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We give a review on recent results for global stability for nonlinear functional differential equa-
tions. Such equations include delay differential equations, integro-differential equations and equa-
tions with distributed delay and are applied as mathematical models in Population Dynamics and
other sciences. We also consider methods used to study global stability: constructing of Lyapunov
functional, applications of special matrices such as M-matrix or special matrix functions such as ma-
trix measure, method of matrix inequalities, which is very popular in papers on Control Theory,
fixed point approach and using a notion of nonlinear Volterra operator.
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1. INTRODUCTION

One of the main motivations to study nonlinear delay differential systems is their importance in in-
vestigations of artificial neural network models and more generally in Mathematical Biology.

In this review paper we will discuss a global stability problem for linear and nonlinear systems
of FDE. Such investigations one can divide by the form of a system: vector o scalar form and also by
the method of investigation. The main methods are: constructing of Lyapunov functionals, applications
of special matrices such as M-matrix or special matrix functions such as matrix measure, method of ma-
trix inequalities, which is very popular in papers on Control Theory, fixed point approach and using
a notion of nonlinear Volterra operator.

In this paper we consider all forms of systems — vector and scalar forms and some of methods — ap-
plications of M-matrix and matrix measure, and using an abstract Volterra (causal) operator.

Some worlds about other methods. Lyapunov functionals are usually used for concrete systems arising
in applications or for general systems with results formulated in implicit form. In method of matrix inequa-
lities they use very unwieldy matrices, fixed point approach is new and I don’t now interesting results,
obtained by this method for systems of FDE.

2. VECTOR FORM SYSTEM

2.1. Matrix Measure

Denote by [|x|| a vector norm in R™. Matrix measure(logarithmic matrix norm) can be denoted by
the following equality

pa(t) = lim o+
Application of the matrix measure is one of the main tools in investigations of stability for systems
of ODE. For FDE the matrix measure was also applied, see for example [1].

In the recent paper [2] the authors considered the system
% = Ax(t) + F(t, x(t — T1), e, x(t — Tpp), t >ty = 0, 2.1)
and obtained the following result.

Theorem. Suppose

IF (g, s )l < Xielq Ailluell, Xk21 Ak < —pa
Then Eq. (2.1) is globally exponentially stable.
In paper [3] we extended and improved this result.

Consider the following system
dx

e A®)x(t) + F(t,x(hy (1)), ..., x(hpy (), t >ty =0, (2.2)

l1+eA(t)|-1
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where A(t) € R™" is a measurable locally essentially bounded matrix function and F(z, uj, ..., u,)
is a Caratheodory function, i.e., it is a locally essentially bounded matrix function of #, and continuous
matrix function at each point (uy, ..., u,) for any ¢, &, are measurable functions, and 0 <¢ — A(t) <7,
(k=1,2, ..., m); with the initial value problem

x(t) = @(t), t <ty x(ty) = xo, (2.3)
where ¢ is a continuous function.

Definition 2.1. The solution of system (2.2)—(2.3) is a locally absolutely continuous function for
t > ty, that satisfied equality (2.2) almost everywhere for t > ty and initial conditions (2.3) for t < t,.

Assume that the unique global solution for system (2.2)—(2.3) exists. Now we want to give the defini-
tions of the global stability.

Definition 2.2. The open set Q € R™ attracts all solutions of (2.2)—(2.3) with the initial conditions
in the open set Q, < R™if for any ty> 0 and any solution x of problem (2.2)—(2.3) with ¢(t) € Qy, Xy € Qo
there exists t, > ty such that x(t) € Q, t = t;.

Definition 2.3. An equilibrium K is globally asymptotically stable, if it is a global attractor for all
solutions of (2.2)—(2.3) with the initial conditions in the open set Q, € R™ and it is also locally uniformly
stable.

Theorem 2.4. Suppose that F(t, 0, ..., 0) =0, Qy € R" is an open set, such that 0 € Q,, an open set
Q < R™ attracts all solutions of system (2.2)—(2.3) with the initial conditions in Qy. Suppose also that
there exists a nonnegative sequence A (1 < k < m) such that for any u;, € Q the following inequalities
hold:

im0 SUPIIF (&, s, oo, )| < Sy Al ll, By Ay < 1o inf (—pi4 ().

