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The article reflects the main task of the X-ray computed tomography and its mathematical
description. Direct and inverse Radon transform are given. The methods of image reconstruction in
X-ray computed tomography are presented. Their brief classification are given. The author have re-
viewed classical problem of two-dimensional computed tomography and basics approaches to its so-
Iution. Emphasis is placed on back projection algorithm with filtering convolution. The derivation of
the algorithm for parallel and fan-beam reconstruction are given. The analysis of the problem of
three-dimensional reconstruction are presented. The author describes the additional conditions im-
posed on the projection data, the computational efficiency of the algorithms and the quality of
the images. The basic trajectory of the X-ray source, providing the condition Tuy, are considered.
The article gives an overview of existing methods of three-dimensional reconstruction with cone-
beam geometry, their advantages, disadvantages, clinical applications. Their brief classification are
given. Approximate algorithms of three-dimensional reconstruction are presented. The Feldkamp al-
gorithm, the extended parallel backprojection, and the advanced single-slice rebinning are described.
The author raises the question of developing approaches and methods for obtaining images with
three-dimensional reconstruction for cone-beam spiral CT.
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Introduction

The main task of X-ray computed tomography (CT) is to reconstruct the internal structure of the ob-
jects of study by probing penetrating radiation. From a mathematical point of view, this problem can be
considered as a problem of restoring some function in two-dimensional or three-dimensional space by
known values of integrals along certain lines or planes. In CT, the desired function is a linear attenuation
coefficient, and the projection data are known values of integrals.

The relationship between the projection data and the desired function of the linear attenuation coef-
ficient is described by Radon transformation, which in the two-dimensional case is a linear integral of
the function along the line. The representation of a function through its Radon transformation is called
inversion formulas [1].

If the line L: (€, x) = [ is given in the normal form, the integral of the function f(x) along the line L is

+00
P(0,1)= [ f(lcos@—x',sin0,/sin0+x', cos0)dx',, (1)
where x', is the y-axis after the rotation by the angle 6.

The case formula will look like
+o0 2T

oP(6,!'
f(x)=—4:cZJ£,1 O soar, @)

=" ol
where /' is a curve passing through a specific point (x;, x;) [1].
Thus, the main mathematical problem of X-ray computed tomography can be reduced to the integral
equation of the form
Tu= [ u(xy)d=P(1,6) 3)
L(1,0)
Equation (3), where T is the transformation operator, can be investigated by methods of integrated

geometry of Radon. However, Radon methods allow us to obtain an exact solution of the basic KT
equation provided that the initial data P(/, 0) are given precisely. But in practice, projective data
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P(l, 6) contain different kinds of errors and are not exact. [ mean ... it is not possible to accurately restore
an image from P(/, 0) projections. In practice the regularization methods of equation (3) [2, 3] are ap-
plied.

All the variety of methods used for image restoration can be divided into two main groups: analyti-
cal and iterative methods [1, 2].

The implementation of any reconstruction algorithm depends on the X-ray generation scheme im-
plemented in the tomograph. There are 3 basic schemes: parallel, fan, cone.

1. Reconstruction algorithm for parallel geometry of beams

The type of function p(x, y), denoting the distribution of the desired physical quantity, a priori un-
known. However, it is known that it is zero outside the reconstruction area Q, which is a circle of radius T
with a center at the origin (Fig. 1).
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Fig. 1. Parallel scan geometry

The position of the X-ray beam is determined by its distance / from the origin and angle 6. Projec-
tion defined by the formula (1) can be written in the form

+T
P(1,0)= [ f(Icos—tsin®,/sin0-+1cos0)dr. (4)
-T

The next step in constructing the reconstruction algorithm is to find the inversion formula for (4).
Moreover, as shown above, the expression (2) cannot be used directly.

