 4 |10 14
Effect 0|16 |50 | 66

Step 3. Consider the united projects (1;2) and (3;4). The solution is provided by Table 6 and the re-
sults are combined in Table 7. As far as b, = 20, we reject variants (0;0) and (4;16).

Table 6
2 11;42 15;58 21;92 25;108
1 5;30 9:46 15;80 19;96
0 0;0 4:16 10;50 14;66
(1;2)
(3:4) 0 1 2 3
Table 7
Variant 1 2 3 4 5 6 7
R, 5 9 10 14 15 19 25
Y, 30 | 46 50 66 80 96 | 108

Solve the knapsack problem for direction 2. The solution is described by Table 8.

Table 8
Variant 1 2 3
R, 7 10 14
Y, 34 49 57

Solve the knapsack problem for direction 3. The solution is described by Table 9
Table 9

Variant 1 2 3 4 5
R 11 17 18 | 23 30
Y; 28 | 34 | 42 | 52 | 59

Stage 2. Solve the optimization problem

Y](R])“‘ Yz(Rz)“‘ Y3(R3) — max (12)
to the constraint
R, + R, + R; < 30. (13)

Step 1. Consider directions 1 and 2. The solution is provided by Table 10. And the results can be
found in Table 11.

Table 10

14;5719;87)23;103|24;107|28;123|29;137] - —
10;49(15;79| 19;95 | 20;99 (24;115|25;129|29;142| -
7;34 |12;64) 16;80 | 17;84 |21;100|22;114|26;130] —

5;30| 9;46 | 10;50 | 14;66 | 15;80 | 19;96 |25;108

1
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Table 11

Variant 1121314567 |89 ]|10]11]12
Ri+Ry, [12]15(16|17(19|20(21 2224 |25|26]|29
Yi+Y, [64]79(80|84 |95]99 [100]|114[115]|129{130|142

Step 2. Consider united direction (1;2) and direction 3. The solution is combined in Table 12.

Table 12
19;95 0;123 — -
17;84 28:112 — —
16;80 27;108 — -
15;79 26;107 — —
12;64 23;92 29;98 30;106
(1;2)
11;28 17;34 18:;42
3)

In Table 12 find a cell with the maximum second value. This is cell (30;123) associated with the ef-
fect 123. Cell (30;123) corresponds to variant 5 in Table 11 and variant 1 in Table 9. This variant cor-
responds to the solution of the knapsack problem

Xo=0;x;0=1;x;1=1; x1,=0
with costs 11 and effect 28.

Variant 5 in Table 11 corresponds to cell (19;95) in Table 10, i.e., variant 2 in Table 8 and variant 2
in Table 7.

Next, variant 2 in Table 8 corresponds to the solution of the knapsack problem for direction 2:

xs=1;xs=1;x7=0; x3= 1
with costs 10 and effect 49.

And finally, variant 2 in Table 7 corresponds to the following solution of the knapsack problem for
direction 1:

x1=0;0=1;x3=0;x=1
with costs 9 and effect 46.

3.2. GENERAL CASE. MULTI-PURPOSE PROJECTS

In the general case, there exist projects whose implementation contributes to several directions.
Such projects are said to be multipurpose projects. If the number q of multi-purpose projects is not large,
consider all 21' variants of multi-purpose projects inclusion in the program and choose the best one (per-
form exhaustive search).

Example 2. Take 2 directions and 8 projects with the parameters described by Table 13.

Table 13

i 1 2 3 4 5 6 7 8
@G |12 | 18 | 15 | 24 | 15

Clearly, projects 4 and 5 are multi-purpose. Set b; = 20, b, =25, R =30.
Variant 1. None of the multi-purpose projects is included in the program, i.e., x4 = x5 = 0.
Stage 1. Solve the problem for direction 1: maximize
12x; + 18x, + 15x;3
subject to the constraint
4)(71 + 9)(72 + 3X3 < Rl,
where R; < 30. The solution is illustrated by Table 14.

Table 14
Variant 0 1 2 3 4
R, 0 3 7 12 16
Y 0 15 37 33 45
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Solve the problem for direction 2: maximize
16x6+ 21x7+ 24x3

subject to the constraint
4x6 + 7x7 + 12)(78 < Rz,

where R, < 30. The solution is defined by Table 15.

