DOI: 10.14529/ctcr170118

IDEF0-DIAGRAM INTO DATABASE CONVERSION
APPROACH DEVELOPMENT

A.A. Vakalyuk, avakalyuk@yandex.ru,
S.N. Basmanov, seregabasmanov@rambler.ru

Ural State University of Railway Transport, Ekaterinburg, Russian Federation

An approach was developed to the conversion IDEFO-diagram, created in the business
processes design tool CA ERwin Process Modeler, to database by analysis of *. XML file for task so-
lution of organization business processes modeling within the scope of information system. Due to
recognizing names and links between functional blocks, their decompositions and interface connections
the analysis of the basic tags of *. XML file was done. Based on the analysis *. XML file database struc-
ture is developed, in which all the tables are related by “one-to-many” with a foreign key.
Research results display actual tasks for companies. Solving tasks companies can move to a new tech-
nological and organizational level and compete more effective in modern economic conditions. Job
was done by 05.13.01 specialty — systems analysis, control and information processing (branches).

Keywords: IDEF0-diagram, information system, * XML file, functional blocks, interface arrows.

Introduction

One of the basic stages of information systems (IS) development is a modeling of business
processes of the organization. CA Erwin Process Modeler is one of the popular design tools of business
processes. This tool uses methodology of the IDEFO0. IDEFO is a system’s functional model, which de-
scribes a complex of system functions and defines system morphology (its structure) — composition of
the subsystems, their relationship. This model regards the system as a set of operations; each of them
converts some object or collection of objects [1].

In this article a new approach to the conversion IDEF0-diagram into MySQL database (DB) by
analysis of *. XML file is proposed.

This approach is used to include business processes diagram data to IS as a structural part with sub-
sequent distribution between departments of company.

Purpose of the research is approach development to the conversion IDEF0-diagram to DB by analy-
sis of * XML file.

1. *. XML file analysis

The first stage of conversion IDEFO-diagram to DB is diagram creation in the design tool of busi-
ness processes — CA Erwin Process Modeler. In this case, the diagram stored in an *. XML file.

Example A-0 diagram shown in Fig. 1.

datal Con

d o

. datal Out
datal In function -

03. 1]

datal Mex
Fig. 1. IDEF A-0 diagram
BecTHuk HOYplY. Cepus «KomnbioTepHble TEXHONOrMK, ynpasreHue, paauo3neKkTPoHUKay. 153

2017.T. 17, Ne 1. C. 153—-159

KpaTtkme coobLieHus

The next stage is recognition of name and links between functional blocks and interface arrows in
* XML file.
Example *. XML file cutting with tags is shown below.

<ProcessModeler>
<PMModel id="..." Name="IDEF-diagram">

<PMArrow_Groups>
<PMArrow id="..." Name="Datal In">...</PMArrow>
<PMArrow id="..." Name="Datal Out">...</PMArrow>
<PMArrow id="..." Name="Datal Con">...</PMArrow>
<PMArrow id="..." Name="Datal Mex">...</PMArrow>
</PMArrow_Groups>
<PMActivity Groups>
<PMActivity id="..." Name="function">...</PMActivity>
</PMActivity Groups>
<PMDiagram Groups>
<PMDiagram id="..." Name="Function">
<PMDiagramProps>

<PMParentDiagramRef>...</PMParentDiagramRef>

<PMTopRef>...</PMTopRef>
<PMBottomRef>...</PMBottomRef>
<PMLeftRef>...</PMLeftRef>
<PMRightRef>...</PMRightRef>
</PMDiagramProps>

<PMBox_Groups>
<PMBox id="..." Name="">
<PMBoxProps>

<PMBoxCoordinates member name="left">... </PMBoxCoordinates>
<PMBoxCoordinates member _name="top">... </PMBoxCoordinates>
<PMBoxCoordinates member name="right">... </PMBoxCoordinates>
<PMBoxCoordinates member name="bottom">... </PMBoxCoordinates>
<PMActivityRef>...</PMActivityRef>

</PMBoxProps>
</PMBox>
</PMBox_Groups>
<PMArrowLabel Groups>
<PMArrowLabel id="..." Name="">
<PMArrowLabelProps>

