Results of trial operation of system of heat supply of the residential building with the optimized processes of regulation of temperature of the heat carrier are given in article. The actual indicators of volumes of the consumed gas for several months 2015 and values of temperature of external air are analyzed. It is shown that “factory” settings of controllers don't ensure effective functioning, especially at temperatures of external air close to 0 °C. The data, which showed that the optimization of processes in heating systems developed techniques for increasing their efficiency by 10–15 %.

On the basis of pilot studies in a suburban boiler room with considerable losses in a heating main, the method of increase in their energy efficiency by increase in giving of the heat carrier is offered. The method is realized by means of the converter of frequency installed for control of the network pump. The experiments have confirmed efficiency of the offer.

Keywords: optimization of heating system, energy efficiency of buildings, coolant flow.

Introduction

The researches of operating modes of the system of automatic control of heating of the residential building containing a boiler room with three coppers and thermal point with two contours of heat supply conducted in 2014–2015 have shown that at the parameters of regulators recommended by firms manufacturers of the equipment in system the processes possessing a number of shortcomings are formed (Fig. 1).

Fig. 1. Processes in system of heat supply at “factory” settings of regulators

1. The analysis of energy efficiency of system during trial operation

First of all, it is necessary to mark out the oscillatory nature of processes in coppers and contours of regulation with an amplitude to 8–10 °C and the period of 7–20 min. To exclude influence of these fluc-
tations on temperature in rooms and not to allow her decrease, temperature in contours was overestimated, and in a boiler room, as a rule, process reached maximum admissible values of temperature of the heat carrier [1]. At the same time, naturally, level of consumption of energy resources rather high, and therefore, system effectiveness very low.

The analysis of consumption of gas in this system for several months 2014–2015 is carried out. Charts of temperature of external air and the volume of the gas consumed per days are provided on the diagrams (Fig. 2) and in the Table 1. The analysis has shown, at $T_{av} \approx 0 \, ^\circ C$ (March 2014, October 2015) and at $T_{av} \approx −10 \, ^\circ C$ (February 2015, November 2015) volumes of the consumed gas differ slightly $64,6 \cdot 10^3$; $50,3 \cdot 10^3$; $72,2 \cdot 10^3$; $76,1 \cdot 10^3 \, m^3$ respectively. I.e. system effectiveness at low temperatures (−10° below) is significantly higher, than at ambient temperature close to 0 °С. It testifies to bad indicators of system of regulation.

![Fig. 2](image)

Fig. 2. The average daily temperature and the volume of gas consumed per day

| Summary table consumption of gas and average daily temperature of external air on months |
| Gas consumption in a month, m3 | 64 651,2 | 72 249,6 | 63 321,5 | 50 307,7 | 76 183,8 | 80 100,4 |
| Average daily temperature in a month, °C | 0 | −10,15 | −5,39 | +2 | −8,678 | −4,876 |
Works on optimization of processes of regulation of temperature of the heat carrier [1], which have reduced amplitudes of fluctuations of temperature to 1–2 °C and have allowed increasing system effectiveness (Fig. 3) are carried out.

So, from March 1 to March 15, 2015 average air temperature –6 °C and consumption of 2.38×10^3 m3 per day, and after optimization of system of heat supply – from March 15 to March 31, 2015 –5 °C, and 1.84×10^3 m3 per day, according to (Fig. 4, Table 2). At the same time, as shown in [1] there is an opportunity to reduce heat carrier temperature in contours and in a boiler room (Fig. 3).

Table 2

<table>
<thead>
<tr>
<th>Consumption of gas and average daily temperature of external air in March 2015 before and after optimum setup of the regulator</th>
</tr>
</thead>
<tbody>
<tr>
<td>On March 1 – on March 15 (before change of settings)</td>
</tr>
<tr>
<td>On March 16 – on March 31 (after change of settings)</td>
</tr>
</tbody>
</table>

Thus the analysis of trial operation of system of heat supply has shown that optimization of work of contours can give effect comparable with introduction of systems of the combined heating [2], and sys-
tems of heat supply with control of air temperature in rooms [2] which, certainly, are effective, but are a little suitable for housing-and-municipal city systems of heat supply.

2. Improving energy efficiency by increasing coolant flow

In experimental studies in a suburban boiler, where the essential loss in heating mains, installed another opportunity to improve the efficiency of heat supply systems. It is known that the amount of heat transferred to the object proportional to the temperature and volume of the heat transfer agent to the object (1), and this volume is determined by the electric drive of pumps.

\[Q = V_\text{p}(h^\text{p} - h^\text{n}), \]

where \(Q \) – amount of heat transferred to system; \(V \) – volume of the heat transfer agent to the object; \(h^\text{p}, h^\text{n} \) – an enthalpy of the heat transfer agent departing in network and entering.

By increasing the coolant flow rate by 10\% it is possible to reduce the temperature by 10\% and thereby reduce the loss in heating duct (which increase with increasing flow temperature) and the boiler resource consumption.

Besides, as a rule, it is considered that the pump electric motor working directly from network or via of the Soft Start Device (SSD) doesn’t maintained a constant rotation speed with a sufficient accuracy. At change of loading (volume of giving of the heat carrier) the speed of rotation of the electric motor of the pump can decrease by 5–10\%, reducing overall performance of a complex. Installation of the converter of frequency equipped with the special control algorithms providing the accuracy of maintenance of speed of rotation of the engine of the pump at changes in a hydraulic system at the level of 1\% [3] can increase significantly system effectiveness in general.

Researchers in system of heating of the suburban settlement are conducted. They have shown that installation of the converter of frequency with an algorithm of stabilization of speed of rotation on the network pump has allowed to stabilize a heat carrier expense, to increase it concerning an expense according to the standard scheme and to increase amount of the transferred heat without increase in temperature of the heat carrier. Increase in speed of rotation by 4–6\% has allowed to increase amount of the transferred heat by 5–10\% (Fig. 5).

![Fig. 5. The amount of heat transferred (Q) and the coolant flow rate (V) diagrams](image)

Вестник ЮУрГУ. Серия «Компьютерные технологии, управление, радиоэлектроника». 2017. Т. 17, № 2. С. 156–161
Conclusions

Trial operation of two various systems of heat supply has shown that improvement of quality of regulation of temperature of the heat carrier increases energy efficiency of these systems without serious material inputs. However, so far the organizations of technical supervision consider “excess” installation of converters of frequency on network pumps and demands an exception them from projects. Hopefully, in this article the results and further studies will convince these organizations in innovation efficiency.

References

Литература

Кодкин Владимир Львович, д-р техн. наук, профессор кафедры автоматизированного электропривода, Южно-Уральский государственный университет, г. Челябинск; kodkina2@mail.ru.

Аникин Александр Сергеевич, доцент кафедры теоретических основ электротехники, Южно-Уральский государственный университет, г. Челябинск; anikinsasha@gmail.ru.

Балденков Александр Александрович, аспирант кафедры автоматизированного электропривода, Южно-Уральский государственный университет, г. Челябинск; baloo@mail.ru.

Качалин Андрей Юрьевич, аспирант кафедры автоматизированного электропривода, Южно-Уральский государственный университет, г. Челябинск; kachalin89@inbox.ru.

Поступила в редакцию 7 февраля 2017 г.