Then the trivial solution is the global attractor for all solutions of (2.2)—(2.3) with the initial condi-
tions in Q.

If system is written in a scalar form, it is not always suitable to transform it to a vector form. In this
case sometimes one can use a notion of Volterra operator.

We denote the space C[#,, ®) of continuous bounded vector functions, and the space L.[?, ) of
measurable essentially bounded vector functions, where both spaces are Banach spaces with usual sup-
norm.

Definition 2.5. Suppose B, and B, are two vector functional spaces on [t,, ). We say that operator
T : By — B, is a causal or Volterra operator if for any t| > ty equality x(t) = y(¢), t € [ty, t1] implies
(Tx)(®) = (Ty)(0), t € [to, 1]

We illustrate how a nonautonomous Nicholson-type model

X1(t) = —a;(O)x1(t) + b1(O)x2(t) + c1(t)x1(hy(8))exp(—x1(h1(D))), (2.4)

X2(t) = —az()x2(t) + ba()x1(t) + c2(t)x2(ha(t))exp(—x2(h2(1)))
with the following initial value problem

x(8) = () = {p1(), P2 (O}, t < to, x(to) = X0, 2.5)
can be written in a compact form, using causal(Volterra) operators.
Suppose a;, b;, ¢;, i = 1, 2 are essentially bounded on [0, ) functions, /;, k=1, ..., m are measura-

ble functions, 0 < t — hy(t) < 1, @(t), t <ty is a continuous vector-function.
Let x = {x;,x,}7,

C[~a(®)  by(t)

10wl @6)
_fx(h@®) t=t _Jo(r@®) t<t

*n(t) = {0 t < t;)’ ") = {0 t> tz’ 2.7

(Fpx)(®) = {c1(O[x1n, (©) + 01 (©)] exp(—[x14, (&) + 01 (B)]),

&3 ()Xo, (©) + 92 ()] exp(=[xzn, (©) + 22 (O]} - 2.8)

Then F,: C[tg, ) — Lo [tg, ) is a bounded nonlinear Volterra operator and system (2.4)—(2.5) has the

operator form

2= AOx() + (Fpx)(©), t 2 to, x(t) = xo. (2.9)
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Let us fix 7 > 0 and discuss the global stability conditions for the operator equation (2.9), where for any
tp>0 and continuous vector function ¢ : [to —7,to] » R™ operator Fy:C[ty, ©) = Le[tg, ) is
a bounded Volterra operator.

Theorem 2.6. Suppose that (F,0)(t) =0 for ¢ =0,Q, € R™ is an open set, such that 0 € Q,, an
open set Q C R™ attracts all solutions of (2.9) with the initial conditions in Qy. Suppose also that there
exist numbers A > 0, T > 0 such that for any x € C[t,, ©), x(f) € Q and x(t;) € Q the following inequali-
ties hold for sufficiently large t:

”(F(px)(t)” <2 5‘~1pt—'rs§‘st||x(§')”:/1 <a:= limg inf(_.uA(t))a
where A and t do not depend on ¢. Then the trivial solution is a global attractor for all solutions of (2.9)
with initial conditions in Q.

As an application of the previous theorem consider Nicholson system with proportional coefficients

%1 () + () (arx1(t) — byxa () — 121 (hy(2))exp (—x1(h1(6)))) = 0, (2.10)

%y (1) + 12 (8) (agx2(t) — baxy (€) — cox2(ha(0))exp(—x2(h2(1)))) = 0,

r{t) are measurable essentially bounded on [0, ) nonnegative functions; and @; > 0, b; > 0, ¢; > 0, are
constants.

Denote Q; = lim sup;_,, 1;(t) and q; = lim inf;_,, 7;(t).

Theorem 2.7. Suppose that a positive internal equilibrium (x7,x3) of system (2.10) exists and for
some € > ()

max{Q;cie7%,Qce72, Qic1e 71 — €,Q,0067%2 — €,Q1c1e ¥1|1 — x]|, Qzce 772 |1 — x5]} <

< min{q;(a; — b1),q2(az — by)}.
Then this equilibrium is globally asymptotically stable.

2.2. M-matrix

M-matrix method is widly used for all classes of systems of differential equations including FDE.

A matrix B = (b; j)m-:l is called a (non-singular) M-matrix if b; <0, i #j and one of the following
equivalent conditions holds:

o there exists a positive inverse matrix B~ > 0;

e the principal minors of matrix B are positive.

