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The models walking machine (WM) with one-axis body are considered. Their kinematic
schemes are providing the maximum carrying capacity and minimum actuators’ power consumption
for implementing the specified body movement. The solution of the dynamics equations (DE) for
one-axis WM (OWM) are obtained. These DE contain OWM-N kinematic, geometric and simulation
parameters, where N is any real number more than 5. The number of mathematical operations ob-
tained in DE are minimal. DE are presented in two forms: first, as a system of differential-algebraic
equations where differential equations contain the dynamic reaction at the support points, and alge-
braic equations describe the relations between the support feet and supporting plane. And secondly,
as a system of N second degree differential equations with the excluded relation reactions. Formula
of calculating dynamic reactions at the support points is as simple as possible. Formulas for calculat-
ing dynamic reactions at pivot points of such WM are derived. The authors also describe algorithms
for solving dynamics tasks arising while studying WM walking and give examples.

Keywords: walking machine, plane models, dynamics equations, first task of dynamics, dynamic
reactions, moving forces and force moments.

1. Introduction

Finding kinematic schemes and propellers providing the maximum carrying capacity (deadweight)
and minimum actuators’ power consumption for implementing the specified body movement is an ur-
gent task for WM [1]. Four- and six-legged WM have from 12 to 18 actuators (three actuators on each
leg) and provide high kinematic capabilities, maximum smoothness of body movements [1, 2].

If the WM is designed for transporting technological equipment or manipulators, its body does not
require to move smoothly. To implement discrete-continuous cycle walk — acceleration, steady motion,
deceleration providing a predetermined body movement — it does not need to have four or six universal
legs and several motion freedoms in the three-point state. It is enough to have, for example, two legs,
each of which has two feet and one actuator, and one support leg (crutch) with one foot and low-power
actuators [3, 4]. The kinematic capabilities of such WM are minimum. The WM like this has one motion
freedom while making a three-point step. We should expect that the minimum number of legs and actua-
tors of electromechanical WM, as well as the efficient walking control with power recuperation of actua-
tors in the deceleration cycle will provide a high specific carrying capacity (WM deadweight ratio) and
low specific power consumption. This paper continues the investigation described in articles [2, 4] and
contains the research results for such WMs.

The paper [2] shows WMs modeled with some linkwork (L) on a plane and proposes kinematic
analysis models of the walking process for a three-point WM with one, two and three motion freedoms.
The paper [4] proposes walking modeling and animation algorithms for such WMs. Specific examples
show techniques of WM visualization in statics and dynamics, approaches for manual and automatic
WM motion animation and describe simulation environment for manual walking control system.
The use of open distributed information technologies (SVG, CAB, JavaScript) for these purposes is also
described. MV C architecture is applied to build a simulation environment for manual walking control.

From the WMs considered in the papers [2, 4] we select WM with one body motion freedom.
We identify such WM as one-axis_and denote them OWM. OWM class can be divided into subclasses
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depending on the total number of units N. We denote the specific subclass as OWM-N. For example,
Fig. 1 show schemes of OWM-5, Fig. 2 — schemes OWM-6, Fig. 3 — schemes OWM-7, Fig. 4 — schemes
of OWM-8. These OWM hinges axes on the supporting plane (SP) are directed against the gravitation,
i.e. the actuators do not overcome these forces. If the feet mechanisms of such OWM have an irreversi-
ble gearbox and provide their reciprocating motion along the axes that are collinear to the actuators’
hinges axes, then the feet actuators do not work against the gravitation forces in the reference position.
These properties of the OWM schemes and the opportunity of using only one actuator (e.g., OWM-5

front axle actuator in Fig. 1a) provide low power consumption.
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Fig. 1. OWA with 5 units
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Fig. 2. OWA with 6 units
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Fig. 3. OWA with 7 units

a) b)
Fig. 4. OWA with 8 units

Fig. 5. OWA with contour units

The solution of the dynamics equations (DE) for OWM is published in the present paper. These DE
must contain OWM-N kinematic, geometric and simulation parameters, where N is any real number
more than 5. The number of mathematical operations obtained in DE shall be minimal. DE shall be pre-
sented in two forms: first, as a system of differential-algebraic equations where differential equations
contain the dynamic reaction at the support points, and algebraic equations describe the relations be-
tween the support feet and SP. And secondly, as a system of N second degree differential equations with
the excluded relation reactions. Formula of calculating dynamic reactions at the support points shall be
as simple as possible.

The result of these equations was done with new methods of deriving bodies system DE described
in the papers [3, 5-7]. It made possible to obtain DE with explicit options in a simple form that did not
allow further simplification of these equations. The subsystems masses, static and inertia moments of
complemented bodies introduced in the papers [3, 5—7] are constant inertial parameters.

In fact, DE and other design formulas proposed in this paper, apply to a larger set of L than de-
scribed in the paper title. There are many L of this set with contour units (elements) that form the struc-
ture shown in Fig. 5, where each contour unit can carry any tree-type L, i.e. every contour unit can be
a base for L with open branches. The contour units with serial number 3 is a body which has suspended
single-unit legs (Fig. 5 shows only supporting legs 4 and 5) and multi-unit legs (Fig. 5 shows only one
supporting two-unit leg). The hinges at points O, A and B connecting the SP with the end units (shins)

BecTHuk HOYplY. Cepus «<KomnbioTepHble TEXHONOrMK, ynpaBreHue, PaauoaneKkTPoHUKay. 67
2017.T. 17, Ne 2. C. 65-82



anaBneHMe B TeEXHUYECKNX CUcCTemMax

of legs model support feet. The other legs and their units are not shown in Fig. 5. But if any, they are
transferred to a new (target) support position on the SP. And portable legs can be suspended not only to
the body (unit 3), but also to any of the elements with serial number 1, 2, 4, 5. While walking, in each
position, the contour units must have the structure and numbers as in Fig. 5. For this purpose, the ele-
ments are renumbered in a new state of OWM.

We introduce the following notation for the moments of driving forces generated by the actuators in
the hinges of the leg units: My is the moment of force about the pivot pin [2] connecting the body (unit

3 in Fig. 5) and the thigh (unit 2 in Fig. 5) of a two-unit support leg; M, is the moment of force about

the pivot pin connecting the thigh and the shin (unit 1 in Fig. 5) of a two-unit support leg; M, is
the moment of force about the pivot pin connecting the body and the shin of the supporting single-unit
leg numbered 4; M; is the moment of force about the pivot pin connecting the body and the shin of

the supporting single-unit leg numbered 5. If N> 5 (N is the number of OWM units), then M; is the mo-

ment of force about the pivot pin connecting the removable unit numbered i with the preceding unit (to-
wards the body).

