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1. Introduction 
Distributed projects (programs) are projects (programs) consisting of subprojects (subprograms) 

distributed functionally, administratively or geographically. Functional distribution means that there  
exist different functional directions of a project (program) having a dedicated subproject (subprogram) 
with a separate manager and team. Among examples, we mention a regional development program 
which includes several functional directions such as social development, economic development, envi-
ronmental safety and others. In the case of administrative distribution, there are subprojects (subpro-
grams) in the interests of different administrative or economic institutions. For instance, a regional de-
velopment program includes development subprograms of member cities, municipalities, etc. with sepa-
rate managers and teams. The main feature of functionally and administratively distributed projects 
(programs) is the presence of noncoinciding interests pursued by the managers of associated subprojects 
(subprograms). Therefore, the major problem in managing functionally and administratively distributed 
projects (programs) lies in interests' coordination for all persons concerned (basically, the managers of 
subprojects and subprograms). Geographically distributed projects (programs) can be functionally and 
administratively distributed and, moreover, have another essential peculiarity. While designing imple-
mentation plans of such projects (programs), one should take into account the transfer time of different 
resources (personnel, equipment, materials): this time is often comparable with (or even exceeds!)  
the execution time of a job. The reparation and construction of motor roads, railway tracks and bridges 
are the examples of such projects. 

 
2. The principle of coordinated planning in distributed projects (programs)1 
We study the problem of interests' coordination among the sub-projects (subprograms) of a functionally 

or administratively distributed project (program) using the example of a functionally distributed program. All 
results can be easily applied to geographically or administratively distributed projects and programs. 

Consider a functionally distributed program composed of m subprograms covering different direc-
tions. In the sequel, the program manager will be called the Principal (P), whereas subprogram managers 
will be called agents (A). 
                                                           

1 This section was written together with Chu Dong Xuan, a postgraduate student at Voronezh State University of Architec-
ture and Civil Engineering (Voronezh, Russia). 
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Suppose that there is a state assessment of each direction (in a qualitative or quantitative scale). De-
note by Fi, the state assessment of direction i (the goal function of agent i) and by F the goal function of 
the Principal. The goal function of the Principal depends on the goal functions of agents: 

 1 1; ; ... ; .mF F F F                      (1) 
This can be a linear, additive or matrix convolution. 
The Principal has to design a program (a set of projects) in order to maximize the goal function F 

under limited resources R allocated to the program. On the other hand, each agent / strives to design  
a subprogram maximizing its goal function Fi. 

Imagine that the Principal ignores the interests of agents during program design. This would cause  
a series of negative consequences such as hiding or misrepresentation of information provided by agents 
to the Principal, non-fulfillment of program measures, etc. For interests' coordination between the Prin-
cipal and agents, the theory of active systems proposes the principle of coordinated planning [1].  
The fundamental idea of this principle is to optimize the Principal's goal function on the set of coordi-
nated plans (i.e., plans such that the goal functions of agents are not smaller than a given threshold). For 
formal statement of the coordinated planning problem, designate by 0

iF  the existing state assessment of 
direction i. The interests' coordination condition can be a guaranteed increment 0

i i iF F    of the function 
Fi, (i.e., the increase by 100 i  percent). In this case, the coordinated planning problem acquires the form 

 1 1; ; ... ; maxmF F F F                      (2) 
subject to the constraints 

  01 , 1,i i iF F i n    .                    (3) 
 
3. Problem statement 
There are n candidate projects for inclusion in the program. Implementation of each project i incurs 

the costs ci and yields the economic effect aij for direction j (we comprehend effect as the increment of 
the goal function Fj). Set xi = 1 if project i is included in the program (xi = 0, otherwise). 