Table 15
Variant 0 1 2 3 4 5 6
R, 0 4 7 11 16 19 | 23
Y, 0 16 | 21 | 37 | 40 | 45 | 61
Stage 2. Maximize
KL(R)+Y(R,)
subject to the constraint
R +R, <30.
The solution can be found in Table 16.
Table 16
4 |16;45|20;61(23;66(27:82| — — —
3 112:33(16;49|19;54123;70|28;73| - —
2 7;27 | 11;43114;48 | 18,64 |23;67 |26:72|30:;88
1 3;15 | 7;31 [10;36|14;52119;55|22;60|26;76
0 0;0 | 4;16 | 7;21 | 11;37|16;40(19;45|23:61
1
) 0 1 2 3 4 5 6

As far as b; = 20, eliminate rows 0 and 1 from Table 16. Similarly, eliminate columns 0, 1 and 2
due to b, =25. In the resulting table, identify a cell with the maximum second value. Actually, this is
cell (30;88) associated with effect 88.

Variant 2. Project is included in the program (x; =1; x5 =0). In this case, the residual resource
makes up R'=30—-8=22. So long as as; =24 and a4, = 16, then b,'=0 and b,"=25-16=9. Hence,
we have to eliminate only column 0 and row 0 from Table 16.

Define a cell with the maximum second value among all cells whose first value does not exceed 22.
This is cell (18;64) with effect 64. By adding the effect from project 4 (a4 + a4, = 40), we get total effect
104.

Variant 3. Project 5 is included in the program. Hence,

R'=30-10=20,b,"=20-15=5,b,'=25-10=15.

Similarly, to the previous variant, eliminate column 0 and row 0 from Table 16. Find a cell with
the maximum second value among all cells whose first value does not exceed 20. This is cell (18; 64)
yielding effect 64. By adding the effect from project 5, we get total effect 64 + 25 = §9.

Variant 4. Projects 4 and 5 are included in the program (x4 =xs=1). Then we have that
R'=30-18=12, b;'=0, and b,'= 0. Identify a cell with the maximum second value among all cells
whose first value does not exceed 12. This is cell (11;43) with effect 43. By adding the effects from
projects 4 and 5, we get total effect 43 + 40 + 25 = 108. The maximum effect is gained by variant 4.
Note that cell (11;43) corresponds to variant 1 in Table 15 and variant 2 in Table 14. On the other hand,
variant 1 in Table 15 corresponds to the following solution for direction 2:

x6=1,x,=0,x3=0.

Variant 2 in Table 14 corresponds to the following solution for direction 1:

X1 = 1,X2:0,X3: 1,X4:0.

And finally, we establish that the program includes projects 1, 3, 4, 5 and 6 with total effect 108 and
total costs 29.
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3.3. NETWORK PROGRAMMING METHOD

Under a large number of multi-purpose projects, program design based on their exhaustive search
becomes inefficient. Consider the branch-and-bound method with estimation using network program-
ming [3]. Let us illustrate this method for the inverse problem: minimize the costs required for obtaining
a given total effect. In other words, the problem is to minimize the goal function

C(x)= Z CiX;
i
subject to the constraint

2.y 2B,
F

y;2zb;, j=Lm.

We provide a simple example below.
Example 3. There are 4 projects with the parameters described by Table 17. The number of direc-
tions equals 2.

Table 17
i 1 2 3 4
a | 12| 6 | 9
a;, 4 6 8
Ci 3 2 4 3

Set b, =10, b, =8 and B =30. According to Table 17, projects 2 and 3 are multi-purpose. Fig. 2
shows the network representation of the associated constraints.

Theory of network programming prescribes splitting arbitrarily the costs ¢, and c; of multi-purpose
projects into two components S,1, S2, and s3;, S3,, respectively (since vertices 2 and 3 have 2 outgoing
arcs, see Fig. 2). For instance, take s5; = s =1, 531 =1, 53, = 3. This leads to two estimation problems
for each direction. The estimation problem for direction 1: minimize

Ci(x)=3xx +1xx, +1xx;
subject to the constraint
12X, +6x, +9x3 =2 B,
where d, < B, <B.
Denote by Z(B,) the optimal value of C;(x). The solution is described by Table 18.

Table 18
Variant 0 1 2 3 4
Z 0 1 2 4 5
B, 0 6 15 21 27
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We eliminate variants 0 and 1, since B; < b, = 10 for them.
The estimation problem for direction 2 has the form

Cz(x):lxx2 +3xx3 +3xx4 = min
subject to the constraint
4x, +6x3 +8x4 2 B,
where d, <B, <B.
Designate by Z,(B,) the optimal value of Cy(x). The solution is defined by Table 19.