One of the approaches of the derivation of the reconstruction approach is based on the use of
the projection theorem. The first States that the operation on the projection at angle 0 is equivalent to
a certain operation on the initial object p(x, y). This theorem is called the generalized projection theo-
rem. If the operation on p(x, y) is reversible, such as the Fourier transform, then this implies a way of
finding p(x, y) given by P(/, ). The second theorem, on the Central section, is formulated as follows.
Let R(v, 0) is a one-dimensional Fourier transform of the function P(/, 8) according to the first argument

T
R(v,0)= | P(1,6)e ™ dI, (5)
-T
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where v=1/2Al is the spatial frequency; A/ — the distance between the counts of the rays. Then it
would be true equality

R(v,0)= ﬁ(vcos@,vsin 0), (6)
where ﬁ is a two-dimensional Fourier transform of the function p(x, y). In other words, the one-
dimensional Fourier transform of projection data for variable / is equivalent to the two-dimensional Fou-
rier transform of an object function expressed through polar coordinates.

It is obvious that the inverse two-dimensional Fourier transform from ;jt gives a reconstruction for-

mula the function p(x, y) on the set P(/, 6). However, in the practical implementation of this method of
action there are significant difficulties associated with sampling errors and inaccuracy of projection data.
The result is a very noisy image of the subject object's. To avoid this, it is necessary to take special
measures [1, 2].

One of the ways solution to the problem is the use in (8) the Fourier transform of the function LAL,
and it will work on the window function W(v):

A
= A

p(veos6,vsin®) = p(vcosO,vsin0) W (v). (7)
Then, substituting (7) in (6), and taking the inverse Fourier transform, you can get
n T
w={ [ P(1,6)g(1'~1)dld, (8)
0-T
where
1/2A1
g(l) = I |v|W(v)eXp(i2nvl)dv, 9
-1/2Al

"= xcos0 + ysinO — ray passing through a specific point P.

An internal integral in expression (8) is called a collapsed projection and is a convolution by / of
projection P(/, 6) at the angle 6 and function g(/) given by expression (9). Function g(/) is called a col-
lapsing function, and its appearance depends on the window function W(v) (Fourier function

g(v) = |v| W(v) ). The outer integral represents the inverse operation of projection. Formula (8), (9) form
the basis of the method the reconstruction method of convolution and back-projection.

2. The Algorithm of reconstruction in fan geometry of the rays

To date, widespread scheme of scanning with a fan beam geometry, which is more preferable from
the point of view of performance. Each beam is considered as a set of divergent rays, which defines
the position of the radiation source — and y — the angle between the beam and the line connecting the
source and the center of the circle (Fig. 2).

U is the position of the radiation source on a circle with radius D and center 0; f is the angle of in-
clination of the straight line OU to the y-axis; 0 is the angle between the perpendicular OR omitted from
the origin of beam, and the x-axis; OR equal to the length /; S — distance between points U and P; v is
the angle between 0U and UP; r — length OP; ¢(y, B) is a linear integral along the beam for fan geometry.

From formulas (7) to (9) for parallel geometry of the rays should
o T 2n

n(rcosg,rsing) =% [ [ [ P(1.6)exp(i2mv[ rcos(0—¢)—1 | (v)|v|d6didv.
—o0-T 0
Going from the variables (/, 8) variables (y, ), the operation of the reconstruction can be represen-
ted in two stages:

Y)n
q(1'B)= | q(v.B)cosy-g(Ssin(y'-y))dy; (10)
“VYm
- D
n(xy)==[ a(v'B)dp, (1)
0
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where
g(S sin(y'— y)) = J |v| W(v)exp(i2rcvS sin(y’— y))dv. (12)

If you accept }N( =y'—y,v'=vSsin {(/{( , you can write
~2 o
-7 Y ' . " '
g(Ssmy):m_Uﬂexp(ﬂnv y)dv. (13)
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Fig. 2. Fan-shaped scanning geometry

The integral in (13) represents the kernel with the argument }? obtained for parallel beams , and is
the inverse Fourier transform of the spatial frequency module |v'| . The kernel for the fan-shaped geome-

try of the beams can be determined
~2

g(%)=#ﬁg(&). (14)

As a result, formula (11) will take the form of a fan scan geometry
2n Y
- 1°F 1 mo_ -
n(xy)= [ —dB [ a(v.B)g(v'-v)dy, (15)
2,8 I

where c_1(y,[3) =q (y,B)Dcosy is the modified projection;

is the modified kernel.

y2
g(v-v)=g(v-v)-—5
sin” y

3. The reconstruction algorithm when the conical geometry of the beams

The above algorithms for parallel and fan geometry of rays formed the basis of the classical ap-
proach to solving the problem of computed tomography, in which measurements are made in the same
plane with the help of linear detectors, and according to these data, the layer of the object is reconstructed.
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In practice, there are cases when the information in one slice of the studied object is not enough and
it is necessary to understand the internal structure of the whole extended object. To obtain the necessary
three-dimensional image, it is possible to carry out a series of measurements by the classical method and
then combine the information obtained about the individual layers. This approach to solving a volume
problem significantly increases the time of tomographic examination, which is not always acceptable in
practice.

