СОВМЕСТНОЕ ИСПОЛЬЗОВАНИЕ ФИЛЬТРА КАЛМАНА И МИНИМАКСНОГО ФИЛЬТРА В ЗАДАЧЕ ОЦЕНИВАНИЯ ПАРАМЕТРОВ МОДЕЛИ ХАОТИЧЕСКОГО ПРОЦЕССА

А.С. Шелудько, В.И. Ширяев

JOINT USE OF KALMAN FILTER AND MINIMAX FILTER IN THE ASSESSMENT PROBLEM OF PARAMETERS FOR RANDOM PROCESS MODEL

A.S. Sheludko, V.I. Shiryaev

Рассматривается задача восстановления модели хаотического процесса по единственной реализации в условиях малого числа доступных измерений. Задача оценивания параметров представлена как задача оценивания вектора состояния в модели динамической системы с переменной матрицей измерений. Исследуется возможность совместного использования алгоритмов фильтрации для уточнения множественной оценки вектора состояния.

Ключевые слова: хаотический процесс, фильтр Калмана, минимаксный фильтр.

The article considers the problem of reconstruction of a random process model by a singular realization in terms of a small number of available measurements. The problem of parameters assessment is shown as the problem of assessment of state vector in the model of a dynamic system with variable matrix of measurement. The possibility of a joint use of filtration algorithm to specify multiple estimation of a state vector is studied.

Keywords: random process, Kalman filter, minimax filter.

Введение

Задача оценивания параметров моделей хаотических процессов имеет множество приложений в информационных и технических системах: обработка информации, передаваемой с помощью хаотических колебаний [1], восстановление модели внешних возмущений на управляемый объект [2]. Часть работ, связанных с моделированием хаотических процессов, посвящена реконструкции динамических систем по экспериментальным данным в виде систем дифференциальных уравнений [3]

$$\frac{d\mathbf{x}}{dt} = f(\mathbf{x}, \boldsymbol{\lambda}), \ \mathbf{x} \in \mathbb{R}^n, \tag{1}$$

описывающих «медленные» колебания. Другим направлением исследований является построение моделей «быстрых» колебаний с использованием одномерных хаотических отображений [4]

$$x_{k+1} = f(x_k, \lambda), \ x_k \in \mathbb{R},$$
⁽²⁾

а также с помощью нейронных сетей [5].

В настоящее время для решения задачи оценивания параметров моделей вида (1) и (2) актив-

Шелудько Антон Сергеевич – инженер кафедры прикладной математики, Южно-Уральский государственный университет; antonsheludko@gmail.com Ширяев Владимир Иванович – д-р техн. наук, профессор, заведующий кафедрой систем управления ЮУрГУ; vis@susu.ac.ru но развиваются подходы, основанные на применении генетических алгоритмов, эволюционных вычислений и гравитационного поиска [6, 7]. Также при идентификации хаотических систем находят применение алгоритмы фильтрации [8]. Однако результаты, представленные в большинстве работ, получены в условиях, когда экспериментальные данные являются зашумленной реализацией известных хаотических систем и пока не исследована возможность их применения для практических задач, в которых модель процесса является неизвестной.

В данной работе рассматривается задача восстановления модели «быстрых» колебаний по единственной реализации в условиях малого числа N < 100 доступных измерений. Для построения модели измеряемого сигнала y_k , k = 1, 2, ..., N используется разложение

$$y_k = a_0 + \sum_{i=1}^m a_i u_k^{(i)} + \eta_k , \ k = 1, 2, ..., N$$
 (3)

Anton Sergeevich Sheludko – engineer of Applied Mathematics Department of South Ural State University; antonsheludko@gmail.com

Vladimir Ivanovich Shiryaev – Doctor of Science (Engineering), professor, head of Control Systems Department of South Ural State University; vis@susu.ac.ru

по системе процессов $u_k^{(i)}$, k = 1, 2, ..., N, i = 1, 2, ..., m, заданных хаотическими отображениями вида (2), где a_i , i = 0, 1, ..., m – коэффициенты разложения η_k , k = 1, 2, ..., N – ошибки измерений. Например, такую систему процессов могут задавать логистические отображения:

$$u_{k+1}^{(i)} = \lambda_i u_k^{(i)} \left(1 - u_k^{(i)} \right), \ k = 0, 1, ..., N - 1,$$

$$i = 1, 2, ..., m,$$
(4)