Consider first several known results.

In the paper [4] the authors consider the autonomous system for the system

%) = =3 axi(t—15), i=1,..,m, (2.11)
where 7; > 0, the following result holds (below, a; denotes the positive part of a, i.e., a; = max{a, 0}).
Theorem. Let
O<agry;<l1+1lle, i=1,...,m
and let the m X m matrix H with components
o (1—(au‘ru—1/e)+) agi=j,

.. 1+(ajTii—1/e)+
) . .
—|ayl, L# ],

i,j=1, ..., m be a non-singular M-matrix. Then, system (2.11) is asymptotically stable for any selection
of delays z;, i #j,i,j=1, ..., m.
In the paper [5] the authors consider the non-autonomous system

%) = =37 a;;(®Ox;(hy (1), i=1,...,m, (2.12)
where t € [tg, ), ty € R, a;;(t), h;j(t) are continuous functions, 4;(f) < t, and h(f) are monotone
increasing functions such that lim;_,o, h;;(t) = oo, i,j = 1,...,m.

Theorem. Assume that, for ¢ > t,, there exist non-negative numbers by, i,j = 1,...,m, i # j such that
|a,j(t)| < b,~ja,~,~(l‘), l,] = 1, L, m, i ;é], a,~,~(t) > 0 and

oo . t .
[ a;(s)ds = o, d; = lim;_,, sup fhu(t) a;(s)ds <3/2,i = 1,...m.

Let B = (Bij)?,}ﬂ be an m x m matrix with entries Eii =1,i=1,...,mand, fori#j, i,j=1,...,m,

BecTHuk HOYplY. Cepus «<KomnbioTepHble TEXHONOrMK, ynpaBreHue, PaauoaneKkTPoHUKay. 151
2017.T. 17, Ne 2. C. 149-155



KpaTtkme coobLieHus

2
(- (ztj;)bi,-,ifdi <1,

y (1+2di
3-2d;

)by ifd; = 1.

If B is a nonsingular M-matrix, then system (2.12) is asymptotically stable.

We considered more general systems then previous ones and obtained new results which are inde-
pendent on known ones.

The following results were obtained in the paper [6].

Consider for any #, > 0 the system of delay differential equations

% (t) = —a;(O)x;(h; (1)) + XL, Fyj (f, X; (gij(f))>, t=>ty, i=1,..,m, (2.13)
with the initial conditions
xi(t) = @;(t), to — 0 <t < tgy, x;(ty) = x, (2.14)

where ¢ > 0 is denoted bellow in (a4) under the following assumptions:

(al) a; are Lebesgue measurable essentially bounded on [0, o) functions, 0 < a; < a(t) < A; almost
everywhere (a.e.);

(a2) Fy(t, -) are continuous functions, F(-, u) are measurable locally essentially bounded functions,
|Fi(t, u)| < Ljlu|, a.e. t>0;

(a3) h;, g;; are Borel measurable functions, 0 <t — h(f) <17, 0 <t — gi(t) < 0y

(ad) ¢, are continuous functions on (¢, — g, fy], where

o=max{t,o;|ki,j=1,...,m}.

Assume that conditions (al)—(a4) hold for problem (2.13), (2.14) and its modifications, and
the problem has a unique solution.

We will use some traditional notations. A matrix B = (b; j)lrf}zl is nonnegative if b; > 0 and positive
ifb; > 0,i,j=1, ..., m; ||la]| is an arbitrary fixed norm of a column vector a = (ay, ..., a,)" in R™; ||B|| is
the corresponding matrix norm of a matrix B, |a| = (|ai|, ..., |a,|)" and |B| = (|bij|)f_’j-=1.

Problem (2.13), (2.14) has a unique global solution on [#y; =), if, for example, we assume along
with (al)—(a4) that functions F(¢; u) are locally Lipschitz in u. The following classical definition of an
M-matrix will be used.

Definition 2.8. A matrix B = (b; j)m-zl is called a (non-singular) M-matrix if b; <0, i # j and one
of the following equivalent conditions holds:

— there exists a positive inverse matrix B'> 0,

— the principal minors of matrix B are positive.