<PMArrowRef>... </PMArrowRef>

154 Bulletin of the South Ural State University. Ser. Computer Technologies, Automatic Control, Radio Electronics.
2017, vol. 17, no. 1, pp. 153-159

Bakanrok A.A., BacmaHoe C.H. Paspabomka nodxo0a K KOHeepMupPoO8aHUIO
IDEF0-3uazpammbi @ 6a3y OaHHbIX

</PMArrowLabelProps>
<PMArrowSegment Groups>
<PMArrowSegment id="..." Name="">
<PMArrowSegmentProps>
<PMVertices index="0">(...,...)</PMVertices>
<PMVertices index="1">(...,...)</PMVertices>
<PMVertices index="2">(...,...)</PMVertices>

<PMSourceConnectionRef>...</PMSourceConnectionRef>
<PMSinkConnectionRef>...</PMSinkConnectionRef>

</PMArrowSegmentProps>
</PMArrowSegment>
</PMArrowSegment Groups>
</PMArrowLabel>
<PMArrowLabel id="" Name="">...</PMArrowLabel>
<PMArrowLabel id="" Name="">...</PMArrowLabel>
<PMArrowLabel id="" Name="">...</PMArrowLabel>
</PMArrowLabel Groups>
</PMDiagram>
</PMDiagram_Groups>
</PMModel>
</ProcessModeler>

IS, from organizational point of view, is a difficult process, which can be represented by several
models. In this case, it is necessary to take into account the possibility of the new models addition and
differentiate between the existent models in the system. For this, analysis of a new * XML file is ne-
cessary to begin with determination of model’s id and Name, which are situation within the tag
<PMModel id="..." Name="...">, and comparison them with existing. If such model is already exists in
the system, then old model in the system is deleted and is replaced by new model.

Information about interface arrows groups, which are used in this model, is presented within the tag
<PMArrow_Groups>... </PMArrow_Groups>. Description of arrows’ properties and identification of
each arrow are presented within tag <PMArrow id="..." Name="...">...</PMArrow>. In this tag it is
assigned unique id and Name for every interface arrow. “Name” conforms the “Arrow Name” of inter-
face arrow, which user sets in process diagram creation by program CA Erwin Process Modeler.

Information about functional blocks groups, which are used in this model, is presented within
the tag <PMActivity Groups>... </PMActivity Groups >. The description of functions and identifica-
tion of each blocks are presented within tag <PMActivity id="..." Name="...">...</PMActivity>. This
functional block is assigned unique id and Name. “Name” is the name of the user-defined in “Activity
Properties” for functional block at the stage of diagram creating in the program CA Erwin Process Modeler.

One of the main features of IDEF(0-diagram is a principle of compound functional blocks decompo-
sition on simpler blocks on the new diagram. The new diagram is a child diagram, and its functional
blocks are child blocks, which present subfunctions of the parent-block of parent-diagram. Each of func-
tions of the child diagram can be detailed by decomposition of the corresponding functional block [2].

All parent and child diagrams are presented within tag <PMDiagram Groups>...
</PMDiagram_Groups>. Each of them has own unique id and Name, which are situated within tag
<PMDiagram id="..." Name="...">...</PMDiagram>.

Also, the tag <PMDiagram>...</PMDiagram> contains such tags as <PMDiagramProps>...
</PMDiagramProps>, <PMBox_ Groups>... </PMBox_Groups> and <PMArrowLabel Groups>...
</PMArrowLabel Groups>.

The structural feature of child diagram is the presence of the tag <PMParentDiagramRef>...

BecTHuk HOYplY. Cepus «KomnbioTepHble TEXHONOrMK, ynpasreHue, paauoaneKkTPoHNKay. 155
2017.T.17, Ne 1. C. 153159

KpaTtkme coobLieHus

</PMParentDiagramRef>, in which is shown parent diagram id. This tag is situated within tag
<PMDiagramProps>...</PMDiagramProps>.