хаотические решения которых возникают при $u_0^{(i)} \in (0; 1)$, $\lambda_i \in (3,57; 4]$, i = 1, 2, ..., m. Пользуясь достаточными условиями [9], можно определить различные классы дискретных отображений вида (2) на единичном интервале, которые порождают хаотические процессы. Однако выбирая конкретный класс, необходимо учитывать, что сложные конструкции в правой части уравнения (2) могут привести к вычислительным трудностям при решении задачи идентификации, например, к много-экстремальности целевой функции [10]. Работа продолжает исследования [10–13].

1. Постановка задачи и метод решения

Рассмотрим нахождение оценок коэффициентов a_i , i = 0, 1, ..., m разложения (3) в реальном времени с помощью алгоритмов фильтрации [13– 16]. Представим вектор коэффициентов

$$\mathbf{a} = \begin{bmatrix} a_1 & \dots & a_n & a_0 \end{bmatrix}^{\mathrm{T}}$$

в уравнении (3) как вектор состояния $\mathbf{x}_k = \mathbf{a} \in \mathbb{R}^n$, n = m + 1 в модели процесса и измерений:

$$\begin{array}{c} \mathbf{x}_{k} = \mathbf{x}_{k-1}, \\ y_{k} = \mathbf{G}_{k} \mathbf{x}_{k} + \eta_{k}, \\ k = 1, 2, \dots, N. \end{array}$$

$$(5)$$

Элементы матрицы измерений G_k в модели (5) задаются логистическими отображениями (4):

$$\mathbf{G}_k = \begin{bmatrix} u_k^{(1)} & \dots & u_k^{(m)} & 1 \end{bmatrix}$$

Таким образом, для нахождения оценок коэффициентов разложения требуется найти оценку вектора состояния в модели (5). Тогда после обработки N измерений можно положить $\hat{\mathbf{a}} = \hat{\mathbf{x}}_N$. Применительно к модели (5) уравнения фильтра Калмана [14] имеют вид:

$$\hat{\mathbf{x}}_{k} = \hat{\mathbf{x}}_{k-1} + \mathbf{L}_{k} \left(\mathbf{y}_{k} - \mathbf{G}_{k} \hat{\mathbf{x}}_{k-1} \right), \tag{6}$$

$$\mathbf{L}_{k} = \mathbf{P}_{k-1} \mathbf{G}_{k}^{\mathrm{T}} \left(\mathbf{G}_{k} \mathbf{P}_{k-1} \mathbf{G}_{k}^{\mathrm{T}} + r \right)^{-1}, \tag{7}$$

$$\mathbf{P}_{k} = \left(\mathbf{I} - \mathbf{L}_{k}\mathbf{G}_{k}\right)\mathbf{P}_{k-1}, \qquad (8)$$

где $\hat{\mathbf{x}}_k$ – оценка вектора состояния \mathbf{x}_k ; \mathbf{L}_k – коэффициент усиления; \mathbf{P}_k – ковариационная матрица ошибок оценивания; r – оценка дисперсии помехи η_k , k = 1, 2, ..., N; \mathbf{I} – единичная матрица. Переменные y_k и G_k на каждом шаге kсчитаются известными. Для момента времени k = 0 необходимо задать оценку $\hat{\mathbf{x}}_0$ вектора состояния и начальное значение \mathbf{P}_0 ковариационной матрицы ошибок.

Последовательность оценок $\hat{\mathbf{x}}_k$, k = 1, 2, ..., N, найденная по формулам (6)–(8), является оптимальной в смысле математического ожидания среднеквадратической ошибки, то есть оптимальной для множества реализаций измерительной помехи η_k , k = 1, 2, ..., N. Как известно, с вероятностью 99,73% истинное значение вектора состояния \mathbf{x}_k на шаге k будет лежать во множестве $S_k \subset \mathbb{R}^n$:

$$S_{k} = \left\{ \mathbf{x} \in \mathbb{R}^{n} \mid \left(\mathbf{x} - \hat{\mathbf{x}}_{k} \right)^{\mathrm{T}} P_{k}^{-1} \left(\mathbf{x} - \hat{\mathbf{x}}_{k} \right) \leq 9 \right\}.$$
(9)