The common features for all OWM are the following. First, they have five contour units (elements).
Secondly, two contour units (units 4 and 5), forming the hinges with the SP, have one common base
(body). These hinges simulate the supporting OWM feet at points A and B. A three-point OWM can be
considered as L with two branches closed at points A and B [3]. The first unit (in order) is the element
forming the hinge with SP at the support point O. The other units (if any) are portable.

2. OWM DE with relations at support points A and B
We denote as j.i a formula or a statement (i) in the paper (j) from the references.
Statement 1. OWM DE can be represented in the following vector-matrix form,

H-i+h-¢>*-G-S-M=M,_, (1)
where the upper left blocks of 5x5 matrices H, h and S are represented as
Ji Hy H; Hy Hy 0 —hy —hy —hy -hy
Hy J, H; Hy Hy hy 0 —h3; -h,, —hs
H,={H; Hsp J3 Hy Hs |, ho={hy hy 0 ~hy —hs
Hy Hy Hg Ty 0 hy hy  hy O 0
H;; Hs, Hs; O Js hs; hs;  hs; 0 0
1 -1 0 0 O
01 -10 O
S,=|0 0 1 -1 -1
00 0 1 O

00 0 0 1

The column vector of the moments of driving forces in the hinges is M = (0, -M,, -My, M4, Ms, ...)T,
where the driving moments of the portable leg units (if any) are in place of dots of N-dimensional
column vector M, ie. Mg, M, M;, if N>5. Non-zero elements of the column vector

M, =(M,;, M, M3, My, M5, )T are calculated by the following formulas

rl»
M, =Ry (v, +yp)ep —Ra(Xy +Xp)851, My =R3(y, +yp)ep —Ry(X, +X4)sp 5
M5 =Ry (¥aCp3 = Xa8p3) T Rs(¥pCy5 = Xp843) » My =R, (¥,€p4 —X,5p4)
M5 =Ry, (ypCps = XpSps) -

If a three-point OWM has portable units, i.e. if N > 5, there are zeros in place of dots of the N-dimensional
column vector. The following geometrical relations are imposed on the rotation angles of the contour units

RZCBI + R3Cﬁ2 + RSCY3 + Rbc[iS = BX’ RZSB1 + R3SB2 + RSS"{3 + RbSﬁS = By,
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where R, is the distance from the pivot pin of the fourth unit to the reference point A; Ry, is the distance
from the pivot pin of the fifth unit to the reference point B; A,, A, are the coordinates of the reference
point A in the coordinate system (CS) Oij, rigidly connected with SP; B,, B, are the coordinates of refe-
rence points B in the CS Oij; x,, y, are the projections of reaction force at the reference point A on the axis
0Oi, Oj; xp, yb are the projections of the reaction force at the reference point B on the axis Oi, Oj;
spi = sin(B; + a;), c; = cos(B; +a;), a; is the angle from the axis Oi to the axis Oj; directed to mass cen-

ter of the i-th augmented WM unit [3]; B; is the angle from axis Oji; to axis Ojejq for i=1,2,3
(e;= 0i10;/R)), B4 is the angle from axis O,i4 to axis O4A, Bs is the angle from axis Osis to axis OsB;
S,3 =sin(y +a3), ¢35 =cos(y+as;), v is the angle from axis Osi; to axis Oses. The other notations and

values are described in statement 3.7, in particular, the Hy; elements of matrix H = {H,;},x are calcu-
lated according to the formula (3.21), the elements hy; of matrix h = {h;}\, are calculated according to

the formula (3.22), the elements S,; of matrix S={S;;}\,n are calculated according to the formula

(3.23), G=(Gy, G,, G, .., Gy ) .

Proof. We can use the following algorithm to write L DE [3]:

1. We select one of the units forming a hinge with the SP as the first unit in order. We select
the shin of a two-unit leg.

2. All units are numbered 2, 3, ..., N consistently. We use the numbers as in Fig. 5.

3. We break mentally the relations (hinges) at the support points A and B and replace them with
the reaction forces F.4 =F, and F,5 = F,, where 4 and 5 are the numbers of units that form broken rela-
tions with SP.

According to (3.21), (3.22), (3.23) we get the blocks H,, h,, S, of matrices H, h, S for contour
OWM units. Really, the only zero element located under diagonal to blocks H, and h, is situated at
the intersection of the 5th row and 4th column, as 4 ¢ {1...5} [3]. In the matrix S the element S;5s =0
because the base of the 5th level is the third unit, not the fourth. The elements Ss;4 = S35 =-1, as the 3rd
unit is the base for the 4th and 5th units, etc. 1

The element M of N-dimensional column vector M;=0 since the first contour level (see Fig. 5)
forms a hinge with the SP. The driving forces of the actuator don’t work in this hinge. The element
M, = -M, since M, is the moment applied to the shin of a two-unit leg about a thigh of this leg, and ac-
cording to the definition [3] M, is the moment applied to the 2nd unit of the L (to the thigh of a two-unit
OWM leg) about 1-st unit of L (shin of a two-unit OWM leg). The element M; = —M,, since M, is the mo-
ment applied to the thigh of a two-unit leg about the OWM body, and according to the definition [3] M;
is the moment applied to the 3rd unit of L (to the OWM body) about the 2nd unit of L (OWM thigh).

By the definition [3] My is the moment of force acting on the k-th unit, and is caused by the reac-
tion forces of broken connections and M, =L,k -p, xF, + ZRik -e; xz F,;, where k is the unit vec-

ik i
tor of normal to AB; F, is the reaction forces applied to the k-th unit (if the k-th unit is not closed on SP,
then F,x = 0); Ly is the distance from the pivot point of the k-th unit to the point of force application Fy;
Px is an ort directed from point Oy to the point of force application Fx = xui + yuj according to (3.25).
According to e; =cg_ji+sgj, Px=Cpd+spj and K-py xFy =kxpy -Fy, kxpyg =cgj—sgd,

kxe; =cpi_j—sp i , we get

My, = Ly (Cpid = Spied) - (Kl + ¥ ) + DR D (S — i) - (X i + y ) =

ik i
=Ly (YrkCpr — XiSpx) + ZRi Z(Cﬁi—IYrj —Sgi_1Xy) -
ik g

For OWM Fri = 0 (1 = 1, 29 3)9 Fl‘4 = Fa: FrS = Fb: L4 = Ra, LS = Rb, X = xa: Yr4 = Ya, X5 = Xb, YrS = Yb-
Hence

M =R, (Cp1¥a =Sp1Xa +Cp1Yp —SpiXp) > My =R3(Cpyy, —SpaX, +Cpyp —8p2Xp) s

Mp; =Ry (Cp3Ya —8p3Xa) + Rs(c 3y =805%p) s My =R (¥,0p4 —Xu8p4) » Mys = Ry (y,Cp5 — XpSps) -
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Bond equations (2) are a coordinate form of demonstrable vector equations
002 + 0203 + 0304 + O4A = OA, 002 + 0203 + 0305 + 05B = OB.