Input and output from process objectives are presented on IDEF0O-diagram by interface arrows,
can be directed from one functional block to another block, or only to functional block. In this case,
when interface arrows are directed only to block, they can come from upper, bottom, right and left
boundaries of diagram. These boundaries are presented in the tags <PMTopRef>...</PMTopRef>,
<PMBottomRef>...</PMBottomRef>, <PMLeftRef>...</PMLeftRef>, <PMRightRef>... </PMRightRef>
within <PMDiagramProps>... </PMDiagramProps>.

The functional blocks within the diagram are described within the tag
<PMBox_Groups>...</PMBox_Groups>. Each of the functional blocks is assigned id in the tag
<PMBox id="..." Name="">...</PMBox>.

Each of the four sides of the functional block has a certain value (the role) and defines the type of
interface, i.e. a way of interaction of arrow with block: the upper side means “Control”, the left side
means “Input”, the right side means “Output”, the bottom side means “Mechanism” [3]. In the *. XML
file each of the functional block sides is assigned the numerical value received relative to the origin of
coordinates, located in the upper left corner. This numerical values are assigned for left, upper, right and
bottom sides within the following tags: <PMBoxCoordinates member name="left">
</PMBoxCoordinates>, ~<PMBoxCoordinates member name="top"> ... </PMBoxCoordinates>,
<PMBoxCoordinates member_name="right"> ... </PMBoxCoordinates>, <PMBoxCoordinates mem-
ber name="bottom"> ... </PMBoxCoordinates> accordingly. These tags are situated within the tag
<PMBoxProps>...</PMBoxProps>.

For the functional block identification, within tag <PMBoxProps>...</PMBoxProps> also is situated
the tag <PMActivityRef>...</PMActivityRef>, in which text coincides with id, represented in the tag
<PMActivity>...</PMActivity>.

Thereby, analyzing the content of the tag <PMBox_Groups> ... </PMBox_Groups>, the name and
number of the functional blocks and their location on the diagram can be identified.

The interface arrows being represented within the scope of the diagram are described within
the tag <PMArrowLabel Groups>...</PMArrowLabel Groups>. The unique id, which is assigned
within the tag <PMArrowLabel id="..." Name="">... </PMArrowLabel>, is used for identification of
every arrow. This tag contains a number of features pertaining to the arrow and being situated within
the tags: <PMArrowLabelProps>...</PMArrowLabelProps> and <PMArrowSegment Groups>...
</PMArrowSegment Groups>.

The first tag contains the dependent tag <PMArrowRef>...</PMArrowRef>, which contains the id,
which is identical to text within the tag <PMArrow>...</PMArrow>.

Thereby, one can identify the interface arrow’s name, which is used within the scope of the dia-
gram.

The tags <PMSourceConnectionRef>...</PMSourceConnectionRef>, <PMSinkConnectionRef>...
</PMSinkConnectionRef> are used for direction identification of interface arrows. These tags indicate
to the start and the end of interface arrows accordingly and are situated within the tag <PMArrowSeg-
ment_Groups>...</PMArrowSegment_Groups>. The text within <PMSourceConnectionRef>...
</PMSourceConnectionRef> can coincide with the text of document border or with id of functional
block <PMBox>...</PMBox>, from which the arrow issues.

Also, the text within <PMSinkConnectionRef>...</PMSinkConnectionRef> can coincide with text
of document border or with id of functional block <PMBox>...</PMBox>, from which the arrow enters.

There are five types of interface arrows in IDEFO: input, output, control, mechanism and call. For
the arrows type identification the tags <PMVertices index="0">(...,...)</PMVertices>, <PMVertices
index="1"> (...,...)</PMVertices>...<PMVertices index="n">(...,...)</PMVertices> are used in
*XML file and they are situated within the tag <PMArrowSegment Groups>...
</PMArrowSegment_Groups>. The number “n” indicates a quantity of interface arrow coordinates, and
can vary depending on bends. The interface arrow coordinates description is (xo, Vo), (x1, 1), (0, 1 or 2),
(x2, 1), (0, 1 or 2) etc., where x,, — indent from origin axle x, y, — indent from origin axle y, (0, 1) — horizon-
tal direction of arrow, (0, 2) — vertical direction of arrow. If the end tag has coordinates (0, 1), that the ar-
row is an input or output. If the end tag has coordinates (0, 2), that the arrow is one of three types: mechanism,
control and call. The interface arrow’s starting point has a coordinate (xo,), and end point — (x,,_1, V1)

