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For linear and nonlinear delay differential equations of the second order with damping terms
exponential stability and global asymptotic stability conditions are obtained. The results are based on
the new sufficient stability conditions for systems of linear equations. The results are illustrated with
numerical examples, and a list of relevant problems for future research is presented.

We proposed a substitution which exploits the parameters of the original model. By using that
approach, a broad class of the second order non-autonomous linear equations with delays was exami-
ned and explicit easily-verifiable sufficient stability conditions were obtained. There is a natural ex-
tension of this approach to stability analysis of high-order models. For the nonlinear second order
non-autonomous equations with delays we applied the linearization technique and the results ob-
tained for linear models. Our stability tests are applicable to some milling models and to a non-
autonomous Kaldor—Kalecki business cycle model. Several numerical examples illustrate the appli-
cation of the stability tests. We suggest that a similar technique can be developed for higher order
linear delay equations, with or without non-delay terms.
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1. Introduction

In the present paper, a specially designed substitution transforms linear second order equations into
a system, to which we apply some known exponential stability results.

This and the linearization techniques are used to devise new global stability tests for nonlinear non-
autonomous models. These results are explicit, easily verifiable and can be applied to a general class of
second order non-autonomous equations. Some of the theorems complement results [1, 2], as well as
the tests obtained in recent papers [3-5].

Consider the following system

. _ Tij k k T
() = — X, 57, als @ (RE©),i =1, ..,m, (1)
where t > 0, m is a natural number, 7; pbj=1..,mare natural numbers, coefficients ag‘j: [0,0) = R

and delays hﬁ‘j: [0,0) — R are measurable functions.
Let 4;,i = 1,...,m be functions defined as

— _1 Ti ok t Tij 1 Tij |k
Al(t) '_ a;(t) [Zk=1 aji (t) fmax {to‘hﬁ_(t)} ;n=1 [=]1 |aij (S)ldS + Z;rl:I,jii Zkil |aij (t)l],
where
a;(t) = XL, afi (o). 2

Lemma 1. Suppose that a;(t) = ag > 0,max;=y,_m limsup,_,,A;(t) < 1. Then, the system (1) is
uniformly exponentially stable.

Lemma 2. Let al(t) = 0,a;,(t) = ag > 0,i = 1,...,m,t > t,,

MaXi=1,,m LMo SUp s B2 o B, lal(®)] < 1 3)
and

maX;=q _mlim._,sup 4;(t) <1+ i 4)
Then, the system (1) is uniformly exponentially stable.

In Lemma 1 does not assumed that aﬁ- (t) = 0 but in Lemma 2 the constant in right-hand side of
the inequality (4) is better. So these lemmas are independent and we use both of them.
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Consider first the following equation:

X(t) + a(®)x(t) + b(O)x(t) + Xz e (O)x (R (1)) = 0, 6]
where

0<a<a(t)<A0<b<b() <B,|cp(t)| < Cy t —h(t) <1y

Theorem 1. Suppose liminf;_,,, (27(” 16 (@) +a(t) — g) > 0 and the following condition holds
2b(s)

limsup e [ TR 1Ol o ([0t =5 = 7]+
2Y M e (s) + a(s) _E) ds+|a(t) -2 1|ck(1:)|] <1 (6)

Then equation (5) is exponentially stable.
Proof. By substitution to equation (5)

x(t) = —%x+(§—e)y,5€(t) = (g—e)y(t)+a;x—§(%—e)y

we have

Y ( a(t)-2)_22® a a
yoy = A ] I (0% (e (®) — Bty Oy () = (a®) =)y (7)

x(t) + Eie
2 2
By Lemma 1 the following condition implies exponential stability of system (7).

[Zk 1|Ck(t)|fh (t)a (|a() a_ 2b@s)

=1 ck(®+alt)— a

237, cf (t) +a(s) — —) ds + |a(t) = m, |ck(t)|] <1 )
But for small € > 0 inequality (6) implies (8). Hence system (7) and then equation (5) are exponentially
stable.

Denote ¢t = max{c, 0}, ¢~ = max{—c, 0}.

Corollary 1. Suppose lim sup;_,., Qp=q ¢k (t) + a(t) — %) > 0 and there exist ty = 0,8 > 0 such
that at least one of the following conditions hols:

lim,_,,, sup

+

a

1. a* = 4B,

t 2b 2b(t
Tialee®l o (2a(5) = a =224 2300 ¢ (s) ) ds + Tty e () < 22— 5,6 2 6. (9)
2. A% < 4b,

2b(t)

alee Oy, o (B2 4+ 280, 6 (s)) ds + By cp (0 + 22 < 2a(t) —a = §,t 2 £, (10)

Then equation (5) is exponentially stable.
Proof. Suppose conditions 1) hold. Inequality a? > 4B implies that a(s) — % - Zb(s)

holds if for some t; = 0,5 > 0
t 2b(t
Sialer @ fy o (a(s) =5 =22+ 200, it (0) +a(s) = 5) ds + a(t) -5 - 22+

+ Xk=ala (O] < Xk 1Ck(t)+a(t)—-—5t>to (11)
Inequality (11) after simple transformations 001n01des with (9).