The problem. Find  , 1,ix x i n   maximizing the functions 

 1 2, ,... , my y y , where j ij i
i

y a x , 1,j m                (4) 

subject to the constraints 
,i i

i
c x R                        (5) 

0
i ij j j

i
x a F  , 1,j m .                    (6) 

3.1. SPECIAL CASE. SINGLE-PURPOSE PROJECTS 
Consider the following special case of the problem. For each direction j, there exists a set Qj of 

projects contributing to it; the sets Qj do not intersect. In this case, the problem is treated in two stages.  
Stage 1. Solve m knapsack problems: maximize 

j

j i i
i Q

y a x


                        (7) 

subject to the constraints 

J

i i j
i Q

x c R


 ,                      (8) 

0

j

i i j j j
i Q

x a F b


   , where 0 jR R  .                (9) 

For this, solve the standard knapsack problem (7), (8) under Rj = R. 
As is well-known, solution of the knapsack problem under Rj = R yields optimal solutions for all 

Rj < R. Denote by Yj(Rj) the value of the goal function (7) in the optimal solution as a function of Rj. 
Find the minimum value Rj = dj such that Yj(dj) ≥ bj. As a result, we obtain a relationship Yj(Rj), where 
dj ≤ Rj ≤ R. 
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Stage 2. Solve the maximization problem of the function 
  ( )j j

j
Y R R                     (10) 

subject to the constraints Rj ≥ bj, 1,j m , 

1

m

j
j

R R


 .                     (11) 

Here we apply dichotomous programming. Each knapsack problem is solved by the backward me-
thod. 

Example 1. Consider three directions of a program, see Table 1. 
 

  Table 1 

j Direction 1 Direction 2 Direction 3 
i 1 2 3 4 5 6 7 8 9 10 11 12 
ai 12 30 50 16 16 15 8 18 24 18 10 7 
ci 6 5 10 4 4 3 4 3 12 6 5 7 

 
Set b1 = 20, b2 = 34, b3 = 20, R = 30. 
Stage 1. Solve the knapsack problem for direction 1 using dichotomous programming [2]. Fig. 1 

shows the dichotomous representation tree of this problem. 
 

 
Fig. 1 

 
Step 1. Solve the problem for projects 1 and 2. The resulting solution is described by Table 2. Here 

the first value indicates the costs and the second value means the economic effect. 
 

     Table 2 

1 5;30 11;42 
0 0;0 6;12 

2 
           1 0 1 

 
The results are combined in Table 3. Actually, this table contains only Pareto optimal variants. For 

instance, we eliminate variant (6;12) as being dominated by variant (5;30) (under smaller costs, it yields 
higher effect). 

 
     Table 3 

Variant 0 1 2 
Costs 0 5 11 
Effect 0 30 42 

 
Step 2. Solve the problem for projects 3 and 4. The solution is illustrated by Table 4. The results 

can be found in Table 5. 

(1;2;3;4) 

(1;2) 

1 

(3;4) 

3 2 4 
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     Table 4 

1 4;16 14;66 
0 0;0 10;50 

4 
           3 0 1 

 
     Table 5 

Variant 0 1 2 3 
Costs 0 4 10 14 
Effect 0 16 50 66 

 
Step 3. Consider the united projects (1;2) and (3;4). The solution is provided by Table 6 and the re-

sults are combined in Table 7. As far as b1 = 20, we reject variants (0;0) and (4;16). 
 

    Table 6 

2 11;42 15;58 21;92 25;108 
1 5;30 9;46 15;80 19;96 
0 0;0 4;16 10;50 14;66 

(1;2) 
      (3;4) 0 1 2 3 

 
    Table 7 

Variant 1 2 3 4 5 6 7 
R1 5 9 10 14 15 19 25 
Y1 30 46 50 66 80 96 108 

 
Solve the knapsack problem for direction 2. The solution is described by Table 8. 
 

     Table 8 

Variant 1 2 3 
R2 7 10 14 
Y2 34 49 57 

 
Solve the knapsack problem for direction 3. The solution is described by Table 9 
 

      Table 9 

Variant 1 2 3 4 5 
R3 11 17 18 23 30 
Y3 28 34 42 52 59 

 
Stage 2. Solve the optimization problem 
Y1(R1) + Y2(R2) + Y3(R3)  max                (12) 

to the constraint 
R1 + R2 + R3 ≤ 30.                    (13) 
Step 1. Consider directions 1 and 2. The solution is provided by Table 10. And the results can be 

found in Table 11. 
 