156 Bulletin of the South Ural State University. Ser. Computer Technologies, Automatic Control, Radio Electronics.
2017, vol. 17, no. 1, pp. 153-159

Bakanrok A.A., BacmaHoe C.H. Paspabomka nodxo0a K KOHeepMupPoO8aHUIO
IDEF0-3uazpammbi @ 6a3y OaHHbIX

For more detailed identification of arrow type, it is checked the location of the starting point coordi-
nate and end point coordinate on the functional block sides, which are shown the numeric coordinates
within tags: <PMBoxCoordinates member name="left"> ... </PMBoxCoordinates>, <PMBoxCoordinates
member name="top"> ... </PMBoxCoordinates>, <PMBoxCoordinates member name="right">
</PMBoxCoordinates>, <PMBoxCoordinates member name="bottom">...</PMBoxCoordinates>. The ty-
pe of arrow is identified depending on the value of the functional block side.

Thereby, analyzing contents of the tag <PMArrowLabel Groups>...</PMArrowLabel Groups>,
one can identify names and a number of interface arrows of diagram and cooperation of arrows with
functional blocks.

Thereby, after analysis the *. XML file, relationship between child and parent diagrams, functional
blocks and their decompositions, a number of functional blocks and a number of interface arrows in
the scope of the diagram can be detected.

2. DB structure development
On the next stage, received from *. XML file data are recorded in MySQL DB. The structure of DB
is shown on Fig. 2.

Input
% ID
ID_function
Mame_Input
F'al.Ent Control
7D .
ID_function ¥ 1D)
ID Parent ID_function
. Mame_control
function /
% 1D
Mame_function Output
ID_model % 1D
ID_function
Model Mame_output
%D
Name_model
IDF_maodel rmechanism
%D
ID_funcdtion

Name_mechanism

call
% 1D
Mame_call
ID_function

Fig. 2. The IDEF0-diagram DB structure

The main feature of this stage is a realization of relation “one-to-many” between tables by foreign
keys. Foreign key is a data column of one table and coincide with primary key (or its part) of another
table [4]. The realization of this relation makes it possible to minimize data redundancy and to ensure
data integrity.

The DB consists of eight related tables. Addition new or edition existent IDEF0-diagrams is carried
out in a table “Model”. The model’s name (Name model) and identification number (IFD_model) as-
signed by CA Erwin Process Modeler are recorded in this table. Attribute AUTO INCREMENT of col-
umn “ID” is used for new rows generation identifier.

BecTHuk HOYplY. Cepus «KomnbioTepHble TEXHONOrMK, ynpasreHue, paauoaneKkTPoHNKay. 157
2017.T.17, Ne 1. C. 153159

KpaTtkme coobLieHus

The basic table of DB is a table “function”. It consists of the functional blocks’ names
(Name_function) of IDEF(O-diagram. The link between tables “function” and “model” is carried out by
foreign key (ID_model) and primary key (ID) accordingly.

The identifier (ID_Parent) of functional block and its decompositions is located in a table “Parent”.

The interface arrows of IDEF0-diagram are represented in tables “input”, “output”, “mechanism”
and “call”. Each of these tables consists of three columns: identification number of interface arrow, its
name and foreign key, which conforms to primary key of table “function”.

The main idea of use of foreign key is use of expressions ON UPDATE CASCADE and ON
DELETE CASCADE. Thanks them one can automatically update and delete connection rows of all
tables of DB.

Example table “function” creation, using foreign key:

CREATE TABLE function(

ID INT(11) NOT NULL AUTO INCREMENT,

Name_function varchar(60),

ID model INT(11) NOT NULL,

PRIMARY KEY (ID),

FOREIGN KEY (ID_model) REFERENCES model(ID)

ON UPDATE CASCADE

ON DELETE CASCADE) ENGINE = InnoDB;

Thereby, DB structure development makes it possible to minimize data redundancy and to ensure
data integrity.