The second case is proved similarly.

Now with an additional assumption ¢, (t) = 0 we can improve Theorem 1.

Theorem 2. Suppose ¢, (t) = 0,k = 1, ..., m and the following conditions hold:

a(t) -2 - m o) <1,
. a 2b(s)
lim, ... suzoZ X SERCINM(LOREEE

Ck(t)+a(t)
+ 230 ck(s) +a(s) — 5) ds + |a(t) - % - 2b(t)| + Y 1ck(t)] <1+ —.
Then equation (5) is exponentially stable.
The proof'is based on Lemma 2 and is similar to the proof of Theorem 1.
Corollary 2. Suppose
a(t) =a> O,b(t) =b>00< Ck(t) < Ck,t - hk(t) < Tg.
If at least one of the following conditions hols:

= 0. Hence (6)

Zb(s)

+
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1oa?24p 22045 < 1and

P02 52506 < 24204 B6)
2. 2<4b2b(t)_2+2 =10 <1and
Zk:lckrk( + 22K 1Ck) (1+2)a+ k- 1Ck_2

Then equation (5) is exponentially stable.
Consider here the following equation

2() + a(®)x(6)) + Xiz bie(O)x (hy (t)) =0. (12)
Theorem 3. Suppose liminf;_,, (a(t) — ==Y b (®) (t — hy (t))) > 0 and the following condi-
tions holds

. 1
lim;_,, sup PSS
2

X
=1 br(®)(E-hi (1)
t zzm: b ) —h ())
X [Z}Zl:l by () (t — hy () fh (® (Za(s) —q — S&k=1 k(s)(s—hi(s )dS n

a

ta(t) - 2+ ZZEOEO) g 1~ hye ()] < 1. (13)
Then equation (12) is exponentially stable.

To prove the theorem we need in the following lemma.

Lemma 3. Suppose ay:[a,©) » RT =[0,0),k =1,..,m are measurable essentially bounded
functions, hy:[a,©) - R, h(t) <tk =1,..,m are measurable functions. Then for any continuous
function x: [a,©) — R there exists measurable function h: [a,©) — R, h(t) < t such that

miny hy () < h(t) < maxg hy(t), Y5, ak(t)x(hk(t)) = Qreq ak(t))x(h(t)).

Now we are ready to prove the theorem.

Proof. Suppose x is fixed solution of equation (12). Transform equation (12)

¥(t) + a(®)x(t)) + X7, b (O)x(t) — Xie, b (t) fh (0 X(8)ds =0. (14)
By Lemma 3 there exist 1 (t), k = 1, ..., m such that h; (t) < r.(t) < t and

S £)ds = (£ = b (©)x(re (D).
Hence x is a solution of the following equation

Z(t) + a()z()) + X1 be(Dz(8) + Eitq e (D2(1e(8)) = 0, (15)
where ¢ () = —b(t)(t — h(t)) < 0 and then cjf () = 0. Inequality (13) implies that (6) holds,
where h;, one can replace by 7.

By Theorem 1 equation (15) is exponentially stable. Hence the solution x of of equation (12) tends
to zero exponentially.

2. Nonlinear Equations
In this section we examine several nonlinear delay differential equations of the second order which
have the following general form

2(®) + ity fie (6 x (0 (), %(gr (D) + =y s (&, x (i (8))) = 0, (16)
with the following initial function

where fi(t,uq,uz), k =1,...,m, s (t,u), are Caratheodory functions which are measurable in ¢ and
continuous in all the other arguments, condition (a2) holds for delay functions py, g, hx; @ and P are
Borel measurable bounded functions.

We will assume that the initial value problem has a unique global solution on [ty, ) for all nonlin-
ear equations considered in this section.

Theorem 4. Consider the equation

() + f(t,x(6), %)) + s(t, x(0)) + Tty si (¢, x(8), x(hy (1)) = 0, (18)
where

f(t,v,0) = 0,5(t,0) = 0,5, (t,v,0) = 0,0 < gy < L= < 4,

0<by< S(“‘) <B, S"(“’”)| <Cou#0,t—h(t) <t
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If at least one of the following conditions holds:
2
1) BS%J 7(n=1Ck<b0_ﬂ(A_a0)

2 byz2(4-%2),3m, ¢ <2-B,
then zero is a global attractor for all solutlons of problem (18), (17).