The statement is proved.

Please pay attention to the following observations before using statement 1.

Note 1. Statement 1 allows to record DE of OWM in the form containing the relation response only
in two reference points A and B. The reference point O is represented by a hinge connecting the shin of
a two-unit leg with SP. In this case the number of DE and geometric relations equations are minimal.
The analytical work is simplified for the relationships minimization. If there is no problem of calculating
responses in the reference point O, for example, if OWM moves on a plane and a two-unit leg is
the supporting one (crutch) [3], i.e. the vector of dynamic response at the point O is perpendicular to SP,
so this approach is optimal as a minimization of computational work.

Note 2. Another approach to derive DE of OWM has a relation with the corollary 6.3 which
presents the L DE on the free base. OWM body is considered to be free. The number of DE will increase
by two and they will contain the dynamic response at three points (O, A and B). The number of geome-
tric relations will also increase by two. The formulas to calculate the dynamic responses in all control
points can be obtained from these equations. Then they can be used to exclude reactions from OWM
DE. Both approaches lead to the same form of OWM DE with the excluded relations reactions. This fact
can be used to check and control the proper formulation and numerical experiments.

Note 3. The number of equations in (1), (2) is N + 4. Hence, we get N rotation angles of the units
a;(t) (i=1,...,N) and four projections x,(t), y,(t), x,(t), y,(t) of reactions at the support points A
and B from the system of equations (1), (2) in a given initial state of OWM, for example, with the given
values of elements of N-dimensional column vectors o(0), &(0) and with the given laws of changing

the moments of driving forces in the hinges of the leg. To do this, first we can use bond equations (2) as
the first given integrals of the differential equations (1). These integrals allow to exclude from (1) four
of the required rotation angle of contour units and their derivatives. Then we can deduce X., Ya, Xv, Vb
from the first four equations of the system (1) and substitute them in the fifth equation. This equation
together with the others (if N > 5) will not contain dynamic reactions and can be used to calculate rota-
tion angles of the portable units (if N > 5) and the angle of rotation of one contour unit. First we can use
the system (1) to exclude bond reactions. We will do it in the next section, i.e. we will use DE (1)
for deriving formulas of calculating the dynamics reactions at the support points A, B and the showing
the OWM DE with excluded bond reactions.

Example 1. We denote OWM-5 in Fig. 1 as OWM-5a. We write DE (1) and relation equations (2)
for OWM-5a. In this and the following examples we assume that the mass centers of single-unit legs

are on the axes of their rotation, the lengths of these legs are equal (R, =R, =R ) for this OWM-5a.
The body mass center is at the point of suspension of a two-unit leg. The axis Osi; is directed to
the point O4. R, =R5=L is equal a half of the body length, R, =a is the shin length, Ry =b is
the thigh length of a two-unit leg. The thigh mass center is on axis 0,0;. The shin mass center is on
axis 0,0,. It is true that B; =0 for all i, y==n and d;=d,;=ds=0, G;=G,=G5=0 for this
OWM-5a. Non-zero elements of the matrices H and h according to (3.21), (3.22) are calculated by
the formulas H,; = m, d, R;,,cos(e;,.iy ), hy; =m,d; R, sin(e;,.iy ) . Therefore, Hy; =H,; =Hs; =0 and
h;; =h, =hs; =0. Under the definition (e,,i,)=0a, —a;, i.e. Hy; =d-cos(a, —0,), h,y; =d-sin(a, —o,)
where d =m,d,R,=m,d,a. We substitute the values in the matrices and the column vectors of DE (1)

and perform matrix operations. Then we get the desired system of five nonlinear differential equations
of 2nd degree in the following form

J,o, +H,,0, —hZIdg -G, -M, =a(y, +yp)coso, —a(x, +X)sina,,
Hy,éiy + 1,6, +hy 67 — Gy + M, =M, =b(y, +y,)cosa, —b(x, +x;)sina,,
J0; + My +M, + My =L(y, —y,)cosa; —L(x, —X)sinays,

Jy04 =M, =R(y, coso, —x,sina,), Js0s —Ms=R(y,cosas—x,sinas).
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It is obviously that relation equations (2) in the accepted notation for OWM-5a have the form
asino, + bsina, + Lsino; + Rsina, = A

acosa, + bcosa, + Lcosa; +Rcosa, = A, -
acosa, + bcosa, —Lcosay + Reosas =B, asina, + bsina, — Lsina; + Rsinos =B,

3. Formula of calculating dynamic reactions at the support points

For walking it is necessary for the dynamic reactions at the support points to get into the friction
cones [1]. Otherwise, the feet in the support points will be out of the SP. The contact with the friction
cones can be achieved due to proper distribution of driving force moments at hinges of the leg units.

Statement 2. For OWM the projection of force reactions at the support points A and B are calculated
by the formulas

Xy = (cpsD +cpsDy /R, Vsgsy, ¥a =(8paD +55D4 /R, )/ss4 3)

Xp = (CBZDI /R, _Csz/Rs)/SBm ~Xas Yp T (SBZDI/RZ _SﬁlDz/R3)/5ﬁ21 ~Ya> 4)
where D; is the left part of the i-th equation of system (1),

D =(8ps2D1 /Ry =8351D5/R3)/8g51 + Ds/Ry, s =sin(B +o; =B — ;) .

Proof. The proof contains an algorithm for deducing formulas of calculating the desired reactions.
This algorithm is based on solving a system of 4 linear algebraic equations that are the 1st, 2nd, 4th and
5th of DE (1) with quantities X,, Ya, Xs, Yo. From the first two equations of system (1) we will get the fol-
lowing system of linear algebraic equations and its determinant A, to calculate X, + X, y, +}

=851 (X, +Xp) +C51 (¥, +¥p) =Di/R5,
—Spp (X, +Xp) + (Y, +¥p) =D5/R3,

By using sp, =A; =sin(B, +a, —B; —0;) and the formula of sine of two numbers difference, we get

- SBZ CBz

D,/R, Cp
y 4y =| M PR — (542D, /R, — 553, D5 /R 3 )51
at Yo sp DR, 1 = 8D/ Ry =850 /K3)/8p5

By using D, = (cga Dy /Ry =Dy /R3)/sgy1, Dy = (s5,D1 /R, — 841D, /R3)/sp,; We get X, +X, = D,,
Ya+ ¥y =Dy

From the fifth equation of system (1) will get y,cgs —xy,855 =Ds/R,. We put expressions
Xy, =Dy =X, , y, =D, —y, instead of Xy, y». Then we get the following equation

XaSps — ¥aCps = Dy8ps —Dycps + Ds/Ry,. ®))

Taking into account Dy, Dy and sg; the right part of equation (5) can be represented in the form

D =[(cg, Dy /R, —cg1Dy/R3)8g5 = (85,01 /R —54D,5/R3)ep5 /8551 + Ds /Ry, =

=[D; (spsCpa — CpsSp2 R, =D, (8ps5cp; —CpsSp1V/R3 /8551 +Ds /Ry, =

= (D852 /R5 = Dysgs 1 /R3)/spp, + Ds/Ry,. (6)

By using the fourth equation of system (1) we get the following system of linear algebraic equations
to calculate x,, y,

~SpaXy TCpaYa = D,/R,, %)
SBSXa - Cﬁ5ya = D
The determinant of this system is A, =$g,Cps — CpySps = —Spsa - SO
Xa == /( - 5354) = s
D —Cps Sps4
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(=Spsa) = )
Sgs4
These expressions prove the validity of formulas (3), (4) according to notations D, Dy, Dy and expres-

sions X, =D, —X,, y, =D, —y, . The statement is proved.