Conclusions

1. An approach was purposed to the conversion IDEF0-diagram, created in the business processes
design tool CA ERwin Process Modeler, to database by analysis of *. XML file. This enable to include
of business processes diagram data in IS as a structural part with subsequent distribution between de-
partments of company.

2. The developed database structure makes it possible to minimize data redundancy and to ensure
data integrity.

3. The realization of this approach will enable to transfer organization on new technology and orga-
nizational level and make it more competitive in modern economic conditions.

References

1. Samujlov K.E., Serebrennikova N.V., Chukarin A.V., Jarkina N.V. Osnovy formal'nyh metodov
opisanija biznes-processov: ucheb. posobie [Basic Foundation of Formal Methods of Business Processes
Description: Tutorial]. Moscow, RUDN, 2008. 130 p.

2. Kuljabov D.S., Korol'’kova A.V. Vvedenie v formal'nye metody opisanija biznes-processov:
ucheb. posobie [An Introduction to Formal Methods of Business Processes Description: Tutorial]. Mos-
cow, RUDN, 2008. 173 p.

3. Gorbachenko V.I., Ubiennyh G.F., Bobrysheva G.V. Sozdanie funkcional'noj modeli informa-
cionnoj sistemy s pomoshh'ju CASE-sredstva CA ERwin Process Modeler 7.3: ucheb. posobie [Func-
tional Model Creation of Information System by CASE-Tool CA ERwin Process Modeler 7.3]. Penza,
PGU, 2010. 66 p.

4. Orlov S.A. Programmnaja inzhenerija: uchebn. dlja vuzov. 5-e izdanie obnoviennoe i dopolnen-
noe. Standart tret'ego pokolenija [Software Engineering: Tutorial for Institutes of Higher Education.
The 5-th Updated and Supplemented Edition. Standard of the Third Generation]. St. Petersburg, Piter,
2016. 640 p.

Received 1 November 2016

158 Bulletin of the South Ural State University. Ser. Computer Technologies, Automatic Control, Radio Electronics.
2017, vol. 17, no. 1, pp. 153-159

Bakanrok A.A., BacmaHoe C.H. Paspabomka nodxo0a K KOHeepMupPoO8aHUIO
IDEF0-3uazpammbi @ 6a3y OaHHbIX

YOK 004.9 DOI: 10.14529/ctcr170118

PA3SPABOTKA NOAXOOA K KOHBEPTUPOBAHUIO
IDEFO-OUATPAMMBI B BA3Y OAHHbIX

A.A. Bakanok, C.H. bacmaHoe
Yparnbckul eocydapcmeeHHbIl yHugepcumem rymet coobweHus, 2. EkamepuHbypa

Paspabotan mogxon k kouBeptupoBanuto IDEF0-1uarpaMMel, cO30aHHON B CPECTBE MIPOCKTH-
poBanus GusHec-mporieccoB CA ERwin Process Modeler, B 6a3y maHHBIX IO CpeACTBaM aHalu3a
* XML doaiina s pemeHuns 3agaddl MOJEIHPOBAHHUS OM3HEC-TIPOLIECCOB OPTraHM3aLUKM B PaMKax
HHPOPMAMOHHON cucTeMbl. [Ipon3BeneH aHanu3 OCHOBHBIX TeroB *. XML ¢aiina ¢ mempto pacro-
3HaHMS UMEH U CBs3eH MeXay (YHKIMOHAIBHBIMH OJOKaMH, X JEKOMIO3UIMIMHU M MHTepdelic-
HBIMHU cBs3siMH. Ha ocHoBe aHanmza * XML ¢aiina paspaborana ctpykrypa BJl, B pamMkax koTopoit
BCE TaOJHIIBI CBA3aHbl OTHOLICHHEM «OJWH-KO-MHOTHUM)» MPY MOMOLIM BHEIIHEro Kitoya. [lomydeH-
HBIE B XOJ/I¢ MCCIIEIOBAaHMS PE3yIbTaThl OTPAXKAIOT aKTyalbHBIC 33/a4M, CTOSAIINE Hepes OpraHu3a-
LUSIMH, peau3alis KOTOPBIX MO3BOJIUT MEPEBECTU MPENNPHUITHE Ha HOBBIA TEXHOJOTHYECKHUIl U Op-
TaHU3alMOHHBII YPOBHU, U CHENaTh ero 0ojiee KOHKYPEHTOCIIOCOOHBIM B COBPEMEHHBIX YKOHOMUYe-
ckux ycnoBusax. Pabora BeimonHeHa no cnenuanbHoctr 05.13.01 — CuctemHbIit aHAW3, yIpaBicHUE
1 00paboTka nHpopMaIHH (TI0 OTPACIISIM).