Proof. First, by the previous theorem there exists a global solution x of problem (18), (17). Suppose x
is a fixed solution of problem (18), (17). Rewrite equation (18) in the form

X(t) + a(®)x(t) + b(®)x(t) + Ly e (Ox(hy (8)) = 0,

where
FEx(t),x(t)) . s(tx(t))
a(t) = { x(t) © #0, b(t) =1 *x® ©#0,
ale(t) = 01 bOI x(t) = 0:

sie(&x O x(hi(0))
Ck(t):{ xey ) =0,
0, x(h () = 0.

Hence the function x is a solution of the linear equation

J(@) +a®)y(t) + b(O)y(6) + Xty a0y (hi (1) = 0, (19)
which is exponentially stable by Theorem 1. Thus for any solution y of equation (19) we have
lim;_,., y(t) = 0. Since x is a solution of (19), we have lim,_,,, x(t) = 0.

The previous proof is readily adapted to the proof of the following theorems.

Theorem 5. Consider the equation

() + f(t,x(), %(8)) + s(t, x(8)) + Tty s (t, x(8), % (hy (1)) = 0, (20)
where

f(t,2,0) = 0,5(t,0) = 0,5(t,1,0) = 0,0 < ap < L2 < 4,

0<by< S(“‘) < B, S"(t;”“)| <Cuu#0,t—h(t) <t

Suppose at least one of the following conditions holds:

a? 2by—ay(A—ay)
<% ym 0—do 0
1) B< 2 k=16k<—2a0

Qo Ao
2 bez2L(A-2), N8, C <
Then zero is a global attractor for all solutions of problem (20), (17).
Theorem 6. Consider the equation

(@) + f(tx(0), %)) + Tty st x(he (1), %(8)) = 0, (21)

where

f(t,v,0)=0,5.(t0,u) =00<qay <———
sE(tvu)
v

b

a2-2B
2(10 :

fevw) <A,
u

0< b, < < Bp,u#0,t—h(t) <.
Suppose at least one of the following conditions holds:

1) Yke1Bi < ao 2 (A—ao) < Yke1by — ag Xytq Bty

2
2) Yk=1bk > ;( —%) k:lBk(1+aoTk)<%-

Then zero is a global attractor for all solutions of problem (21), (17).
Theorem 7. Consider the equation

() + f(t,x(), %)) + s(t, x(8)) = Tieq e (@) (@) — x(hie (D)), (22)
where

F(t,v,0) = 0,5(t,0) = 0,0 < ay < L% < 4,

0<b0 S(tu)<B |Ck(t)| <Ck,u¢0 t—hk(t)<'[k

Suppose at least one of the following conditions holds:
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2by—ag(4—ao)

a2
< X0 ym
]) B = 4 le:l Cka < 2a,

2

2) byz2(4-2),3m, e <2 ajB.
Then zero is a global attractor for all solutions of problem (22), (17).

Example 1. To illustrate Part 2) of Theorem 7, consider the equation

#(t) + (1.9 + 0.1sinx(t))%(t) + (1.1 + 0.1 cos x(¢t))x(t — 0.19sin? t) = 0. (23)
We have m=1,ay0 =1.8,A=2,by =1,B = 1.2,7 = 0.19; therefore, all conditions of the theorem
hold, hence zero is a global attractor for all solutions of equation (23).

Consider a generalized Kaldor-Kalecki model

(@) + [a@®) = B (x®)]2(®) + s(t, x(1)) = p(x(®)) — p(x(h (1)), (24)
where a, f are locally essentially bounded functions, s is a Caratheodory function, p is a locally abso-
lutely continuous nondecreasing function,

0<apy<a(t) <a;,0< By <B() <pBq,

Ip' ()] < C,ap — B1C > 0,0 < by < X2

u
Denote ay = ay — B1C.
Theorem 8. Suppose at least one of the following conditions holds:

]) B S a_g’CT < ZbO_aO(al_aO)
4

<B,t—h(t) <T.

2aq >

ao ao a%-2B
2 b22(a-2),C < 2
Then zero is a global attractor for all solutions of problem (24), (17).
Proof. Suppose x is a fixed solution of problem (24),(17). There exists a function £(t) such that

p(x(t)) — p(h(x(1)) = p'(£(0)) (x(&) = x(h(1)))- Denote a(t) — F(E)p (x(t)) = a(®), p'(§(D)) = c(®).
Hence x is a solution of the following equation
§(©) +a@®y(®) +5(6,y(0) = c@®) (y(©) = y(h(®)))- (25)
Since p'(x) = 0 then 0 < ap — B, C < a(t) < a,. Equation (25) has a form (22) with f(t,x(t),fc(t)) =
= a(t)x(t),m = 1. All conditions of Theorem 7 hold, hence for any solution of (25) we have
lim;_,,, y(t) = 0. Then also lim;_,,, x(t) = 0.