  Table 10 

14;57 19;87 23;103 24;107 28;123 29;137 – – 
10;49 15;79 19;95 20;99 24;115 25;129 29;142 – 
7;34 12;64 16;80 17;84 21;100 22;114 26;130 – 

 2 
       1 5;30 9;46 10;50 14;66 15;80 19;96 25;108 
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      Table 11 

Variant 1 2 3 4 5 6 7 8 9 10 11 12 
R1 + R2 12 15 16 17 19 20 21 22 24 25 26 29 
Y1 + Y2 64 79 80 84 95 99 100 114 115 129 130 142 

 
Step 2. Consider united direction (1;2) and direction 3. The solution is combined in Table 12. 
 

  Table 12 

19;95 0;123 – – 
17;84 28;112 – – 
16;80 27;108 – – 
15;79 26;107 – – 
12;64 23;92 29;98 30;106 

(1;2) 
              (3) 11;28 17;34 18;42 

 
In Table 12 find a cell with the maximum second value. This is cell (30;123) associated with the ef-

fect 123. Cell (30;123) corresponds to variant 5 in Table 11 and variant 1 in Table 9. This variant cor-
responds to the solution of the knapsack problem 

x9 = 0; x10 = 1; x11 = 1; x12 = 0 
with costs 11 and effect 28. 

Variant 5 in Table 11 corresponds to cell (19;95) in Table 10, i.e., variant 2 in Table 8 and variant 2 
in Table 7. 

Next, variant 2 in Table 8 corresponds to the solution of the knapsack problem for direction 2: 
x5 = 1; x6 = 1; x7 = 0; x8 = 1 

with costs 10 and effect 49. 
And finally, variant 2 in Table 7 corresponds to the following solution of the knapsack problem for 

direction 1: 
x1 = 0; x2 = 1; x3 = 0; x4 = 1 

with costs 9 and effect 46. 
3.2. GENERAL CASE. MULTI-PURPOSE PROJECTS 
In the general case, there exist projects whose implementation contributes to several directions. 

Such projects are said to be multipurpose projects. If the number q of multi-purpose projects is not large, 
consider all 21' variants of multi-purpose projects inclusion in the program and choose the best one (per-
form exhaustive search). 

Example 2. Take 2 directions and 8 projects with the parameters described by Table 13. 
 

  Table 13 

i 1 2 3 4 5 6 7 8 

1ia  12 18 15 24 15    
 
Clearly, projects 4 and 5 are multi-purpose. Set b1 = 20, b2 = 25, R = 30. 
Variant 1. None of the multi-purpose projects is included in the program, i.e., x4 = x5 = 0. 
Stage 1. Solve the problem for direction 1: maximize 
12x1 + 18x2 + 15x3 

subject to the constraint 
4x1 + 9x2 + 3x3   R1,  

where R1 < 30. The solution is illustrated by Table 14. 
 

  Table 14 

Variant 0 1 2 3 4 
R1 0 3 7 12 16 
Y1 0 15 37 33 45 
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Solve the problem for direction 2: maximize  
16x6 + 21x7 + 24x8 

subject to the constraint 
4x6 + 7x7 + 12x8 ≤ R2, 

where R2 < 30. The solution is defined by Table 15. 
 

  Table 15 

Variant 0 1 2 3 4 5 6 
R2 0 4 7 11 16 19 23 
Y2 0 16 21 37 40 45 61 

 
Stage 2. Maximize 
   1 1 2 2Y R Y R  

subject to the constraint 
1 2 30R R  . 

The solution can be found in Table 16. 
 

  Table 16 

4 16;45 20;61 23;66 27;82 – – – 
3 12;33 16;49 19;54 23;70 28;73 – – 
2 7;27 11;43 14;48 18;64 23;67 26:72 30;88 
1 3;15 7;31 10;36 14;52 19;55 22;60 26;76 
0 0;0 4;16 7;21 11;37 16;40 19;45 23;61 

 1 
        2 0 1 2 3 4 5 6 

 
As far as b1 = 20, eliminate rows 0 and 1 from Table 16. Similarly, eliminate columns 0, 1 and 2 

due to b2 = 25. In the resulting table, identify a cell with the maximum second value. Actually, this is 
cell (30;88) associated with effect 88. 

Variant 2. Project is included in the program (x4 = 1; x5 = 0). In this case, the residual resource 
makes up R' = 30 – 8 = 22. So long as a41 = 24 and a42 = 16, then b1' = 0 and b2' = 25 – 16 = 9. Hence, 
we have to eliminate only column 0 and row 0 from Table 16. 