Knouesvie cnosa: IDEF0-Ouacpamma, ungopmayuonnas cucmema, * XML ¢aiin, @yukyuo-
HanbHble OIOKU, UHmMepeliCHble CIPeKi.

Jumepamypa

1. Ocnosvl popmanvhbix Memooos onucanusi busHec-npoyeccos. yueb. nocooue / K.E. Camyiinos,
H.B. Cepebpennuxosa, A.B. Yyxapun, H.B. Apxuna. — M.: PY][H, 2008. — 130 c.

2. Kynabos, /[.C. Beedenue 6 popmanvhbvie memoobl onucanusi busnec-npoyeccos: yueb. nocooue /
.C. Kynabos, A.B. Koponvrosa. — M.: PYJ[H, 2008. — 173 c.

3. I'opbauenxo, B.U. Coz0anue GyHKYuOHATbHOU MOOEIU UHGOPMAYUOHHOU CUCEMbL ¢ HOMOWbIO
CASE-cpeocmea CA ERwin Process Modeler 7.3: yueb. nocooue / B.U. I'opbauenxo, I'.®D. Youennvix,
I'.B. Bobpwiwesa. — Ilenza: I1I'Y, 2010. — 66 c.

4. Opnos, C.A. Ilpoepammnas unscenepus: yueo. ons ¢yzo6 / C.A. Opnos. — 5-e u30. 061061, u 0on. —
ClIb.: Ilumep, 2016. — 640 c. — (Cmandapm mpemve20o noxKoieHus).

Baxamok AHapeil AJieKCaHAPOBHMY, KaH[. TEXH. HAyK, JOLEHT Ka(eapbl MEXaTPOHHUKH, Ypaib-
CKHUil rOCYyJapCTBEHHBI YHHUBEPCHUTET ITyTell coobuenus, r. ExatepunOypr; avakalyuk@yandex.ru.

BacmanoB Cepreii HukonaeBu4, acnupanTt kadeapsl MEXaTpOHUKH, Y PalbCKHH TOCYJapCTBEH-
HBIM YHUBEPCHUTET IyTel cooluieHus, r. ExatepunOypr; seregabasmanov(@rambler.ru.

Ilocmynuna ¢ pedaxyuio 1 noaopa 2016 2.

OBPA3ELl HUTUPOBAHUSI FOR CITATION

Vakalyuk, A.A. IDEFO0-Diagram into Database Vakalyuk A.A., Basmanov S.N. IDEF0-Diagram
Conversion Approach Development / A.A. Vakalyuk, into Database Conversion Approach Development.
S.N. Basmanov // Bectauk IOYpI'Y. Cepus «Kommb- Bulletin of the South Ural State University. Ser. Com-
IOTEpHBIC TEXHOJIOTHH, YIPABJICHHUE, PAIHOIICKTPOHU- puter Technologies, Automatic Control, Radio Elec-
ka». — 2017. — T. 17, Ne 1. — C. 153-159. DOI: tronics, 2017, vol. 17, no. 1, pp. 153-159. DOL
10.14529/ctcr170118 10.14529/ctcr170118
BecTHuk HOYplY. Cepusi «KomnbloTepHble TEXHOMOMMY, ynpasneHne, pagnoaneKTPoHUKay. 159

2017.T. 17, Ne 1. C. 153159