Ya =

Sps D

From the formulas (1), (3), (4) it is obvious that to calculate the dynamic reactions at the support
points A and B we must know the rotation angle, angular velocity and acceleration of OWM units and
the driving forces moment in the hinges of these units. This is not a limitation of the obtained formulas
but a consequence of the mechanics principles. The restrictions of the practical use of statement 2 are
under consideration in the following notes.

Note 4. The case sgs, =0 is special because it doesn’t let us use the formula (3) for the calculation

Xa Ya. It can occur at any point of time while WM is walking by different gaits, for example, O4A|/OsB.
Calculations are performed by special algorithms at these times. This special case may occur while mak-
ing a step discussed in sections 4 and 5 of this article.

Note 5. The case sg,; =0 is special because it doesn’t help to use the formula (4) for the computa-
tion of x, and y,. To exclude this case from the consideration we assume that the first two units are not
aligned along a single line in the three-point state, i.e. the two-unit leg is always in the configuration of
the knee forward or backward in the reference state.

Statement 3. For OWM a projection on the axis Ok (k is the normal to SP) of force reactions in
the support points A and B are calculated by the formulas

z, = (B,g, —Byg J(A,B, —A,B,), z, =(A,g, —A,g)(AB, —A,B,), (8)

N N N N

where g, = gcosBZmidisinai + Z(Aidi —Bidiz) , 8. = gcosBZmidicosai + Z(Bidi +Aidiz) R

i=l i=l i=l i=l

A, =i-l;;'k, B,=j-1;; 'k, [; =1, —m;00; —Zij;' , my is the mass of the i-th augmented unit,
ji

d; is the center of mass of the i-th augmented unit, B is the angle of SP to the horizon, values I,, m;,

m{ are defined in article [6].
Proof. The moment of force M; of the reference point O is calculated by the formula

N
M, = Z:(Ili g +0; x1j; - 0; + 0,0, - I“)—mf xg— Ry, xF,4, —R;5 xF,5 according to (6.26). This mo-
i=1

N N
ment is acting on the shin of a two-unit leg from the side of SP. We will get m] = Zmi = Zmidiii
i=1 i=1
according to formulas (6.21), (6.2) for OWM. The contact of this OWM shin with the SP is a point, i.e.
i-M; =0, j-M; = 0. The rotation of all OWM units is parallel with SP , i.e. ®; =Kk, & =a;k. And by

processing step there are Ry = OA, R;s=O0B, F,,=F,, F;s=F),. Therefore,

N
0=i-M, =) (&I -k +ai-kxI;-k—md;i-i;xg)~i-OAxF, ~i-OBxF,,

i=1

O:j-M,=§:(dij-1“-k+a3j-kx1“-k—midij-iixg)-j.OAxFa—j-OBbu.

After elemelllzlry calculations

T-OAxFazix(AXi+ij)~Fa=Ayk-Fa=Ayza, i-OBxF, =Bz, i-kxI; k==j-I; -k,
j-OBxF, =jx(B,i+Bj)-F, =-B,k-F, =-B,z,, j-OAxF,=-A,z,, j-kxI; k=i[;k,
i-iixgzixii-gzk-gsinai, j-ijxg=jxi;-g=k-gsin(o; —m/2)=-k-gcoso;, k-g=—gcosf

we get the following system of equations relative to z,, z.
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Ayz, +Byzy =g, g = i(Aidi ~-Ba} + gmidisinaicosB) ,
1;1
Az, +Bz,=¢g., g = Z:(Bidi +Ai(3ci2 +gmidicosaicosB) .
i=1
It is obvious that formula (8) is the solution of this system. The expression for I;; is obtained from
(6.24) taking into account Ry; =00, i-E-k =j-E-k =0. The statement is proved.
Corollary 1. In the three-point OWM or in the case of the equalities I;7 = 1= 0 for all i values z,,

z, are calculated according to the formulas (8). In these formulas there are g =mgr, cosf,
g, =mgr, cosf, where m is the OWM mass, r,, 1y are projections of the vector OC on the axis Oi, Oj;
C is the OWM mass centre.

Proof. If OWM is stopped in the three-point state, then o; =a; =0 for all i. Therefore,

N N
g, =gmjcosB, g, =gmJcosp, where m} = > m;d;sina; , my = m;d;cosa; .
i1 i1
XZ
i »

If the elements I} of the matrix I;; are zero then A;=B;=0 and g, =gm}cosp,
g. = gmJcosP . According to (6.21) myj is the static moment of the first subsystem relative to the point
0=0,. By definition [6] the system of bodies and its first subsystem are the same. In our case mj is
the static moment of OWM for the point O. Therefore m} =i-mj is the projection of mj on the axis Oi;
mY = j-myj is the projection of m{ on the axis Oj; r, =m/m, r, =m?/m. The corollary is proved.
Note 6. The equations Az, + B z, =m gr.cosp, Az, + B,z, =m gr,cosp can be obtained from

the conditions of static equilibrium of a rigid body. This rigid body is supported at three points on
the plane located at angle B to the horizon. So in case of a three-point motionless state of OWM the co-
rollar 1 can be proved using the equations of static equilibrium of a rigid body.
To calculate the dynamic response of OWM to the base point O we can use the following statement.
Statement 4. For OWM the projection of the reaction force at the reference point O on the axis OK,
Oi, Oj are calculated by the formulas z, = mgcos(B) — z, — z,

N N
Xo Z_Zmidi(disi +d1201)—mi'g—xa “Xp> Yo zzmidi(dici _dizsi)_mj'g_Ya Yoo
i=1 i=1
where s; =sina;, ¢; =cosa; .
Proof. According the formulas (7.1), (7.3) It is obvious that the reaction force of OWM at the sup-
N
port point O is calculated by the formula F, = Z:midi (('ii §i — o, ) —-m,g - F, — K, . Therefore, its projec-
i=1

tions X, Yo, Zo on the axis Oi, Oj, Ok are calculated by the formulas

N

x, =i-F, =Zmidi(dii-ji —dfi-ii)—mli-g—xa — Xy,
i=1
X 2

Yo =i-F, =Y myd; (- 4 — 673 ) - myj-g - v, ~ vy
i=1

N
i=l1

Hence, according to the equalities k-i; =k - j; =0, k-g=—gcosp, m; =m, i-i; =j- J; =coso; =¢;,

i-j; =cos(a; +m/2) = —sina; = —s;

1°

j-i; =cos(a; —m/2) =sina; =s; we will get the desired formula.