Define a cell with the maximum second value among all cells whose first value does not exceed 22. 
This is cell (18;64) with effect 64. By adding the effect from project 4 (a41 + a42 = 40), we get total effect 
104. 

Variant 3. Project 5 is included in the program. Hence, 
R' = 30 – 10 = 20, b1' = 20 – 15 = 5, b2' = 25 – 10 = 15. 
Similarly, to the previous variant, eliminate column 0 and row 0 from Table 16. Find a cell with  

the maximum second value among all cells whose first value does not exceed 20. This is cell (18; 64) 
yielding effect 64. By adding the effect from project 5, we get total effect 64 + 25 = 89. 

Variant 4. Projects 4 and 5 are included in the program (x4 = x5 = l). Then we have that 
R' = 30 – 18 = 12, b1' = 0, and b2' = 0. Identify a cell with the maximum second value among all cells 
whose first value does not exceed 12. This is cell (11;43) with effect 43. By adding the effects from 
projects 4 and 5, we get total effect 43 + 40 + 25 = 108. The maximum effect is gained by variant 4. 
Note that cell (11;43) corresponds to variant 1 in Table 15 and variant 2 in Table 14. On the other hand, 
variant 1 in Table 15 corresponds to the following solution for direction 2: 

x6 = 1, x7 = 0, x8 = 0. 
Variant 2 in Table 14 corresponds to the following solution for direction 1: 

x1 = 1, x2 = 0, x3 = 1, x4 = 0. 
And finally, we establish that the program includes projects 1, 3, 4, 5 and 6 with total effect 108 and 

total costs 29. 
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3.3. NETWORK PROGRAMMING METHOD 
Under a large number of multi-purpose projects, program design based on their exhaustive search 

becomes inefficient. Consider the branch-and-bound method with estimation using network program-
ming [3]. Let us illustrate this method for the inverse problem: minimize the costs required for obtaining 
a given total effect. In other words, the problem is to minimize the goal function 

  i i
i

C x с x  

subject to the constraint 
,j

j
y B  

j jy b , 1,j m . 
We provide a simple example below. 
Example 3. There are 4 projects with the parameters described by Table 17. The number of direc-

tions equals 2. 
 

   Table 17 

i 1 2 3 4 

1ia  12 6 9  

2ia   4 6 8 
ci 3 2 4 3 

 
Set b1 = 10, b2 = 8 and B = 30. According to Table 17, projects 2 and 3 are multi-purpose. Fig. 2 

shows the network representation of the associated constraints. 
 

 
Fig. 2 

 
Theory of network programming prescribes splitting arbitrarily the costs с2 and с3 of multi-purpose 

projects into two components s21, s22 and s31, s32, respectively (since vertices 2 and 3 have 2 outgoing 
arcs, see Fig. 2). For instance, take s21 = s22 = 1, s31 = 1, s32 = 3. This leads to two estimation problems 
for each direction. The estimation problem for direction 1: minimize  

 1 1 2 33 1 1C x x x x        
subject to the constraint 

1 2 3 112 6 9x x x B    
where 1 1d B B  . 

Denote by Z1(B1) the optimal value of С1(x). The solution is described by Table 18. 
 

  Table 18 

Variant 0 1 2 3 4 
Z1 0 1 2 4 5 
B1 0 6 15 21 27 

Ф;R 

Y1;R1
Y2;R2

1 2 3 4 
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We eliminate variants 0 and 1, since B1 < b1 = 10 for them.  
The estimation problem for direction 2 has the form 

 2 2 3 41 3 3 minC x x x x         
subject to the constraint 

2 3 4 24 6 8x x x B    
where 2 2d B B  . 

Designate by Z2(B2) the optimal value of С2(x). The solution is defined by Table 19. 
 

  Table 19 

Variant 0 1 2 3 4 5 
Z2 0 1 3 4 6 7 
B2 0 4 8 12 14 18 

 
Again, we eliminate variants 0 and 1, since B2 < b2 = 8 for them.  
Solve the upper-level estimation problem 

   1 1 2 2 minZ B Z B    
subject to the constraint 

1 2 30B B  . 
The solution can be found in Table 20. 