Table 19
Variant 0 1 2 3 4 5
Z, 0 1 3 4 6 7
B, 0 4 8 12 14 18
Again, we eliminate variants 0 and 1, since B, < b, = 8 for them.
Solve the upper-level estimation problem
Z,(B,)+Z,(B,)— min
subject to the constraint
B, +B, >230.
The solution can be found in Table 20.
Table 20
5;18 9;32
4:14 7;29
4:12 6;27 8;33
2 5;25 7;29 8;35 9;37
2 1 22:15 34:21 45;27 66;27

Consider Table 20 and choose a cell with the minimum first value among all cells whose second
value is not smaller than B = 30. These are cells (8;35) and (8;33) with costs 8. According to the funda-
mental theorem of network programming, in our example costs 8 provide a lower estimate of the costs in
the original problem. Define the corresponding optimal solutions by the backward method. Cell (8;35)
corresponds to variant 2 in Table 19 and variant 4 in Table 18. Next, variant 2 in Table 19 answers
the solution of the estimation problem for direction 2:

XZZO,X3:0,X4: 1.

Variant 5 in Table 18 answers to the solution of the first estimation problem:

X1 = 1,X2: 1,)(,'3: 1.

The obtained pair of solutions does not define an admissible solution.

Cell (8;33) corresponds to variant 3 in Table 19 and variant 3 in Table 18. Variant 3 in Table 19 an-
swers to the solution

Xy = 1,)C3:0,X4:1
of the second estimation problem, whereas variant 3 in Table 18 corresponds to the solution

X1 = 1,X2:0,X3: 1
of the first estimation problem. Again, this pair of solutions does not define an admissible solution of the
original problem (it represents a lower estimate only).

To proceed, we may either improve the derived estimates (using other costs splitting for multi-
purpose projects) or apply the branch-and-bound method with the derived estimates. Let us illustrate
the branch-and-bound method. Choose direction 2 for branching. Decompose the solution set into two
subsets: x, = 1(subset 1) and x, = 0 (subset 2).

Estimation on subset 1 (x, =1).

As far as x, = 1, then

B'=30-10=20,b"=10-6=4,b,=8-4=4.
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Solve the estimation problem for direction 1:
3x; + X3 —> min
subject to the constraint
12)(,'1 + 9)(,'3 > B] ',
where 4 < B,'<20. The solution is described by Table 21.

Table 21
Variant | 0 | 1 | 2 | 3
Z 0| 11]3 ] 4
B, 0] 9 |12]21
Solve the estimation problem for direction 2:
3x3 + 3x4 — min
subject to the constraint
6x3 + 8x4 > By,
where 4 < B, < 20. The solution is shown by Table 22.
Table 22
Variant 0 1 2
Z 0 3 6
B 0 8 14
Solve the upper-level estimation problem:
Z,(B,)+Z,(B,)—> min
subject to the constraint
B +B,>20.
The solution is shown by Table 23.
Table 23
26;14 7;23 — —
13;8 4;17 6;20 —
2B, . . .
7.8, 11;9 23;12 34;21

Actually, the solution answers to cell (6;20).

The first and second estimation problems have the solutions x; = 1, x3 =0, and x; = 0, x4 = 1 respec-
tively.

Note that the above pair of solutions defines an admissible, ergo optimal solution on the subset
x, = 1 ¢ with costs 8.

Estimation on subset 2 (x, = 0).

Solve the estimation problem for direction 1:

3x; +x3 — min
subject to the constraint

12)(71 + 9)(73 > Bl',
where 10 < B, < 30. The solution is shown by Table 24.

Table 24
Variant 2 3
Z) 3 4
B, 12 21
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Solve the estimation problem for direction 2:
3x3 + 3x4 — min
subject to the constraint
6)C3 + 8)C4 > Bz,
where 8 < B, < 30. The solution is shown by Table 25.

Table 25
Variant 2 3
Z, 3 6
B, 8 14

Solve the upper-level estimation problem. The solution is given by Table 26.

Table 26
36;14 5;18 9:;26 10;35
23;8 4:14 6;20 7;29
2B, . . .
7.8, 11;6 23;12 34;21

The solution answers to cell (10;35) with costs 10.
Choose subset 1 (x; =1). The corresponding optimal solution is x; =1, x, =1, x3=0, x, = 1 with
costs 8. Fig. 3 shows the branching tree.