Another way to obtain a three-dimensional image is a three-dimensional reconstruction. In contrast
to the classical two-dimensional CT method of measurement method of three-dimensional CT is pro-
duced in a cone of X-rays using a two-dimensional detector, which allows to obtain the projection of
multiple layers in a single measurement. This approach provides some advantages over the classical re-
search method: increases the photon flux, reduces the time of projections and makes it possible to in-
crease their geometric.

In order to accurately restore the image along cone projections, it is necessary that each plane pass-
ing through the studied object at least once crosses the trajectory of the radiation source (Kirillov —
Smith — Thuy condition [4, 5]). Examples of scanning schemes with the trajectory of the source that sa-
tisfy this condition: spiral, two circles, a circle and a straight line, two circles lying in mutually perpen-
dicular planes [4].

Both algebraic and analytical methods were developed to solve the three-dimensional CT problem.
These methods can be divided into two classes. The first one includes algorithms that divide a three-
dimensional problem into a series of two-dimensional ones. From a set of cone projections by interpola-
tion is obtained by a set of fan projections, on which a two-dimensional reconstruction of parallel layers
of the object is performed. This approach is called the method of repackaging.

The second class includes algorithms that perform a complete three-dimensional reconstruction.
Two-dimensional cone projections are filtered in some way, and then a reverse projection operation is
performed. Such algorithms are often referred to as the FBP algorithms (filtered backprojection) or algo-
rithms of the inverse projection with filtering [4, 5].

In [6] Feldkamp with co-authors proposed one of the first algorithms of three-dimensional recon-
struction with cone geometry of rays. The article presents an algorithm for a source moving along a cir-
cle. This trajectory does not satisfy the data completeness condition because the planes parallel to
the planes in which the source moves intersect the study object, but do not intersect the trajectory of
the source. Therefore, accurate image recovery is not possible and the algorithm is approximate.

The Feldkamp algorithm belongs to the class of FBP algorithms. It performs a line-by-line convolu-
tion filtration, and the full geometry of the cone scheme is taken into account only at the stage of
the inverse projection calculation.

Let a stationary object be specified for The plane of the
the study. The source-detector system re- detector
volves around the object, describing the cir- \
cle. The plane containing the source is
called media her plane. The intersection of db)
the middle plane and the axis of rotation

is taken as the origin. The distance from
the source to the detector is D, from the so-
urce to the axis of rotation — d, from the axis
of rotation to the detector — d ' (Fig. 3).

With d — oo, the algorithm passes into j
a layer-by-layer inversion formula for the
parallel case. In addition, the algorithm
gives the exact value of the density function
in the Central section (z = 0) at any distance
from the source.

For Fig. 4 f-rotation angle, Y-coordi-
nate along the detector that determines Fig. 3. The geometry of the scanning cone of rays
the recovery point.

(d’, 0, 0)

Median plane
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Source

Fig. 4. The geometry at the mid-plane

Communication (/, ) with (¥, @)

1 1
I=Yd/(d2+Y2)2, Y:ld/(dz—lz)z, e=cp+§+a. (16)
The projection in cylindrical coordinates can be written as
p(1,0)=[rdrd £ (r,6)8[ rcos(0—¢)~1]d¢.