 
  Table 20 

5;18 9;32    
4;14 7;29    
4;12 6;27 8;33   

2 5;25 7;29 8;35 9;37 
 2 
               1 22;15 34;21 45;27 66;27 

 
Consider Table 20 and choose a cell with the minimum first value among all cells whose second 

value is not smaller than B = 30. These are cells (8;35) and (8;33) with costs 8. According to the funda-
mental theorem of network programming, in our example costs 8 provide a lower estimate of the costs in 
the original problem. Define the corresponding optimal solutions by the backward method. Cell (8;35) 
corresponds to variant 2 in Table 19 and variant 4 in Table 18. Next, variant 2 in Table 19 answers  
the solution of the estimation problem for direction 2: 

x2 = 0, x3 = 0, x4 = 1. 
Variant 5 in Table 18 answers to the solution of the first estimation problem: 

x1 = 1, x2 = 1, x3 = 1. 
The obtained pair of solutions does not define an admissible solution. 

Cell (8;33) corresponds to variant 3 in Table 19 and variant 3 in Table 18. Variant 3 in Table 19 an-
swers to the solution 

x2 = 1, x3 = 0, x4 = 1  
of the second estimation problem, whereas variant 3 in Table 18 corresponds to the solution 

x1 = 1, x2 = 0, x3 = 1 
of the first estimation problem. Again, this pair of solutions does not define an admissible solution of the 
original problem (it represents a lower estimate only). 

To proceed, we may either improve the derived estimates (using other costs splitting for multi-
purpose projects) or apply the branch-and-bound method with the derived estimates. Let us illustrate  
the branch-and-bound method. Choose direction 2 for branching. Decompose the solution set into two 
subsets: x2 = 1(subset 1) and x2 = 0 (subset 2). 

Estimation on subset 1 (x2 = 1). 
As far as x2 = 1, then 
B' = 30 – 10 = 20, b1' = 10 – 6 = 4, b2' = 8 – 4 = 4. 
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Solve the estimation problem for direction 1: 
3x1 + x3  min 

subject to the constraint 
12x1 + 9x3 ≥ B1', 

where 4 ≤ B1' ≤ 20. The solution is described by Table 21. 
 

   Table 21 

Variant 0 1 2 3 
Z1 0 1 3 4 
B1 0 9 12 21 

 
Solve the estimation problem for direction 2: 
3x3 + 3x4  min 

subject to the constraint 
6x3 + 8x4 ≥ B2, 

where 4 ≤ B2 ≤ 20. The solution is shown by Table 22. 
 

   Table 22 

Variant 0 1 2 
Z1 0 3 6 
B1 0 8 14 

 
Solve the upper-level estimation problem:  

   1 1 2 2 minZ B Z B    
subject to the constraint 

1 2 20B B  . 
The solution is shown by Table 23. 
 

  Table 23 

26;14 7;23 – – 
13;8 4;17 6;20 – 

 Z2;B2 
                 Z1;B1 

11;9 23;12 34;21 

 
Actually, the solution answers to cell (6;20). 
The first and second estimation problems have the solutions x1 = 1, x3 = 0, and x3 = 0, x4 = 1 respec-

tively. 
Note that the above pair of solutions defines an admissible, ergo optimal solution on the subset 

x2 = 1 c with costs 8. 
Estimation on subset 2 (x2 = 0). 
Solve the estimation problem for direction 1:  
3x1 + x3  min 

subject to the constraint 
12x1 + 9x3 ≥ B1', 

where 10 ≤ B1 ≤ 30. The solution is shown by Table 24. 
 

   Table 24 

Variant 2 3 
Z1 3 4 
B1 12 21 
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Solve the estimation problem for direction 2: 
3x3 + 3x4  min 

subject to the constraint 
6x3 + 8x4 ≥ B2, 

where 8 ≤ B2 ≤ 30. The solution is shown by Table 25. 
 

   Table 25 

Variant 2 3 
Z2 3 6 
B2 8 14 

 
Solve the upper-level estimation problem. The solution is given by Table 26. 
 

  Table 26 

36;14 5;18 9;26 10;35 
2 3;8 4;14 6;20 7;29 

Z2;B2 
                 Z1;B1 

1 1;6 23;12 34;21 

 
The solution answers to cell (10;35) with costs 10. 
Choose subset 1 (x2 = 1). The corresponding optimal solution is x1 = 1, x2 = 1, x3 = 0, x4 = 1 with 

costs 8. Fig. 3 shows the branching tree. 
 