Для построения множественной оценки вектора состояния в модели (5) может быть применен алгоритм *минимаксной фильтрации* [13]. Пусть ошибка $\eta_k \in V = [-v; v]$, k = 1, 2, ..., N, а начальное состояние $\mathbf{x}_0 \in X_0$, причем $X_0 \subset \mathbb{R}^n$ – выпуклое множество. Тогда на шаге k истинное значение вектора состояния будет принадлежать информационному множеству $X_k \subset \mathbb{R}^n$, где

$$X_k = X_{k-1} \cap Y_k \,. \tag{10}$$

Здесь $Y_k \subset \mathbb{R}^n$ – множество, совместное с измерениями:

$$Y_k = \left\{ \mathbf{x} \in \mathbb{R}^n \mid y_k - v \le \mathbf{G}_k \mathbf{x} \le y_k + v \right\}.$$
(11)

Информационное множество X_k в момент времени k можно уточнить, используя доверительное множество S_k для оценки фильтра Калмана:

$$X_k = X_{k-1} \cap Y_k \cap S_k \,. \tag{12}$$

2. Модельный пример

Рассмотрим модельный пример для случая n = 2, который имеет место при последовательном выделении составляющих разложения (3). Пусть число измерений N = 100.

На рис. 1 показан хаотический процесс, заданный логистическим отображением

$$u_{k+1} = \lambda u_k (1 - u_k), \ k = 0, 1, ..., N - 1$$

с параметром $\lambda = 3,68$ и начальным значением $u_0 = 0,3$. Для рассматриваемой реализации индекс фрактальности $\mu \in [0,73;0,80]$.

На рис. 2 показана помеха η_k , k = 1, 2, ..., N, которая является реализацией белого шума со среднеквадратическим отклонением $\sigma = 0,174$. В этом случае отношение сигнал/шум ≈ 0 дБ. Для данной реализации белого шума индекс фрактальности $\mu \in [0, 60; 0, 67]$.

Совместное использование фильтра Калмана и минимаксного фильтра в задаче оценивания параметров модели хаотического процесса

На рис. 3 показана последовательность измерений

 $y_k = a_0 + a_1 u_k + \eta_k$, k = 1, 2, ..., N, где $a_0 = -1$, $a_1 = 1$. Индекс фрактальности измеряемого сигнала $\mu \in [0, 65; 0, 71]$.

3. Применение фильтра Калмана

Модель (5) для рассматриваемого примера имеет вид

$$x_{1,k} = x_{1,k-1}, x_{2,k} = x_{2,k-1}, y_k = x_{1,k}u_k + x_{2,k} + \eta_k, u_k = \lambda u_{k-1} (1 - u_k), k = 1, 2, ..., N.$$
 (13)

Запишем уравнения фильтра Калмана (6) – (8) для системы (13). Уравнения для оценок переменных вектора состояния имеют вид:

$$\begin{aligned} \hat{x}_{1,k} &= \left(\frac{r}{\rho_k} + l_{2,k}\right) \hat{x}_{1,k-1} + l_{1,k} \left(y_k - \hat{x}_{2,k-1}\right), \\ \hat{x}_{2,k} &= \left(\frac{r}{\rho_k} + l_{1,k} u_k\right) \hat{x}_{2,k-1} + l_{2,k} \left(y_k - \hat{x}_{1,k-1} u_k\right), \end{aligned}$$

где $\rho_k = r + s_{1,k}u_k + s_{2,k}$,

$$s_{1,k} = p_{11,k-1}u_k + p_{12,k-1},$$

$$s_{2,k} = p_{12,k-1}u_k + p_{22,k-1}$$
.