Lemma 2.9. B is an M-matrix if b; <0, i #j and at least one of the following conditions holds:

Dby > Yjeilbylsi=1, ..., m;

2) bjj > Xizjlbijlj=1,...,m;

3) there exist positive numbers ;1= 1, ..., m such that &by > Yj2; ilbijl, i=1, ..., m;

4) there exist positive numbers ;i =1, ..., m such that &;bj; > ¥4 &|bijl,j=1, ..., m.

Definition 2.10. System (2.13) is globally exponentially stable if there exist constants M > 0 and
A > 0 such that for any solution X(t) of problem (2.13), (2.14) the inequality

IX(OIl < Me 28I (|lx(to) || + supe<e, lo )
holds, where M and . do not depend on t,.
We define matrix C as follows
Ai(Ai+Li)Ti+Li _AlyTitLly

C=(dij=r i =1=-="———" ¢j= o LF (2.15)
Theorem 2.11. Suppose C defined by (2.15) is an M-matrix. Then system (2.13) is globally exponen-
tially stable.
As an application of this result we consider non-autonomous BAM (bidirectional associative memo-

ry) neural network model
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%,(6) =1y(t) ( a;x; (hm(t)) + Y- aiifi (l(z)(t)>) + 1 ) (2.16)

3.0 = 1i(®) (=B (AP ©) + Ty by G (0O ) + ),
i=1,...,n,t>0,with the initial conditions

x;(t) = @;(t), yi(t) = @i (), t <0, i=1,..,n. (2.17)

We will say that a norm in R™ is monotone if 0 < a < b (a componentwise inequality, i.e. 0 < a; < b;
for all 7) implies ||a|| < ||b]].

Consider the following algebraic system

u =Y Fi(y), i=1,..,m, (2.18)
Where |F,,(u) — Fl/(V)| S LU|M — V| .

Lemma 2.12. Let v(L) be a spectral radius of the matrix L = (L; j)m-:l Afr(L) < 1 then system (2.18)

has a unique solution.
Theorem 2.13. Suppose at least one of the following conditions holds:

1. max |[A(A)| < 1, where maximum is taken on all eigenvalues of matrix A.

b |19
2. max; Xji-q |”|J<1 max; Y- |”|J<1.

a; b;

| ylL] | ul
Tl J
3. max; <1, max; ¥iL ; L < 1.

a;

st (t) +('b;;y?)

5. max |A(B)| < 1, where maximum is taken on all eigenvalues of matrix B.

|bij|L]

aj

<1.

|a|t/

6. max; Y7, ; L <1, max; Y}, <1.

|a ul |byj|L]
7. max; Yi, <, max; Y4 o L < 1.

8 T Y [('a”JlL> + ('bzyﬁ) ]< 1.

Then system
aix; = Xj-q a;ifi(v;) + L, (2.19)

biy; = X1 bijg;(x;) + J;
has a unique solution and thus system (2.16) has a unique equilibrium.

Below, assume that system (2.16) has a unique equilibrium (x; y*). To obtain a global stability con-
dition for this equilibrium, consider the matrix Cg4p = (c; j)?_;-’zl, where

( 1 _ aiRilegl)

i=1,..,n
al ) ) PR

binPE T2

JionionTion ,di=n+1,..,2n,
BlTL

( Iai,j—n|RiLj_n(aiRiT§1)+1) i
- =1
aiaj

(2.20)
1-—

nj=n+1,..,2n,

Cij =4 |bicnj|Pical?(binPint® +1 (2.21)
i = 2l "ﬁ(b" — )i=n+1,...,2n,j=1,...,n,

0, otherwise.

