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In this article a linearized global stability principle is announced for nonlinear delay differential
equations which is illustrated by several models of Population Dynamics.

Is given a review of some mathematical models with possible applications of the linearized
principle is presented.
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1. Introduction

Many applied scientists ask the following question: why do we need to study differential equations
with delays when so much is known about equations without delays and these equations are much easier?
The answer is: because so many processes, both natural and man-made, in biology, medicine, chemistry,
engineering, economics etc. involve time delays. Whether you like it or not, time delays occur so often
in almost every situation that to ignore them means to ignore the reality.

A simple example in nature is reforestation. After cutting a forest and replanting, it will take at least
20 years before reaching any kind of maturity. Hence any mathematical model of forest harvesting
should involve time delays.

Similarly any model of population dynamics without delays is an approximation at best.

Another motivation for studying DDE comes from their applications in feedback control theory.
In his study of ship stabilization Minorsky (1942) pointed out very clearly the importance of incorpora-
ting delays in the feedback mechanism.

We would like to present here several applied models with time delays.

1. The model of population growth (the delay logistic equation)

= o [1 -2

involves a constant concentrated delay. This equation was first introduced by Hutchinson in 1948.
Another equation is the logistic equation with a distributed delay
dN N(@E) ot
B =N [1-22 - [[NE)G(E - s)ds|
This equation was introduced in 1978 by MacDonalds.
2. Lotka-Volterra predator-prey system with distributed delays
#(8) = x(t)(a — bx(t) — [°, Fi()y(t + s)ds,
. 0
y(®) = y(®)(—c +dy(t) — [ F2(s)x(t + s)ds,
was introduced in 1928.

3. Delay models in medicine allowed to describe dynamic diseases which correspond to sustainable
oscillations of the following equations:
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x(t) —a— x()x"(t-1)

b+xn(t-1)°
. a
X(t) = m - CX(t),
. _ x(t-1) _
x(t) = YT cx ().

These equations were introduced by Mackey and Glass in 1979.

4. Ship stabilization model

() +a®x(t —h) +b(O)x(t - g) = f(¢t)
was introduced by Minorsky in 1942.

2. Comparison Between Ordinary and Delay Differential Equations
Consider a simple linear equation without delay

x(t) = —x(t); x(0) = x4 > 0.
This equation has exact solution x(t) = xge ¢, this solution is positive, monotone and tends to zero
ast— oo,

Consider now a simple linear equation with delay

x(t) =—x(t—-2).

To find a solution of this equation we need to assign an initial function instead of an initial value.
Suppose that we have the following initial function

x(t) =1; t € [-2; 0].

There is no exact formula for the solution of this problem, but we can find this solution by the
method of steps.

Suppose first that t € [0; 2], then x(t) = —1; x(0) = 1, hence x(t) = 1 — t. If we continue this
process we obtain the solution which oscillates about zero and is unstable.

So the behavior of solutions for equations with delay and without delay is quite different.

Actually the behavior of solutions also depends on the value of delay. In particular, consider the
equation with any constant delay

x(t) = —x(t —1).

fr< é then the solution of this equation with the same initial function as above is positive, mono-
tone and tends to zero. But there are also oscillating solutions of this equation.

If % =12 % then all solutions for any initial function oscillate and tend to zero.

Ifr=> %, then all solutions oscillate and the equation is unstable.

There are several important questions on the asymptotic behavior of solutions of delay differential
equations. Here we consider only one property which is a global stability of the equation. What does it
mean?

Consider the nondelay logistic equation

- N(t)

N =rON® [1-52)

The carrying capacity K is a positive equilibrium. It is a simple fact that for r(t) > ry, > 0 this equi-
librium is locally asymptotically stable. But what is more interesting, this solution attracts all positive
solutions. In this case we say that x(t) = K is a global attractor or that the equation is globally asymp-
totically stable.

3. Nonlinear and Linear Equations
Consider the nonlinear differential equation with several delays

(O + 2y fi (62(A (), - x(y (D)) = 0,£ 2 0, (1)

where fi (t,uyq,...,1u;) is a Carathéodory function, f;(t,0,...,0) =0, h,(t) <t, lim;_, hy(t) = .
We will assume that these conditions hold for all nonlinear functions and all delays.
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Together with equation (1) we consider for each #, > 0 an initial value problem
(O + 50 fie (£ 2(a(©), o x(()) = 0, £ 2 1, )

x(t) = (b)), t < to, x(to) = xo. 3)

We also assume that the following hypothesis holds:

¢ : (—o,ty) — R is a Borel measurable bounded function.

Definition. A locally absolutely continuous function x : R — R is called a global solution of prob-
lem (2), (3), if it satisfies equation (2) for almost all t € (t,; ) and equalities (3) for z < t;.