Элементы коэффициента усиления фильтра Калмана равны:

$$l_{1,k} = \frac{s_{1,k}}{\rho_k}, \ l_{2,k} = \frac{s_{2,k}}{\rho_k},$$

элементы ковариационной матрицы ошибок:

$$p_{11,k} = \left(\frac{r}{\rho_k} + l_{2,k}\right) p_{11,k-1} - l_{1,k} p_{12,k-1},$$

$$p_{12,k} = \left(\frac{r}{\rho_k} + l_{2,k}\right) p_{12,k-1} - l_{1,k} p_{22,k-1},$$

$$p_{22,k} = \left(\frac{r}{\rho_k} + l_{1,k} u_k\right) p_{22,k-1} - l_{2,k} u_k p_{12,k-1}$$

Предположим, что дисперсия измерительной помехи известна точно: $r = \sigma^2$. Выберем следующие начальные условия для фильтра Калмана: $\hat{\mathbf{x}}_0 = \begin{bmatrix} 0 & 0 \end{bmatrix}^T$, $\mathbf{P}_0 = \frac{8}{9}\mathbf{I}$. На рис. 4 и рис. 5 приведены графики оценок переменных вектора состояния и элементов ковариационной матрицы ошибок

и элементов ковариационной матрицы ошибок. После фильтрации всех *N* = 100 измерений относительная погрешность конечной оценки $\hat{\mathbf{x}}_N$ составила 0,89 %. При более точном знании начального условия, например, при $\hat{\mathbf{x}}_0 = \begin{bmatrix} 0,8 & -0,8 \end{bmatrix}^T$ и $\mathbf{P}_0 = \frac{1}{9}\mathbf{I}$, уже в момент времени k = 90 относительная погрешность равна 0,87%.

4. Гарантированная оценка

При построении информационного множества *X_k* для вектора состояния в модели (13) с помощью минимаксного фильтра множество, совместное с измерениями

$$Y_k = \left\{ \mathbf{x} \in \mathbb{R}^2 \mid y_k - v \le x_1 u_k + x_2 \le y_k + v \right\}$$

образуют две параллельные линии на плоскости

 $x_2 = -u_k x_1 + y_k \pm v$, которые «вращаются» на каждом шаге за счет из-

менения значения u_k . Зададим множество X_0 как на показано рис. 6. Число v зададим как максимальное по модулю значение измерительной помехи: v = 0, 5.

Информационное множество X_k в моменты времени k = 30 и k = 100 показано рис. 7 и рис. 8 соответственно. Построенные множества содержат и точечную оценку фильтра Калмана, и истинное

Рис. 6. Начальные условия для алгоритмов

значение вектора состояния.

5. Совместное использование фильтров

Рассмотрим последовательность множеств X_k , k = 1, 2, ..., N, построенную в соответствии с выражениями (9), (11) и (12). Начальные условия для алгоритмов при этом остались прежними. На рис. 9 и рис. 10 показано множество X_k в моменты времени k = 30 и k = 100. В таблице приведено сравнение множественных оценок по величине максимальной ошибки $\max_{\hat{\mathbf{x}} \in X_k} \| \hat{\mathbf{x}} - \mathbf{x}_k \|$ и площади соответствующей фигуры на плоскости. Таким образом, совместное использование фильтров позволило уменьшить размер конечного множества X_N в 6 раз, а величину максимальной ошибки в 3 раза.

Рис. 7. Множественные оценки при k = 30

Рис. 9. Множественная оценка при k = 30 в случае совместного использования фильтров (пунктиром показан результат при применении только минимаксного фильтра)

Рис. 10. Множественная оценка при *k* = 100 в случае совместного использования фильтров (пунктиром показан результат при применении только минимаксного фильтра)

k	Минимаксный фильтр		Совместное использование	
	Наибольшая ошибка	Площадь	Наибольшая ошибка	Площадь
10	2,3045	0,9064	1,7279	0,4185
20	2,3045	0,4065	1,7170	0,2306
30	1,2240	0,2286	1,0171	0,0945
40	1,2240	0,2286	0,9370	0,0794
50	1,2240	0,2286	0,7579	0,0636
60	0,8782	0,1074	0,6023	0,0455
70	0,8782	0,1074	0,4816	0,0358
80	0,8782	0,1074	0,4630	0,0330
90	0,5145	0,0518	0,1607	0,0084
100	0,5145	0,0518	0,1600	0,0084

Характеристики множественных оценок

Заключение

Для решения задачи оценивания коэффициентов разложения по системе хаотических процессов в реальном времени используются алгоритмы фильтрации. В рассмотренном модельном примере (число измерений N = 100, отношение сигнал/шум ≈ 0 дБ) относительная погрешность точечной оценки, найденной с помощью фильтра Калмана, составила 0,89 %. При построении множественной оценки совместное использование фильтра Калмана и минимаксного фильтра позволило уменьшить размер информационного множества в 6 раз по сравнению с результатом, полученным при применении только минимаксного фильтра. Аналогично можно использовать пересечение множественных оценок для коррекции оценки и ковариационной матрицы фильтра Калмана.