The statement is proved.

BecTHuk HOYplY. Cepus «<KomnbioTepHble TEXHONOrMK, ynpaBreHue, PaauoaneKkTPoHUKay. 73
2017.T. 17, Ne 2. C. 65-82



anaBneHMe B TeEXHUYECKNX CUcCTemMax

Example 2. We will write formulas of the dynamic reactions at the support points A, B, O for
OWM-5A in case of sg, =sin(as —o,) =0, s, =sin(a, —0,) =0, [ =17 =0 for all i. According to
the formula (3) we will receive

X, = (Dcosa, +D,cosas/R)/ss,, y, =(Dsina, + D, sinos/R)/ss,,

Xy, = (Djcosa,/a—D,cos0,/b)/s,; —X,, Yy, =(D;sina,/a—D,sina,;/b)/s,; —y,,
where D =[D,sin(as —a,)/a—D,sin(os —a,)/b]/s,; + Ds/R . The left part of DE (1) has been obtai-
ned in example 1: Dy =Jiéi, + Hyi, —hy 63 =Gy =M, Dy =Hydi, + 1,8, +hyéf -Gy +M, —M,,

D, =J,0, —M,, Ds=1Js05 —M;. The values z,, z, are calculated by the formulas (8) where accor-

2 2
ding to the corollary 1 g = gcosBZmidisinoci , 8= gcosBZmidicosmi . According to statement 4
i=1 i=1

2 2
Xo :_zmidi (disi +dizci)—mi'g—xa —Xps Yo zzmidi(&ici _dizsi)_mj'g_Ya ~Yb» Z,=MmgcosPp-z, -z,.
i=l i=l

The values i-g , j-g are defined by the axes orientation Oi, Oj in inclined SP. If SP is horizontal (f = 0)
theni-g=j-g=0.

4. OWM DE with excluded relation reactions

The third equation of system (1) has not been used in the proof of statement 2. If we substitute
the formulas (3) and (4) we get next statement.

Statement 5. The DE of OWM third unit with the excluded relation reactions has the form
where

_ bgspsy —Rss,3, b. = Rs8,31 —bsps b — R Sps3 —Rss,s3 b = RSpa3 —RsSp43
- s 2 - H 4 - 5 - -

1

> S

Rospoy R3spy; RSpsa Sps4

Proof: The third equation of system (1) has the form Dy =R, (y,c55 —X,8p3) + Rs5(ypCy3 —XpS,3) -
Using (4), we will exclude x, y;, from it. Then we get

D3 =Rsc,5(85,D1/R; —84D5/R3 )55 —Rss,5(cg, Dy /R, — 5Dy /R3) 855, +

+(Rs8,3 —Rysp3)(cgsD +cpsDy /R, )/sgsy + (Rycps —Rse,3)(spaD +845D4 /R, )/8psy -
Using (3), we will exclude x,, y, from it. Then we get

D3 ==R5[D (5565 —€3852)/Ry =Dy (S,5¢51 = €385 /R 3 1/spyy +

+(Rs8,5 = Rysp3)(cgyD +cpsDy /R, )/sgsy + (Rycps = Rse,3)(spaD +8p5D4 /R, )/8ps4 -
We will use the notation s,5; =sin(ay +v—0a; —B;) =s,56 — ¢,385 (1= 1,2) and do the elementary trans-
formations. Then we get

D3 =R5(D,8,3/R5 =Dy8,3, /R, )/s8py; + {[ =R (8p4Cy53 = Cpasy3) + Ry (8p4Cp3 — Cpasp3)ID +

+[ = R5(8psCy3 = CpsSy3) + Ry (Spscps — CpsSp3)ID4 /R, }spsy-
Therefore,

D3 =Ry5(Dys,31/R; = Dy8y37 /R, )/spy; +[(Rysps; — Rs8,53)D4 /Ry +(Ryspas —R58,43)D)/spsy -

We will select the D; multipliers and substitute the expression (6) instead of D. Then we get

R:s R:s
D, =| —2 |p, +| —*! D2+b4D4+bs[(Dls552/R2—DszSI/R3)/sB21+D5mb],
R,spy R38g)

where by = (Ry8ps3 —Rs8,53)/(R,8p54) 5 by = (Ryspa3 — Rss,43)/8554 .- We will cast similar terms of Dy,

D,. Then we get the formula (9). The statement is proved.
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Statement 6. OWM-5 DE in the three-point state with the excluded relation reactions can be
represented as the following nonlinear ordinary differential equation of the second degree with respect to
the generalized coordinate (GC) q

H(q)§ +h(@)q” +G(q) = (b —by )M, +(1+b,)M;, +(1+by )My +(1+b, /R, )Ms. (10)
Where H, h, and G are given q functions and are calculated by the formulas
5 5 5
H=) bH,, h=> bh, G=—2 bGy, Gy =gmdg-jisinf, (11)
k=1 k=1 k=1
k-1 k-1 5 5
Hy = Y Hyfy +Jfy +> Hyfyi o hy = Z(Hklf“. Fhta )+ I+ X (Hfd —hy £ ), (12)
i i>k i>k

where by =—1; bs =b,/R; ; the absolute rotation angles of units are associated with GC q by the de-
pendencies o; = f;(q) and f; =df;(q)/dq=da;/dq, fc?i =d*f, (q) /dq* =d?0;/dq” . For example, the ro-

tation angle of one contour unit may be used as q.

Proof- The left part of the k-th DE of the system (1) has the form [3]:
k-1

Dk=Z(Hkidi+hkidf)+Jkdk+Z}(Hik'i by ) -Gy - Mk+ZM (13)
1>

1
For contour units of relation equations (2) or as a result of klnematlc analysis we will receive
a, =1 (q) where q is GC of OWM-5 is the rotation angle of the dog [2], for example. After double dif-

ferencing of functions a; =f;(q) of t we will get &; =f;q, & =f,d+f} 14>, We will substitute these

expressions in (13). Then taking into account the notation (12), we will get
k-1

Dy = )| Hi (Fy+ 207 )+ hfaa” |+ 3y (i + 0507 ) + 20| o (£ + £ )~ hyefa” |-
i i>k

k-1

ik i>k ik

k-1
{Z(Hklf‘l Fhyta )+ I E + 0 (Hyfd - )}q2 =H§+hq® ~ G M, + > M,
i i>k i,k

5

We will substitute the found expression for Dy into the formula (9) that can be written as Zkak =0,
k=1

where by =—1, by =b /Ry . Then we will get

5 5
Zkak zzbk [Hkq+hkq2 -Gy - My +ZMiJ=

k=l k=l ik
5 ) 5 5 5
k=1 k=1 k=1 k=1 ik

Hence, taking into account the notations (11), we will get DE (9) in the form H§+hg? + G =M where
M=b,;(M; =M;)+b,(M; =M;3) = (M; =M, —M;) +b M, +bM;/Ry,.
Taking into account that M; = 0, M, = -M,, M3 = -M,, we will get
M=bM, +b,(M, -M,)+M, +M, + M5 +b,M, +bMs/R, .
After casting similar terms of M,, My, M4, Ms we will get the reqired form (10) of OWM-5 DE.
The statement is proved.
Example 3. We write DE for OWM-5A in the case ss; =sin(os —o,)#0, s, =sin(a, —a,;)#0.