We assume that a global solution of (2)—(3) exists and is unique.

3.1. Linear equations
Consider the linear equation with several delays

X(8) + Xieq ax (Dx(gr (1) = 0, (4)
which is a partial case of equation (1). We will assume that a,(f) and delays gi(¢) < ¢ are Lebesgue
measurable essentially bounded on [0; o) functions.

The following stability definition is for nonlinear equation (2); it also is applies to linear equation (4).

Definition [1]. Equation (2) is stable if for any initial point ¢, and number £ > 0 there exists § > 0
such that the inequality sup;<; [@(t)| + |x(to)| < & implies |x(t)| < &, t = t,, for the solution (2)—(3).

Equation (2) is asymptotically stable if it is stable and all solutions of (2)—(3) for any initial point ¢t
tend to zero as t = oo.

The following lemmas are modifications of the results of paper [2].

Lemma 1. Suppose fgo Yreilar(s)|ds < oo. Then all solutions of equation (4) are bounded.

Lemma 2. Suppose a; (t) = 0, fgo Yreiag(s)ds = oo,

. t 1
lim;_,., sup fmink{gk(t)} Yliai(s)ds <1+-. (5)

Then equation (4) is asymptotically stable.
Consider now a linear equation in the following form

x(6) + iy a (O)x(he (1) + Xy b (D (g (8)) = 0. (6)

Lemma 3. Suppose a; (t) = 0,

0 . ¢
fo Y1 ag(t)dt = oo, limg_,,, sup ¥y, fg

there exists A, 0 < A < 1, such that
k=11 (O] < A Xk ar (D). (®)
If there exists an eventually positive solution of equation (4) then equation (6) is asymptotically

stable.
Consider a partial case of equation (6) with a nondelay term

©® it a;(s)ds < oo, (7

k

%(8) + a(®x(®) + Tpoy b (OX(g (D) = 0. )
Lemma 4. Suppose a(t) = 0,

f;o a(t)dt = oo, lim;_,, sup Y r_, fgtk(t) a(s)ds < o, (10)
there exists A, 0 < A < 1, such that

k=1lbx (O] < 2a(t). (11)

Then equation (9) is asymptotically stable.

3.2. Main result

Now we can formulate our main result. To this end consider the following condition. There exists
a partition

{1,2, ,m} = 11 V) 12 U 13,
and indices i, such that
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Lttt < g (6), wy, %0, k€ Iy, (12)
g
ay (1) s DDy 20, ke, (13)
g
fieltity i)
a(t) < — < Br(®), wy, #0, k €. (14)

i
Theorem 1. /. Suppose there exist essentially bounded functions
(445 (t)! .Bk (t)
such that conditions (12)—(14) hold. Suppose also that all solutions of (4) are bounded for any a)(t) such
that

ap () < Bi(6), k € Iy; ai(8) = a(t), k € Iy; o (t) < i (t) < Pi(t), k € I. (15)
Then all solutions of equation (1) are bounded.

2. Suppose there exist essentially bounded functions a;(t), B (t) and numbers A, B, A < B such
that conditions (12)—(14) hold for all u; satisfying the inequality A < u, < B. Suppose also that equa-
tion (4) is asymptotically stable for any ai(t) for which condition (15) holds.

Then lim;_, x(t) = 0 for all solutions x(t) of equation (1) such that A <x(f) <B.

4. Examples

In this section we will apply Theorem 1 to obtain global stability results for some nonlinear delay
equations. It means that we will prove that all solutions or all positive solutions tend to an equilibrium
ast— oo,

Such applications consist of two steps. First by Theorem 1, Part 1 we prove that all solutions of
the equation are bounded. Then by the second part of Theorem 1 we prove that every bounded solution
tends to zero or to another equilibrium.

Example 1. Consider the equation

. _ _bx(g®)
x(t)—1+x2(h(t)) ax(t), (16)

where 0 < |b| < a, lim;_,, sup(t — g(t)) < oo,
We have only one nonlinear term.

Denote f(t,uq,uy) = — bulz. We have —|b| < ftuy 1) < |b|.
1+u; Uy
Consider now the linear equation
y(@® =b®)y(9(®) — ay(®), (17)

where —|b| < b(t) < |b| < a. There exists 4, 0 < 1 < 1, such that |b| < Aa. Then |b(¢)| < a. By Lem-
ma 4 equation (17) is asymptotically stable. In particular all solutions of this equation are bounded. If we
take a(f) = —|b|, f(¢) = |b|, then condition (14) is satisfied. By the first part of Theorem 1 all solution of
equation (16) are bounded.