Fig. 3.

The second solution method of the problem consists in maximum increase of the lower estimate via
optimal split of the costs ¢, and ¢; under the constraints

821+ 822 = Ca,

831183 = 3.

This is the so-called generalized dual problem (GDP).

According to [3], the GDP represents a convex programming problem. However, one should have
in mind a couple of important aspects. First, numerical experiments have demonstrated that, generally,
computational time required for lower estimate improvement is not compensated owing to smaller
branching in the branch-and-boundary method. Second, in many cases the GDP possesses a non-integer
solution; as is well-known, non-integer parameters make the knapsack problem NP-complex. Therefore,
it is strongly recommended to obtain estimates under a given initial costs split of multipurpose projects.

We endeavor to improve the derived estimate. For s,; = 55, = 1, 531 = 3, there are two pairs of solu-
tions to the estimation problems. The first pair of solutions has the form

X1 = 1,X2: 1,)(73: 1,

X2:O,X3:0,X4: 1.

And the second pair of solutions is defined by

X1 = 1,X2:0,X3: 1,

Xy = 1,)C3:0,X4: 1.

Designate by J, and d; the variations of the estimates s,, and s3,, respectively. Note that the optimal
solutions of the estimation problems remain same under small values of &, and J;. To increase the lower
estimate, we should increase the lower estimate for each pair of solutions.
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The variations meet the inequalities 8, + d; > 0 (for the first pair) and 3, — 8; > 0 (for the second
pair). Choose &, = 0 and 83 > 0. Interestingly, under 6; > 0 we obtain a new pair of the optimal solutions
to the estimation problems:

l)x1 = 1,X2: I,X3:0,

2))(72: 1,X3:0,X4: 1
associated with costs 8.

This pair defines an admissible, hence optimal solution of the original problem.

4. Joint financing mechanisms

A major problem in distributed project and program management lies in (financial) resource alloca-
tion among directions (subprograms) of a functionally distributed program or among separate depart-
ments (subprograms) of an administratively distributed program.

Consider a class of interests' coordination mechanisms for the Principal and agents. The matter con-
cerns joint financing mechanisms of subprograms: a share of resources is provided by the Principal and
the rest resources are contributed by agents. Here the subject of interests' coordination is the norm X de-
fining the amount of Principal's resources allocated per agent's unit resources [4].

Our analysis begins with a simple analytical model. Suppose that the goal functions of agents take
the form

£ () =2+ 0)x; —x;, i=Lm, (14)

where x; is the amount of resources allocated to the subprogram by agent i. Under a given norm A, each
agent maximizes the goal function (14) with respect This problem has the solution

xl-:rl-(lJrk),i:l,_m. (15)
The norm A is defined by the limited resource condition of the Principal:

X(I+X)=§,where H=)r.

Direct solution of this quadratic equation yields:

kz%(,/1+4q—1),where ng.

For resource allocation, the Principal receives agents' estimates s; of the efficiency levels 7;. Based
on these data, the Principal evaluates
R

x; =s;(1+1), where KzE, S=>s.
Substitute x and A into (15) to obtain
fi=(n) 2ns; -5, ]. (16)

Under a large number of agents, the estimate provided by agent i has almost no influence on
the norm A. Let us accept the hypothesis of weak contagion (all agents neglect the above influence) and
maximize the function (16) with respect to s;. We naturally establish that s; =7, i =1,m. Thus, the joint

financing mechanism enjoys strategy-proofness.
Now, switch to the discrete-time model. Assume that n; projects exist for each subprogram. Each

project yields the effect a; and incurs the costs ¢, i=Ln;, j=1m.

Under the norm A agent j invests S in project i which gains the profit, =, =a ; — St .
1+ L Y
Obviously, if m; > 0, project i is included in the program. We believe that project i is also included
in the program provided that m; = 0 (owing to agents' benevolence towards the Principal). Denote by
Qi) a set of projects such that m; >0 under the norm A. Find the maximum value of A satisfying

the inequality

i > cﬂ.s(1+%JR. (17)

J=1ieQ; (%)
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Using such norm A, the Principal participates in joint financing of all projects with nonnegative
profits. Note that the Principal can choose a norm A > Ay. This leads to the problem of program design
with the maximum total effect under a guaranteed effect of each agent. Actually, the problem has been
studied above.