According to statement 6 for OWM-5A we will get the required DE as a form (10) where according to
statement 5 we have
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b, =[Lsin(a; — a, )+ bgsin(os —a,)]/as,;, b, =[—Lsin(a; —0a,)—bgsin(as —a,)]/bs,;,
b, =2Lsin(as —a3)/Rss,, by =2Lsin(o, —03)/854.
Using the formulas (12) we will have

Hy =g +Hy fgp, Hy =Hy fgy + 1,6,

2 2
Hk = kaqk , hk =ka§k, k= 3, 4, 5.
Using the formulas (11) we will have

G=-b,G, =b,G,, G, =gmd;g-jsinf, G, =gm,d,g-jpsinf.

5. OWM DE for the step forward

If the OWM has the equal lengths of single-unit legs (R,=R;), and while taking a step the absolute
rotation angles of simple legs are equal (O4A|/OsB), then the body (the 3rd unit) of OWM makes a trans-
lational displacement, i.e. o(t) =const. Therefore, we will name the executed step as step forward (SF).
It is easy to prove that R, = Ry, is necessary for the implementation of SF.

According to note 4 for SF the DE (9) or (10) and formula (3) cannot be used. To study SF we can
use statement 7.

Statement 7. If OWM has R, =R, =R and by taking a step we have O4A||OsB then DE of its
simple-unit leg is represented as

Disgap /Ry =Dyspyy /R5 +(Dy + Ds)sgy /R =0. (14)

Proof. If there are O4A[|OsB then sg, =55, cpq = cps and after summing the equations of system (7)
we get x,(Sgs —Sps) + ¥, (Cps —Cps) =Dy /R, + D=0. We will substitute the expression (6) instead of D.
Then we will get (sgs,D /R, —sg5:D,/R3)/s,; + Dy/R, +Ds/Ry =0. Taking into account R =R, =R,
and spy, =spsy, Spa; =Sps; We will get the formula (14). The statement is proved.

If we consider OWM-5 then the equations (9) or (14) (for SF) are the only DE with excluded rela-
tion reactions. If N > 5 then the portable units must be added to DE (9) or (14), namely, we need to add
equation 6 of the system (1) for OWM-6, we need to add the equation 6 and 7 of the system (1) for
OWM-7, we need to add the equation 6, 7 and 8 of the system (1) for OWM-8. All of the added equa-
tions do not have dynamic reactions at the support points.

To study the dynamics of OWM-5 by taking a SF it can be used corollary 2.

Corollary 2. SF DE of OWM-5 can be represented as the following nonlinear differential equation
of 2nd degree about the absolute angle q of the single-unit leg

H(@)d +h(@)q” +G(@) = (b —by )M, +b, M, +by (M, +Ms). (15)
where b =s,/R,, by ==s /Ry, by =s5,/R, s, =sin(q—a,), s, =sin(q-0,).

Proof. The left part of DE (15) is proved on the basis of the DE (14) and is similar to the proof
of statement 6. We will take the components ZMi —M, for Dy in (14) from (13) and transfer them to

ik

the right side of DE (14). Then DE (14) has the following form

H(@)§ +h(@)d” +G(q) = =842 (M5 = M; VR, + 54 (M3 =My /R =55, (= My =M3)/R .
If we use sgy; =s,; and take into account M; =0, M, =-M,, M3 =-M, then we will get DE (15) from
the last equation. The corollary is proved.

Corollary 3. SF ED of OWM-5A can be represented as

. 1dl .,
Jq+5aq +G =(fg —f2)M, + .M, + M, + Mg, (16)

where  J=T,+J5+1f5 + 1,05 +2df f o0y, d=mydya, G=-f,G, ~f,G,, f,=Rsy,/as,,

fo = —Rsg /bsy;, ¢y =cos(a, —0a;), s, =sin(a, —0,), a is the thigh length, b is the shin length of

a two-unit leg, q is the absolute rotation angle of single-unit legs.
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Proof. There are a3 =const, o, =as=q for SF. Hence, f; = f =0, f,=f;s=1, £l o _fc?S =0
and H; =h; =0, H, =J,, hy =0 for k =4, 5. Therefore, by using the data and results of examples 1, 3
according to the formulas (11), we will get G =-b,G, -b,G,,

H=b,H, +b,H, +b,J, +bsls =b (Jfy, +Hy f, )+ by (Hy fyy +T505 )+ byl +bsls, (17)

h=bjh, +b,hy =by (3£ +Hy fh —hy £2) +by (Hy e +hy £ +1,f), (18)
where by =s,/a, b, = —sql/b , by =bs=s,;/R, R, =a is the shin length, R; =b is the thigh length of
two-unit legs.

From the system (2) for OWM-5A we will get

ac +bc, =—Rey, ¢4 =cos(q), sy =sin(q), h=0D,
{as1 +bs; =h—-Rs_, ¢; =cos(e;), s;=sin(a).

(19)

For deducing the calculation formulas f;; (i= 1, 2) we will find q derivative of equations of system (19).
Then we get the system of linear equations for fy;, fy
, and its determinant A = ab(s,c, —¢;s,) =—abs,;. (20)

Therefore, the solution of this system

fql _ —Rs, bs, _ Rb(szcq —czsq) _ —Rsin(q—a,) _ Rs, :h ’
—Re, be, —abs,, —as,; as,; by

£, - as; —Rsg _ Ra(s,c; —cgs)) _ Rsin(q —a,) _ —Rs, :b_z.
ac; —Re, —abs,, —bs,, bs,, by

We will divide DE (15) and b,. Then the right side becomes the right side of equation (16), the for-
mula for calculating G will take the required form, and the coefficient with ¢ will take the form

J=Hby = (3£, +Hy )+ £ (Hy fy) +Jofy )+ I, +J5 according to (17). The last form will be
equal to the required form due to H,, =d-cos(a, —a;). We will make a derivative J in q. Then taking
into account dH,,/dq =—d-sin(a, —a;)-d(a, —0;)/dq =—h,, (f, —f;;) we will get

dJ/dq = f(?l (Jlfql +Hy £, ) +1 (Jlfc?l —h,, (fq2 ql) @™ H21 ) +

(2J +2H21fq 2h21fq2)+fq2(2H21fq +2h21fql £20,8%).