Литература

1. Тратас, Ю.Г. Эффективная передача информации хаотическими колебаниями / Ю.Г. Тратас // Радиотехника. – 2011. – № 4. – С. 4–11.

2. Нечаев, Ю.И. Информационные технологии и управление в бортовых интеллектуальных системах новых поколений / Ю.И. Нечаев // Мехатроника, автоматизация, управление. – 2010. – № 1. – С. 42–53.

3. Никульчев, Е.В. Моделирование систем с нелинейной динамикой на основании экспериментальных данных / Е.В. Никульчев // Мехатроника, автоматизация, управление. – 2006. – № 5. – С. 6–14.

4. Смирнов, Д.А. Реконструкция уравнений динамики и диагностика взаимодействия нелинейных колебательных систем по временным рядам: автореф. ... д-ра физ.-мат. наук / Д.А. Смирнов. – Саратов, 2010. – 34 с.

5. Антипов, О.И. Прогнозирование и фрактальный анализ хаотических процессов дискретно-нелинейных систем с помощью нейронных сетей / О.И. Антипов, В.А. Неганов // Доклады АН. – 2011. – Т. 436, № 1. – С. 34–37.

6. Parameters identification of chaotic system by chaotic gravitational search algorithm / C. Li, J. Zhou, J. Xiao, H. Xiao // Chaos, Solitons & Fractals. – 2012. – Vol. 45. – P. 539–547.

7. Parameter identification of commensurate fractional-order chaotic system via differential evolu-

tion / Y. Tang, X. Zhang, C. Hua, L. Li, Y. Yang // Phys. Lett. A. - 2012. - Vol. 376. - P. 457-464.

8. Voss, H.U. Nonlinear dynamical system identification form uncertain and indirect measurements / H.U. Voss, J. Timmer, J. Kurths // International Journal of Bifurcation and Chaos. – 2004. – Vol. 14. – N_{2} 6. – P. 1905–1933.

9. Erramilli, A. An application of deterministic chaotic maps to model packet traffic / A. Erramilli, R.P. Singh, P. Pruthi // Queueing Systems. – 1995. – Vol. 20. – P. 171–206.

10. Елсаков, С.М. О многоэкстремальности в задачах оценивания систем детерминированного хаоса / С.М. Елсаков, В.И. Ширяев // Вестник ЮУрГУ. Серия «Компьютерные технологии, управление, радиоэлектроника». – 2009. – № 3. – С. 37–41.

11. О решении задач параметрической идентификации процессов с хаотической динамикой / И.В. Гришин, А.С. Шелудько, В.И. Ширяев и др. // Вестник ЮУрГУ. Серия «Компьютерные технологии, управление, радиоэлектроника». – 2008. – № 3. – С. 44–50.

12. Кожихова, Н.А. Прогнозирование временного ряда с учетом хаотической компоненты / Н.А. Кожихова, В.И. Ширяев // Вестник ЮУрГУ. Серия «Компьютерные технологии, управление, радиоэлектроника». – 2010. – № 22. – С. 22–25.

13. Уханов, М.В. Алгоритмы построения информационных множеств для реализации минимаксного фильтра / М.В. Уханов, В.И. Ширяев // Вестник ЮУрГУ. Серия «Математика, физика, химия». – 2002. – № 3. – С. 19–33.

14. Калман, Р.Е. Идентификация систем с иумами / Р.Е. Калман // УМН. – 1985. – Т. 40, № 4. – С. 27–41.

15. Черноусько, Ф.Л. Об оптимальном эллипсоидальном оценивании динамических систем, подверженных неопределенным возмущениям / Ф.Л. Черноусько // Кибернетика и системный анализ. – 2002. – № 2. – С. 85–94.

16. Шматков, А.М. Построение аналога фильтра Калмана для гарантированной оценки состояния динамической системы / А.М. Шматков // Изв. РАН. Теория и системы управления. – 2011. – № 5. – С. 33–40.

Поступила в редакцию 25 сентября 2012 г.