Theorem 2.14. Suppose matrix Cyuy is an M-matrix. Then the equilibrium (x'; y") of system (2.16)
is globally exponentially stable.
Corollary 1. Suppose at least one of the following conditions holds:
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i n laij|R; L (a;R l‘r +1) <1- RZT(I)
’ j=1 a;a; a
n |bij|PiL‘Jg-(biPi‘L'§2)+1) <1— b;P?T; (2) =1 n
j:]_ BlbL ,B )] — Ly ey
) n laij|R; L (a;R l‘r(l)+1) <1 b;P; r(z)
. i=1 aias Bi 5
i“i J
n |bij|PiL‘Jg-(biPiT§2)+l) <1 RZT(l) =1 n
i=1 .Bibi aj ’ ] L
3. There exist positive numbers u, k=1, ..., 2n such that
n Hjn|aij|Ri L (aiR; 1(1)+1) a; Rlzrfl)
j=1 P <p(1——>"),
Ab::|PiL9(b:pic® 2(2)
n ,uJ|bU|PLLj biPiT; " +1 < a b;P? T )
J=1 Bibi Hitn Bi 7’
(i=1,..,n).
4. There exist positive numbers u, k=1, ..., 2n such that
n ,anlaUlR L (aiR; T(l)+1) (1 b PIZTE ))
i=1 a;a; Hj B >
n ﬂj|bij|PiL‘?(biPiT§2)+1) . 1— Rz‘r(l)
i=1 Bibi .u]+TL aj s
(G=1,..,n).

Then the equilibrium (x"; y°) of system (2.16) is globally exponentially stable.

3. SCALAR FORM SYSTEM WITHOUT APPLICATIONS OF SPECIAL MATRIX

The results of this part were obtained in the paper [7].

The aim of this part is to obtain easily checked explicit exponential stability conditions for the fol-
lowing non-autonomous linear delay differential system

#4(6) = =31, B, a0 (R ), i=1,.,m, (.1)
where t > 0, m and i, i, j = 1, ..., m are natural numbers, coefficients a ::[0,00)c0 - R and delays
hfj: [0,0)0 — R are measurable functions.

Define auxiliary functions

a;(t) = T” ak(®), i=1,..,m, t €[0,).

Theorem 3. I Assume that, for t>t,

ai(t)=ay>0,i=1,..,m (3.2)
and

1
MaX;=1,..,m €SS SUPrat, oy X

Tl Tij
TRl lak @] fmaxmk(t)} I lali(9)|ds + X1 T2 el @] | < 1. (3.3)
j#i
Then, system (3.3) is uniformly exponentially stable.
V. 'y exp

In our new paper which is now on preparation we improve the result of the previous paper by re-
placing the constant 1 by the constant 1 + % which is one of the best known constants in stability inves-

tigations.
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rMOBAIIbHASA 3KCMOHEHUUANBbHASA YCTONUYNBOCTb
Ana AMePEPEHUNATBbHBIX CUCTEM
C HEJIMHEUHBIMU 3AOEPXKAMMU

J1. Bepe3aHckulu
YHueepcumem umeHu beH-lypuoHa, beap-Lllesa, U3paunb

Haétcst 0030p MOCIEAHNX PE3YNIBTATOB T10 TI00ATBHON CTAOMIBHOCTH ISl HEIMHEHHOTO ypaB-
HeHus (QyHKIHMOHaNBHOTO TuddepeHnmana. Takue ypaBHEHHUS BKIIOUAIOT AuddepeHInanpHbIe 3a-
JepKKH, HHTErpo-auddepeHnranbHble YpaBHEHNS U yPaBHEHUS C paclpe/leIeHHBIM 3ama3/ibIBaHu-
€M M IPUMEHSIOTCS B KaUeCTBE MaTeMaTHUECKUX MOAENeH B 00JacTH AMHAMUKN HapOJJOHACEICHHS
U Ipyrux Hayk. Takske paccMOTpEHBI METOBI, HCIOJIb3yeMbIe ISl N3yUCHUS TTI00aIbHON cTaOMIIb-
HOCTH: TOCTpOeHHE (YHKIHMOHAJIOB JISMyHOBa, MPHUMEHEHHE CIEUMATbHBIX MATPHIl, TaKUX Kak
M-matpulia WM CrielMaIbHbIX MaTPUUHBIX (QYHKIMH, TAKMX KaK MaTpU4Has Mepa, METOJl MaTpHy-
HBIX HEPAaBEHCTB, KOTOPbIE OYEHb IMOIYJISIPHBI B pab0OTax MO TEOPHH KOHTPOJISL, METOJ HEIOBHXK-
HOM TOUYKH M MCIOJIb30BAaHUE MOHATHSA HETMHENHHOro onepaTopa Bonbreppa.

Knioueswie crosa: enobanvhas cmabunvnocms, Qynkyuonan Jlanynosa, mampuynas mepa, me-
MO0 MAMPUYHLIX HEPABEHCME, HelUHeUHbII onepamop Boismeppa.
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