From (18) we get h/b, = (J |+ H21 h21fq2) +1, (H21fq + h21fql + szc?z) , that proves the equality
h 1d

—=—— The corollary is proved.
b, 2dq P

Note 7. We can represent the left part of DE (10) in the form Hq + %i—qu + G as a consequence of

statement 1 and 6. For single-moved mechanical systems the equality H{ +hg? =Hq+ld—Hq2, 1.e

:%d—H, is well-known [8]. The corollary 3 is proved to check the correctness of the obtained

dq
formulas.
According to note 4 it is impossible to calculate values X,, y, by the formulas (3) for SF (o5 =const ).
We can use statement 8.
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Statement 8. The values X,, y, for SF (a5 = const ) can be calculated by the formulas

Xy =(AqCps —CpDy/R)/(cpepy +Cpsps) s ¥, =(Agsps +53D4/R)/(Cheps +CpSps) 5 (21)
where A =Dy +[D(s,cp —¢,85)/R, + D, (c 851 =5, )/R3 Vspy

s, =Rgsin(y+03), ¢, =Rscos(y+a3), sg=s, —Rysin(B; +a3), cg=Rycos(B;+a3)—c,.

Proof. The third equation of system (1) was not used to derive SF DE. This equation has the form
R, (¥a€p3 —X,853) + Rs(ypCy3 — Xp8,3) = Dy . We substitute x, =D, —x,, y, =D, —y, at this equation
and we will get

(Rssy3 = Rysps)x, +(Rycps —Rs)5)y, = D3 +R5(Dys 3 —Dycys).

We use the notation s, =Rss,5, ¢, =Rsc,5, s =5, —Rys3, ¢ =Rycp3 —c, . Then we will get the fol-
lowing system of two linear equations to calculate x,, y, together with the fourth equation of system (1)

SgX, +CgY, =D3+s8,D, —c, Dy =A,,

{—S[MXa +Cpsy, =Dy /R

Formulas (21) are the solutions of this system. The determinant of this system is A =sgcgy +CgSp4 -
For example, for OWM-5A R, =Rs=L, 2L is the body length, a; =0, a,=q, y=m. Therefore,
s, =Rgsinm=0, ¢, =Rscosm=-L, s3 =0, ¢g=L-(-L)=2L and A =2Lsinq, i.e. there are no prob-
lems with the calculation of dynamic reactions at the support points, if SF is limited by 0 <q<x.

We substitute the known expressions that are introduced in the proof of statement 2 instead of
Dy, Dy. Then we get

Ay =Dj+s,(cg D1 /Ry — gDy /R sy — ¢y (85, D1 /R, — 841D, /R 3 )eps 1/spyy =

=D; +[D;(s,cp —¢,8p2 )R, + Dy (e, 55, — 8,51 )/R3 18555 -

The statement is proved.

6. Algorithms for computing the OWM DE coefficients

To solve the dynamics of OWM on the basis of the received DE it is recommended to use known
research methods of machines dynamics, for example, that were described in the fourth part of the book
[8] on p. 223-235 or Chapter 2 of reference [9]. Moreover, we should write algorithms of calculations

fqi , fc?i , H(q) h(q) and G(q) and arrange all the formulas in order to use them in the numerical experi-

ments. We must do it for each specific OWM and their steps. The dependences o, =f;(q) for the se-
lected GC q in the mechanisms and machines theory are known as position functions (PF). and their q

derivatives, i.e. the values fqi , fc?i are called transfer functions of the 1st and 2nd degrees, respectively

[8, 9]. We will consider examples of deducing the formulas for their computations.

Example 4. We do not have calculation formulas of values fc?l ,

writing the algorithm for calculating H(q) and h(q) for OWM-5A. To do it we will find q derivatives of

félz so far. They are necessary for

the equation system (20). Then we get the system of linear equations for fc?l ,

fc?z in the following form
as,f +bs,f) =—Re, - aclfqz1 — bszfqz2 =A,
acfy +be,fh =Rs, + aslfcf1 + bs2f§2 =B.

We will write the solution of this system

A bs, A b(Ac, —Bs,) _Bs, —Ac,

B bc, —abs,, as,;

as; A

ac, B

a(Bs; —Ac;) Ac; —Bs,

q _

ql = fop =

2

where
Bs, —Ac, =R(s.s, +¢,C )+af2 (s;s, +¢iC )+bf2 (52+02)——Rc +ac, £ +bf2 —
2 2 q°2 q-2 ql\°1°2 12 q2\>2 2 q2 217ql q2

_ 2.2, 2 2 _ 2 2
—Ac; +Bs; =R(s,8) +¢,4¢)) +afg; (87 +¢7) + bl (518, +¢1¢,) =Rey; +afy; +bf¢,).
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Taking into account the formulas derived in the proof of corollary 3 we will write down the algo-
rithm for calculating H(q) h(q) for SF of OWM-5A on the level (G = 0).

d=m,d,a=const, s, =sin(q) , ¢, =cos(q), s; =sin(0;), ¢; =cos(a;),

Sqi =8qCi —CqSi» Cgi =8¢Si +¢4¢;, (1= 1,2), 55, =8,¢;—Cy8;, €y =58, +C(Cy,
Hyp =dcyy, hy =dsyy,

by =sp/a, by=-s,/b, by=s,/R, f; =b/b,, f,=b,/by,

fdh = (Rey, +acy £ +bf)asy,), fh =—(Rey, +afy +bfrrcy )/ (bsy)),
H=b, (J,fy, +Hy fyp )+ by (Hyyfyy +Jafg0 )+ by (T4 +75)

h=b,(J,fg +Hy fh _h21f§2)+bz(H21f§1 +h21fqzl +1,f).

Here it is considered to be that the PF o,(q) and a,(q) are known. It should be noted that the analytical

forms of PF are very bulky and contain inverse trigonometric functions. The PF can be found as the so-
lution of a system of nonlinear equations (19) or directly from the drawings of the relevant kinematic
schemes by elementary geometric reasoning. The methods of deriving formulas for L PF are well known
from the mechanisms and machines theory, for example in [8]. As an example, we will derive the PF

a;(q) and a,(q) for the case of equal lengths of the thigh and shin of a two-unit leg. To do this, we will
find the solution of system (19) when a =b.
cosa, +cosa, =—R,cosq, R, =R/a, h, =h/a, 22)
sina, +sina, =h, —Rsinq .
After squaring and summing equations of the system (22) we will get the equation
2+ 2(cosa,cosa, + sino,sina, ) = Ri + hi -2h, R, sinq. Hence, taking into account the symbols
a,=(R2+h?)2-1, a, =R,h, we will get cos(a, —a;) = aq =a; —a,sing . Therefore, if ‘aq‘ <1, then
0, — 0y =arccos(ag) .