 
Fig. 3. 

 
The second solution method of the problem consists in maximum increase of the lower estimate via 

optimal split of the costs c2 and c3 under the constraints 
s21 + s22 = c2, 
s31 + s32 = c3. 

This is the so-called generalized dual problem (GDP). 
According to [3], the GDP represents a convex programming problem. However, one should have 

in mind a couple of important aspects. First, numerical experiments have demonstrated that, generally, 
computational time required for lower estimate improvement is not compensated owing to smaller 
branching in the branch-and-boundary method. Second, in many cases the GDP possesses a non-integer 
solution; as is well-known, non-integer parameters make the knapsack problem NP-complex. Therefore, 
it is strongly recommended to obtain estimates under a given initial costs split of multipurpose projects. 

We endeavor to improve the derived estimate. For s21 = s22 = 1, s31 = 3, there are two pairs of solu-
tions to the estimation problems. The first pair of solutions has the form 

x1 = 1, x2 = 1, x3 = 1,  
x2 = 0, x3 = 0, x4 = 1. 

And the second pair of solutions is defined by 
x1 = 1, x2 = 0, x3 = 1,  
x2 = 1, x3 = 0, x4 = 1. 
Designate by 2 and 3  the variations of the estimates s22 and s32, respectively. Note that the optimal 

solutions of the estimation problems remain same under small values of 2 and 3. To increase the lower 
estimate, we should increase the lower estimate for each pair of solutions. 

8 

8 10 

x2 = 1 x2 = 0 
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The variations meet the inequalities 2 + 3 > 0 (for the first pair) and 2 – 3 > 0 (for the second 
pair). Choose 2 = 0 and 3 > 0. Interestingly, under 3 > 0 we obtain a new pair of the optimal solutions 
to the estimation problems: 

1) x1 = 1, x2 = 1, x3 = 0,  
2) x2 = 1, x3 = 0, x4 = 1 

associated with costs 8. 
This pair defines an admissible, hence optimal solution of the original problem. 
 
4. Joint financing mechanisms 
A major problem in distributed project and program management lies in (financial) resource alloca-

tion among directions (subprograms) of a functionally distributed program or among separate depart-
ments (subprograms) of an administratively distributed program. 

Consider a class of interests' coordination mechanisms for the Principal and agents. The matter con-
cerns joint financing mechanisms of subprograms: a share of resources is provided by the Principal and 
the rest resources are contributed by agents. Here the subject of interests' coordination is the norm X de-
fining the amount of Principal's resources allocated per agent's unit resources [4]. 

Our analysis begins with a simple analytical model. Suppose that the goal functions of agents take 
the form 

 , 2 (1 )i i i i if x r x x     , 1,i m ,               (14) 
where xi is the amount of resources allocated to the subprogram by agent i. Under a given norm , each 
agent maximizes the goal function (14) with respect This problem has the solution 

 1i ix r   , 1,i m .                   (15) 
The norm  is defined by the limited resource condition of the Principal: 

 1 R
H

    , where .i
i

H r  

Direct solution of this quadratic equation yields: 

 1 1 4 1
2

q    , where Rq
H

 . 

For resource allocation, the Principal receives agents' estimates si of the efficiency levels ri. Based 
on these data, the Principal evaluates 

 1i ix s   , where R
S

  , i
i

S s . 

Substitute x and  into (15) to obtain 
 1 2i i i if r s s      .                  (16) 

Under a large number of agents, the estimate provided by agent i has almost no influence on  
the norm . Let us accept the hypothesis of weak contagion (all agents neglect the above influence) and 
maximize the function (16) with respect to si. We naturally establish that i is r , 1,i m . Thus, the joint 
financing mechanism enjoys strategy-proofness. 

Now, switch to the discrete-time model. Assume that nj projects exist for each subprogram. Each 
project yields the effect аij and incurs the costs сij, 1, ji n , 1,j m . 

Under the norm  agent j invests 
1

jiс
 

 in project i which gains the profit, 
1

ji
ji ji

с
a  

 
. 