If we take again a(f) = —|b|, f(¢) = |b| and two arbitrary numbers 4, B, A < B as a lower and an upper
bounds, respectively, then condition (14) is satisfied for 4 <u; <B; i =1, 2. Hence by the second part of
Theorem 1 for any solution of equation (16) such that 4 < x(¢) < B we have lim;_, x(t) = 0. Since 4
and B are arbitrary numbers, then for any solution of equation (16) we have lim,_,,, x(t) = 0.

If equation (16) involves an arbitrary positive degree y > 0 rather than the square in the denominator

.y bx(g(®)

X(t) —m-d?(f(t), (18)
then it is a generalization of the Mackey-Glass equation [4, 5], where g(f) = h(f) = t — 7. Since all solu-
tions of (18) with nonnegative initial conditions and a positive initial value are positive (see, for exam-
ple, Lemma 1 in [6]), then the same argument as above leads to the conclusion that if 0 <5 < a, then all
solutions (with nonnegative initial conditions) tend to zero.

Example 2. Consider the equation

x(t) = —b[1 4+ x%(g())]x(®) + ax(h(t)), (19)
where 0 < |a| < b,lim;_,, sup(t — h(t)) < o. Denote f(t,uy,u;) = b(1 + u?)u,.
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We have L{&atz)
Uz

Consider now the linear equation

y(®© = =b®y(®) + ay(h(D), (20)
where b(f) > b > 0. There exists 4, 0 < 1 < 1, such that |a| < Ab < Ab(f). By Lemma 4 equation (20) is
asymptotically stable.

Hence all solutions of this equation are bounded. If we take a(f) = b, then condition (13) is satisfied.
By the first part of Theorem 1 all solutions of equation (19) are bounded.

If we take again a(f) = b and two arbitrary numbers 4, B, A < B as a lower and an upper bounds, re-
spectively, then condition (13) is satisfied for any 4 <u; < B, i = 1, 2. Hence by the second part of Theo-
rem 1 for any solution of equation (19) such that 4 <x(#) < B we have lim;_,,, x(t) = 0. Since 4 and B
are arbitrary numbers, then for any solution of equation (19) we have lim,_,,, x(t) = 0.

Example 3. Consider the equation

>b>0.

x(t) = —a(t) arctan (x(h(t))), (21)
where
© . t 1
a(t) 20, [, a(s)ds = oo, lim,,sup fh(t)a(s)ds <1+- (22)
Denote f(¢, u) = a(f) arctan u. We have 0 < @ <a(t), u+0.

Consider now the linear equation

y(®) = -b@®)y(h(®), (23)
where 0 < b(f) <a(f). By Lemmas 1 and 2 all solutions of equation (23) are bounded. If we take a(¢) = 0,
P(t) = a(?), then condition (14) is satisfied. By the first part of Theorem 1 all solutions of equation (21)
are bounded.

Suppose x(¢) is a solution of (21). Then |x(¢)] < H for some H > 0. There exists a > 0 such that

am% > a, |u| < H.Hence 0 < aa(t) < @ < a(t), |u| < H. Consider again linear equation (23),

where aa(f) < b(t) < a(f). By Lemma 2 equation (23) is asymptotically stable.

If we take a(?) = aa(t), f(t) = a(f), and as lower and an upper bounds two numbers A = —H; B = H,
then condition (14) is satisfied for any -H <u; < H, i = 1, 2. Hence by the second part of Theorem 1 for
any solution of equation (21) such that -H < x(¢) < H we have lim,_,, x(t) = 0. Since x(¢) is an arbitrary
solution, then for any solution of equation (21) we have lim;_,,, x(t) = 0.
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NMUHEAPU30OBAHHbIA NPUHLMIM YCTOVIL!VIBOCTI/I
Anda ANOPEPEHUUAIIbHBIX YPABHEHUU C 3AOEP>XXKAMMU

J1. Bepesanckuli', E. BpasepmaH?

" YHueepcumem um. GeH-IypuoHa 8 Hezeese, Beap-Lllesa, M3pauns,
2 YHueepcumem Kanzapu, Kanzapu, KaHada

[IpennoxeH nTuHEeapU30BAHHBIM MPUHIIUI TJIO0ATbHONW YCTOMUYMBOCTH NIl HETMHEHHOU 3a-
JICpKKU B nudepeHINATbHBIX YPABHCHUSAX, KOTOPBIC MILTIOCTPUPYIOTCS HECKOJBKUMHU MOICIIIMHU

JUHAMUKHU HACCIICHUA.
HpI/IBOI[I/ITCH O630p HCKOTOPBIX MAaTeMaTUYCCKUX MOI[CHGI)’I C BO3MOXXHBIM NPHUMCHCHUEM JIU-

HEapU30BaHHOTO MPHHIIMIIA.
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