To solve inequality (17), for each project defines the norm

A =——1

(here ¢;; > a;;, otherwise, the project is beneficial to the agent without additional financing). Renumber all
projects in the ascending order of A, i.e., A < A, < - <, where q means the number of projects.
Determine maximum number k such that.

Zc (1+—]R (18)

Ay
The obtalned value A provides a solution of inequality (17).
Remark. By assumption, for each agent Q,(Ax) # & and, moreover, there exist projects with a guaran-
teed effect to the agent. If not, an agent should design projects with a sufficiently high effect.
Example 1. Take 2 subprograms and 2 agents, each having 4 projects. The corresponding parame-
ters are combined in Table 27.

Table 27
i 1 2 3 4 5 6 7 8
a; 1100 50 | 80 | 60 | 40 | 30 | 70 | 20
¢ | 110 60 | 104 | 84 | 60 | 48 | 119 | 36
A1 01102103)041(05106 10,708

Suppose that projects 14 (projects 5—8) are candidates for inclusion in subprogram 1 (subprogram
2, respectively). Set R = 140 and calculate

A=k =0,1;¢c,<(+10)R

;L 7L2 02 Cl+02<(91+5)R

A= 7»3 03 Cl+Cz+C3<(1+10/3)R

A=2=04; ¢+t e3t ey <(1+5/2)R.

A=%As=0,5;110+ 60 + 104 + 84 + 60 < 3R = 420.

A=2%s=0,6; 418 +48 =466 > 2,67x140.

Hence, k£ =5 and the desired norm makes up As = 0,5.

In this case, subprogram 1 includes all projects 1-4, whereas subprogram 2 consists of project 5 only.
However, if the guaranteed effects of the subprograms d; = d, = 50, then the plan coordination condition
breaks for subprogram 2. Therefore, we choose A, =2As=0,6. As a result, subprogram 2 includes
projects 5 and 6, with the total effect as + as = 70 > 50 and costs 80 of agent 2.

To design subprogram 1, solve the optimization problem

100x; + 50x; + 80x3 + 60x; — max
subject to the constraint

100x; + 60x; + 104x; + 84x, < 245/

The optimal solution is

)C]:l,)(fg 0)(,'3 1)C4—0
leading to effect 180.

Note that if we reduce the guaranteed effect of subprogram 2 to 40, then the norm A goes down to
0.5. This allows increasing appreciably the total effect (from 330 to 250).
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nPUHUUMN CKOOPANHUPOBAHHOIO NMIAHUPOBAHUA
B YNIPABJNIEHUU PACNPEAEJNIEHHBIMU NMPOEKTAMUA
U NMPOrPAMMAMU

B.H. bypkoes, U.B. Bypkoea
UHecmumym npobrniem ynpasneHus um. B.A. TpanesHukosa PAH, 2. Mockea

PaccmaTpuBatoTcst mpoOJIeMBbl YIIPAaBICHUS PACHPENCICHHBIMU NPOSKTaMH W IIPOTpaMMaMHu.
OTH IpOrpaMMbI COCTOST U3 ITOANPOTPAMM, PacTpeleIeHHbIX (YHKIMOHAIBHO, B 3 IMUHACTPATHB-
HOM TOpsaKe Wik reorpaduueckd. Hanpumep, nmporpamMma perdoHajJbHOTO pa3BUTHSI BKIIOYAET B
ce0s1 moAmporpaMMy IO 3KOJOTHYECKOH Oe3omacHocTH. B cBA3M ¢ 3THMM OCHOBHOH mpoOieMoid
YIIPaBIIECHUS paclpee]eHHBIME ITPOrpaMMaMH SIBIISIETCS. TIpo0ieMa KOOPAUHAMK HHTEPECOB BCEX
3aMHTEPECOBAHHBIX JIMI. MBI IpeiaraeM NPUHIKI CKOOPAMHUPOBAHHOTO IJIAHWPOBAHUS VI paz-
pabOTKH IUIAHOB peaTM3aLUuy PACIPEIEICHHBIX IPOTPaMM.

Knioueswie cnosa: pacnpedenennvie npoepammul, 9K0102U4eCKas 6e30NaACHOCMb, NPUHYUN CKO-
OPOUHUPOBAHHO20 NAAHUPOBAHUSL.
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