Obviously, if ji > 0, project i is included in the program. We believe that project i is also included 
in the program provided that ji = 0 (owing to agents' benevolence towards the Principal). Denote by 
Qj() a set of projects such that ji ≥ 0 under the norm . Find the maximum value of  satisfying  
the inequality  

1 ( )

11
J

m

ji
j i Q

c R
  

    
  .                  (17) 
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Using such norm , the Principal participates in joint financing of all projects with nonnegative 
profits. Note that the Principal can choose a norm  > 0. This leads to the problem of program design 
with the maximum total effect under a guaranteed effect of each agent. Actually, the problem has been 
studied above. 

To solve inequality (17), for each project defines the norm  

1ji
ji

ji

c
a

     

(here сji ≥ аji, otherwise, the project is beneficial to the agent without additional financing). Renumber all 
projects in the ascending order of ji, i.e., 1 ≤ 2 ≤ ∙∙∙ ≤ q, where q means the number of projects.  

Determine maximum number k such that. 

1

11
k

i
ki

c R


 
   

 . (18) 

The obtained value k provides a solution of inequality (17). 
Remark. By assumption, for each agent Qj(k) ≠  and, moreover, there exist projects with a guaran-

teed effect to the agent. If not, an agent should design projects with a sufficiently high effect. 
Example 1. Take 2 subprograms and 2 agents, each having 4 projects. The corresponding parame-

ters are combined in Table 27.  
 

  Table 27 

i 1 2 3 4 5 6 7 8 
ai 100 50 80 60 40 30 70 20 
сi 110 60 104 84 60 48 119 36 
i 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 

 
Suppose that projects 1–4 (projects 5–8) are candidates for inclusion in subprogram 1 (subprogram 

2, respectively). Set R = 140 and calculate 
 = 1 = 0,1; с1 < (1 + 10)R. 
 = 2 = 0,2; с1 + с2 < (91 + 5)R. 
 = 3 = 0,3; с1 + с2 + с3 < (1 + 10/3)R. 
 = 4 = 0,4; с1 + с2 + с3 + с4 < (1 + 5/2)R. 
 = 5 = 0,5; 110 + 60 + 104 + 84 + 60 < 3R = 420. 
 = 6 = 0,6; 418 + 48 =466 > 2,67140. 

Hence, k = 5 and the desired norm makes up 5 = 0,5. 
In this case, subprogram 1 includes all projects 1–4, whereas subprogram 2 consists of project 5 only. 

However, if the guaranteed effects of the subprograms d1 = d2 = 50, then the plan coordination condition 
breaks for subprogram 2. Therefore, we choose k = 6 = 0,6. As a result, subprogram 2 includes 
projects 5 and 6, with the total effect a5 + a6 = 70 > 50 and costs 80 of agent 2. 

To design subprogram 1, solve the optimization problem 
100x1 + 50x2 + 80x3 + 60x4  max 

subject to the constraint 
100x1 + 60x2 + 104x3 + 84x4 ≤ 2451/3 

The optimal solution is 
x1 = 1, x2 = 0, x3 = 1, x4 = 0 

leading to effect 180. 
Note that if we reduce the guaranteed effect of subprogram 2 to 40, then the norm  goes down to 

0.5. This allows increasing appreciably the total effect (from 330 to 250). 
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ПРИНЦИП СКООРДИНИРОВАННОГО ПЛАНИРОВАНИЯ  
В УПРАВЛЕНИИ РАСПРЕДЕЛЕННЫМИ ПРОЕКТАМИ  
И ПРОГРАММАМИ 
 
В.Н. Бурков, И.В. Буркова 
Институт проблем управления им. В.А.Трапезникова РАН, г. Москва 
 
 

Рассматриваются проблемы управления распределенными проектами и программами. 
Эти программы состоят из подпрограмм, распределенных функционально, в административ-
ном порядке или географически. Например, программа регионального развития включает в 
себя подпрограмму по экологической безопасности. В связи с этим основной проблемой 
управления распределенными программами является проблема координации интересов всех 
заинтересованных лиц. Мы предлагаем принцип скоординированного планирования для раз-
работки планов реализации распределенных программ. 

Ключевые слова: распределенные программы, экологическая безопасность, принцип ско-
ординированного планирования. 
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