3. Remarks and Open Problems

The technique of reduction of a high-order linear differential equation to a system by the substitu-
tion x®) = y, ., is quite common. However, this substitution does not depend on the parameters of
the original equation, and therefore does not offer new insight from a qualitative analysis point of view.
Instead, we proposed a substitution which exploits the parameters of the original model. By using that
approach, a broad class of the second order non-autonomous linear equations with delays was examined
and explicit easily-verifiable sufficient stability conditions were obtained. There is a natural extension of
this approach to stability analysis of high-order models. For the nonlinear second order non-autonomous
equations with delays we applied the linearization technique and the results obtained for linear models.
Our stability tests are applicable to some milling models and to a non-autonomous Kaldor-Kalecki busi-
ness cycle model. Several numerical examples illustrate the application of the stability tests. We suggest
that a similar technique can be developed for higher order linear delay equations, with or without non-
delay terms.

Solution of the following problems will complement the results of the present paper:

1. In all stability conditions obtained, we used lower and upper bounds of the coefficients and
the delays. It is interesting to obtain stability conditions in an integral form.

2. Apply the technique used in the paper to examine delay differential equations of higher order.
Also, the substitution used in this chapter was based on the existence of a non-delay term, it would be
interesting to adjust the method for equations which have several delayed terms only.

3. Establish necessary stability conditions for the equations considered in this chapter by reduction
to a system of delay differential equations.
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4. For the sunflower equation and its modifications establish set of conditions to guarantee
boundedness of all solutions.
5. Apply the technique used in the paper to examine delay differential equations of higher order.
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MPOCTbIE TECTbl YCTOMYMBOCTU ANA AU PEPEHUUATIBbHbIX
YPABHEHWI 3A0EPXXKN BTOPOIO MOPAOKA

J1. Bepe3aHckuli
YHusepcumem um. beH-'ypuoHa 8 Hezeese, 2. beap-Lllega, N3paurnb

Jns TMHEHHBIX WM HeNMHEHHBIX IuddQepeHranbHbIX ypaBHEHNH 3ama3/ibIBaHus BTOPOTO TIO-
PSZKa C 3aTYXAIOIUMH YCHAMH IOJTy4eHBI SKCIIOHEHIHAIbHAs YCTOWYMBOCTD M yCIOBHUS TI100ah-
HOM aCHMIITOTHYECKON YCTOWYMBOCTHU. Pe3ynbTaThl OCHOBaHBI Ha HOBBIX JOCTATOUYHBIX YCIIOBMSX
YCTOMUUBOCTU ANl CHCTEM JIMHEWHBIX YpaBHEHUH. Pe3ynbTaTsl MIIIIOCTPUPYIOTCS YHCIECHHBIMU
IpUMEpaMH, a TaKXKe MPUBOJHUTCS NEpedyeHb COOTBETCTBYIONIMX MpodiIeM Uit Oyaymiero muccieno-
BaHUSL.

IIpennoxkeHa noacTaHOBKA, B KOTOPOM MCHOJB3YIOTCS apaMeTphl HCXOAHOH Moaenu. Mcnomns-
3ysl 9TOT MOAXOJ, IIMPOKUN KIIACC HEABTOHOMHBIX JIMHEHHBIX YpaBHEHUI BTOPOro HOpsAKa C 3a-
JiepKKaMH OBLT UCCIICOBAH M HOJXYYEHBI SIBHBIC JIETKO NPOBEPsieMble TOCTaTOYHBIE YCIOBUS yCTOM-
yuBOCTH. [IpUBOANTCS €cTEeCTBEHHOE MPOJOJDKEHHE 3TOTO MOAXOAA K aHANH3Yy YCTOWYMBOCTH MO-
Jienedl BBICOKOTO MOpsiaka. JInas HeNMHEHHBIX HEaBTOHOMHBIX YPAaBHEHHUII BTOPOTo Mopsaka C 3a-
JepKKaMH TPUMEHEH METOJ JIMHeapH3alld U TONy4YeHBI pe3yabTaThl I JTUHEHHBIX MOJAEICH.
[IpuBeneHHbIE TECTHI CTAOMIBHOCTH MPUMEHHMBI K HEKOTOPBIM MOAEISM (hpe3epoBaHUs U K Heas-
TOHOMHOH MoJienu 6usHec-nmkina Kannopa — Kanenkoro. Mel peanaraem, 4ToObl aHAJIOTHYHAS Me-
ToIMKa ObLIa pa3paboTaHa s TMHEHHBIX YPaBHEHUH C yCIOBHEM JIMHEHHOM 3a1epKKu UitH 6e3 3a-
JICPKKH.

Kniouesvie cnosa: ouggepenyuanvhvie ypasHenus 3anazobléanus 6mMopo2o NOpsoKd, dKCHO-
HEeHYUATbHASL YCMOUYUBOCMb, PEOYKYUSL CUCEM.
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