Using the formula of inversion (3) in polar coordinates, when the point x = (r, ¢) and / = rcos(0 — ¢),

and presenting the projection p (/, 08) through the Fourier transform (7), you can write the desired density
function as

1 < i ‘vr[cos(e—d))—l]
(r,0)=—=RePdO| vdv 1,0)e’ dl.
f¢4n2<ﬁ£jwp()
Performing the transition from the coordinates (/, 0) to (¥, ®) by expressions (16) and from v to v' by

v'=v[d+rcos(¢—d)):|/(d2 +Y2)5,

we can write down the final formula for the fan bundle in the median plane

1 d* 5 Tv(r
f(r’¢)_4n29S[d+rcos(¢—®)]2 " [Y( ,(I))]dq)’ "

where
Y(r,) = drsin($—®)/[d + reos(¢— )],
By(Y)= ILIPCD(Y')g(Y—Y')dY', (18)
_°°(d2 +Y'2)E
g(Y)=Re ] vexp(jvY)dv. (19)

0
Expression (17) is an inverse projection operation, (19) is a folding function, (18) is a rolled-up pro-
jection. Further, to determine the formula for three-dimensional reconstruction, it is necessary to deter-
mine the additional contribution of 6/ to the reconstructed density by the projection data for a small in-
crement of the rotation angle 6®. From the projection data along the intersection of the plane of the de-
tector, with the middle plane, we can calculate the contribution at points lying on the median plane. Pro-
jections that cross the plane of the detector along a line parallel to the median plane, but not lying in it,
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themselves determine the plane. This plane is considered as an average plane-in a tilted coordinate sys-
tem. It is necessary to correct the difference between the actual rotation of 3@ along the vertical axis and
an equivalent rotation of 3@ along the normal to the plane.

Further, the distance from the source to the detector in the inclined plane is substituted into the Ra-
don's transformatuion. The density at the point 7 is taken equal to the sum of the additional contributions
of all planes (one for each rotation angle) passing through r. Feldkamp's algorithm became one of the
first algorithms of three-dimensional reconstruction, suitable for practical implementation. The algo-
rithm gives an approximate solution for a circular trajectory, provides high quality of restoration, but
does not take into account the cone angle (with the error of reconstruction grows with the angle), alt-
hough it surpasses the classical approach and some iterative methods, it takes a lot of time for the com-
puter account. In this connection, several modifications of the Feldkamp algorithm were proposed.
The main Managing is given to the creation of high-speed algorithms and to the investigation of possible
general the complexity of the method of collecting projection data [2, 5, 6].

So in [7] an algorithm was proposed, which was called the generalized parallel inverse projection
(EPBP — extended parallel backprojection). From the classical Feldkamp algorithm, this the method is
characterized by the use of repackaging and the transition to parallel data, which allows correctly take
into account the redundancy of data, use an arbitrary pitch for spiral scanning, perform a reconstruction
of the images of the heart.

An alternative to algorithms based on the Feldkamp method can be the single-layer repacking algo-
rithm (ASSR — advanced single-slice rebinning). Term “One-layer repacking” implies the separation of
the trajectory of the source into almost flat segments, each of which can be approximated by a flat curve.
The oblique plane, holding such a curve, is called the reconstruction plane. Cone data transfom to these
slanted planes that results in a set of fan projections. Behind the reconstructed flat tomograms are trans-
formed into the required three-dimensional shape [2, §].

Algorithms such as ASSR and EPBP give an approximate solution to the problem of three which is
expressed in artifacts on the image. Development of an exact analytical algorithm ensuring optimal
image quality is a complex task that has been the subject of intensive research in the world for several
decades and has worthwhile time. The exact methods currently being developed are under investigation.

Conclusions

Algorithms of classical two-dimensional reconstruction of tomographic image for parallel and fan
geometry of beams are considered. The analysis of the main approaches to the solution of the three-
dimensional problem of KT is carried out, common approximate methods for reconstruction of three-
dimensional images on a two-dimensional projection obtained when the conical geometry of the beams
to planar and non-planar scan trajectories are considered.

The three-dimensional reconstruction of an image from cone beam projections is one of the most
recent generalizations of CT. To obtain the exact solution it is necessary to use a flat trajectory that satis-
fies the completeness condition: every plane through the object under examination at least one time
crosses the trajectory of the motion of the radiation source. Of all the promising trajectories providing
accurate three-dimensional reconstruction, the most suitable for practical applications is a spiral cove-
ring the object both in radius and height. Spiral CT scan is a mode of volumetric tomography with non-
planar geometry of radiation, which is performed by continuous longitudinal movement of the object of
study.