We will subtract the square of the second equation of system (22) from the square of the first one

we will get

e = cos’ o= sin’ o, +2(cosa, cosa, —sina,; sina, ) + cos? o, — sin’ o, =

=cos2a, +cos2a, +2cos(a,; +0,) = Ri(cos2 q-sin’q)— hi +2h,R,sinq =
=R§ - hf +2h,R, sinq - 2R§ sin’q .
Taking into account cos2a, + cos2a, = 2cos[(2a, + 2a, )/2]- cos[(20, — 20, )/2] we will get
e =2cos(a, +a,)-cos(a; —a, )+ 2cos(a, +a,) =cos(a; +a,)[2 + 2cos(a; —a,)].
And taking into account cos(a; —a,)=a, —a,sing =a, we will get
e =2cos(oy +0,)(1+a,) = 2a, +2a,sinq - 2R§sin2q ,
where a = (Ri - hi)/2 and cos(oy +a,)=b, =(a, +a,sinq— Risinzq)/(l +ay) . Therefore, if ‘bq‘ <1,
then o, +a, =arccos(b, ) .
Thus, if ‘a q‘ <1 and ‘b q‘ <1, then the required SF are represented in the form
o, =[arccos(b, ) —arccos(ay)])/2, a, =[arccos(b,) +arccos(ay)]/2,

where, a, =a, —a,sinq, by =(a, +a,sinq —Risinzq)/(l +ag).

q

Example 5. If OWM makes a step that is different from SF then the expression for f;, f(% are de-

rived from the system (2). If we accept o5 as GC, i.e., = as, then for calculatingf s, fo4, f(?}, f§4
from (2) we will get
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Ay —Rycps —Rycpy +Rsep3 +Ryeps =By,
ie.
When we make double q differencing of the last system we will get
(R4CB3 - R50Y3 )fq3 + RaCB4fq4 = RbCBq,
(R4CB3 - RSCY3 )f(;]:; + RaCB4fC?4 = A,
2 2 2 2 .
» pq =C08(B4 +q) . The solutions of these systems are elementary. To derive the formulas for values fql

, qu from the system (2) we will get

{chm +R;cp = A, —Rycgs —R,cpy0

Rosg +Rsspy = Ay —Rysps —R,spy.

Here
{stqul +Ryspofr = —Ryspsfes — Ry spafs,
Rycpify + Racpofyn = —Ryepsfs =R, cpafos

f

Here the latest system is to calculate values fg;, f,,

ql>
for fy;, fy4. When we make q differentiation of this system, we will get a system of two linear equa-

in which we use the previously derived formulas

tions. The notation of the formulas and their simplification for a specific OWM is elementary but te-
dious analytical work.

7. Conclusion
Received OWM DE and formulas for calculating the dynamic reactions at the support points allow to
organize the whole range of numerical experiments in the study of OWM including special cases and gaits.

The works was supported by Act 211 Government of the Russian Federation, contract Ne 02.A03.21.0011.
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MATEMATUYECKOE MOAEJINPOBAHUE
LWAFAROLWKUX AMMAPATOB C oaHOMNMoABM>XXHbIM KOPIMYCOM

U.B. BoliiHos, A.U. TeneauH, [].H. Tumogpees
FOxHO-Ypanbckuli 20cydapcmeeHHbIlU yHusepcumem, ¢hunuan 8 2. Muacce

PaccmarpuBarorcst Mopenu mararonmx annapatoB (IIIA) ¢ oqHOIOABIKHBIM KOPITYCOM, KH-
HEMATHYECKHE CXEMBI KOTOPBIX MO3BOJAIOT co3aaBaTh IIIA ¢ MakcHMManbHOW yneIbHOH Ipy30-
MIOJTbEMHOCTHIO0 1 MUHUMAJIBHBIM SHEPrONOTpeOIeHHEM NIPUBOOB HA PeaH3annio 3alaHHOTO Ie-
pemenienus kopryca. [Tonydens! ypasaenus aunamuku (Y 1) takux I1IIA B TpexonopHOM cocTosI-
Huu. OTH Y]I B BHOM BHJE COAEpPKAT KMHEMATHYECKHE, TEOMETPHUUECKIE M MHEPLUOHHBIE Mapa-
meTpsl OIIA-N, rae N — mo6oe HaTypalbHOE YnCiIo Ooblne NaTH. KoaudecTBO MaTreMaTH4ecKuX
onepauuil B nojiydeHHbelx Y/ MuHMManbHO. Y]l mpeacraBiieHbl B IBYX BUJAX: BO-TIEPBBIX, B BUIE
cucrembl quddepeHnnanbpHO-anreOpanueckiux ypaBHEHHUH, B KOTOPBIX IuddepeHuaibHble ypas-
HEHHS CO/epKaT AMHAMHYECKUE PEaKI[MH B ONOPHBIX TOUKAX, a ajredpandecKue — OMHICHIBAIOT Ie0-
METPUYECKUE CBSI3U OMOPHBIX CTOI ¢ ONOpHOH moBepxHOCThIO (OII); BO-BTOPHIX, B BUJE CHCTEMBI
N muddepeHnnanbHbIX ypaBHEHUH BTOPOTO MOPSIKA C MCKIIOYEHHBIMH peakiusMu cBsizeid. dop-
MyJIbl BEIYHCIICHUS AUHAMUUYECKUX PEAKLIMI B OMOPHBIX TOYKAaX UMEIOT MaKCUMaIbHO IPOCTOH BHI.
BriBenieHs! (hOpMyITbl BRIYMCICHUS! AMHAMUYECKUX PEaKIMi B ONOPHBIX Toukax Takux LIIA. Onwuca-
HBI aJITOPUTMBI PELICHUS 3a7ad JUHAMHUKH, BO3HHKAIOLINE MPH HCCIECAOBAHNHN XOABOBI paccMaTpH-
BaeMbIx LITA. ITpuBeneno uetsipe npumMepa. B nepBom npumepe paccmorper LA ¢ o1HUM CHUIIOBBIM
MIPUBOAOM.

Knioueswvie cnosa: wazarowuii annapam, niockue Mooenuy, ypagHenus OUHAMUKY, nepeas 3a0a-
ua OUHAMUKY, OUHAMUYECKUE PeaKyuu, OGUNCYIUE CUTbLL U MOMEHMbL CUJL.

CraTbs BbINOJHeHa npu noajaeps;xkke IlpaBurenbcrBa P® (IlocranoBiaenue Ne 211 ot 16.03.2013 r.),
coraamenue Ne 02.A03.21.0011.
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