The development of approaches and methods for obtaining tomographic images for three-
dimensional reconstruction in the cone of rays for spiral CT is an urgent task of CT, which has become
the subject of intensive research of the last few decades for the developers of reconstruction algorithms.
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K BOMNPOCY PA3PABOTKM METOAOB PEKOHCTPYKUUN
N3OBPAXEHUN B PEHTTEHOBCKOUW KOMIMbIOTEPHOM
TOMOIPA®UN C KOHYCHbIM NMYYKOM U3NYYHEHUA

E.H. CumoHos, M.B. Aepamoe

FOxHo-Ypanbckuli 2ocydapcmeeHHbIl yHugepcumem, ¢hunuan e e. Keiwumsive,
2. Kbiwumsim, Poccusi

OtpakeHa OCHOBHasl 3ajla4a PEHTICHOBCKOW KOMIIBIOTEPHOI ToMorpaduu M ee mMareMaTHde-
ckoe omucanue. IlpuBeneno npsmoe u odpaTHOe mpeoOpa3oBanue Panona. B craTee mpencTaBiIeHsI
METOABI PEKOHCTPYKLUH H300paXCHWH B PEHTI€HOBCKOW KOMMBIOTEpHOH ToMmorpaduu. [laHa nx
KpaTkas Ki1acCU(pHKanus. ABTOPOM pacCMOTpEHa KJIacCHUecKas 3ajada JByMEpHOI KOMITbIOTEPHOH
TOMOTpadHH, OCHOBHBIE TIOAXO/BI K ee pemeHnio. OCHOBHOE BHUMaHHUE YIEJICHO alrOpUTMY 00pat-
HOTO MPOCIHUPOBaHUs ¢ GuibTpanueii cBepTKoit. [IprBecH BBIBOI aaropuTMa sl apalieabHON U
BEEpHOM cxeM ckaHupoBaHus. [IpoaHammsupoBaHa 3a7ada TPEXMEPHONH PEKOHCTPYKIIUH H300pake-
Huil. OnucaHbl JONOTHUTENBHBIE YCIOBHS, HAKIaAblBA€Mble Ha MOJHOTY MPOEKIMOHHBIX JAHHBIX,
BBIYHCIIUTEIbHYIO 3P ()EKTHBHOCTh ATOPUTMOB, Ka4eCTBO MOJy4aeMbIX H300paxkeHui. PaccmoTtpe-
HBl OCHOBHBIE TPACKTOPUH IBIDKCHUS MCTOYHHKA PEHTT€HOBCKOTO H3IIyYeHHs, 0OecIednBaroIue
BhINoNHeHHe ycnoBus Kupumiosa—Cmura—Tysa. OCHOBHOE BHHMaHHE YIEJICHO CIUPAIBHOM Tpaek-
Topun. IlpuBeneH aHamU3 CyIIECTBYIOUINX METOJOB TPEXMEPHOU PEKOHCTPYKLIUHU ¢ KOHYCHOH reo-
MeTpHeil JTydel, UX JOCTOMHCTBA, HEJOCTATKH, 00JacTH puMeHeHus. JaHa ux KpaTkas Kinaccupu-
Karusi. IIpuBeieHBl anTOpUTMBI, JAafoNlie MPUOIIKEHHOE PelIeHHEe 3a1a4ld TPEeXMEPHOW PEeKOHCT-
pykunu. Onucans! anroputM Penpakamia, anropuT™M 0000IIeHHOW 00paTHOHM NMPOEKINH, MOJEPHH-
3UPOBAHHBINA AJITOPUTM OJTHOCIOMHON MepenakoBKU. 3aTPOHYT BOIIPOC pa3pabOTKU MOIX0J0B U Me-
TOJIOB MOJTyYEHHSI U300paKeHUH NP TpeXMEpHOH PEKOHCTPYKIIUU B KOHYCE JIy4el I CIIMpabHON
KOMITBIOTEPHOU TOMOTpaduu.

Kniouegvie crnosa: xomnsromepnas momospaghus, mpexmepuas peKoHCmpyKyus.
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