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The article gives an overview of recent results on the stability of finite-difference equations
with delay.

All results are compared with known signs of exponential stability of linear difference equa-
tions.

The results are obtained using the Bohl-Perron theorem and comparing the equation under study
with an equation for which the Cauchy function is positive.

The Bohl-Perron theorem allows us to reduce the question of the exponential stability of a linear
difference equation with delay to the solvability of an operator equation in one of the functional
infinite-dimensional spaces.

That is, in fact, to an estimate of the norm or the spectral radius of a bounded linear operator in
this space. For this estimation, different difference inequalities are used. One way to obtain such ine-
qualities is to evaluate the fundamental solution in the event that this solution is positive.

The above scheme is used in this paper to obtain sufficient conditions for the exponential sta-
bility of the following equation

x(n+ 1) = x(n) = =X a,()x(hy (), hin) < n, (D
provided that the coefficients and the lag are limited functions.

The main results of the paper are the following ones.

Theorem 1. Suppose the fundamental function of (1) is eventually positive, i.e., for some ry> 0
we have X(n, k) > 0, n > k > n, and, in addition,

a=1im,_,inf X% a;(n)>0. )

Then equation (1) is exponentially stable.

Theorem 2. Suppose there exists a subset of indices / < {1, 2, ..., m} such that a; >0, k € I, for
the sum Y;¢; @;(n) inequality (2) holds, the fundamental function X;(n, k) of the equation

x(n+1) = x(n) +Xer ar(n) x(hy(n)) =0 3)
is eventually positive and
. Yigrla(m)l
lim sup’y e L “)

Then equation (1) is exponentially stable.
Keywords: linear difference equations, exponential stability, Bohl-Perron theorem, comparison
theorems.

1. Introduction
In this paper we give a review on some new exponential stability results for scalar linear difference
equations with bounded delays:

x(n+1) = x(n) = - 37 ay(m)x(hy (), hy(n) < m, (1)
where //(n) is an integer for any [ = 1,...,mandn = 0, 1, 2, ... under the following two restrictions on
the parameters of (1) which mean that coefficients and delays are bounded:

(al) there exists K > 0 such that |a;(n)| < K forl=1,..,m, n=0,1,2,...;

(a2) there exists 7> 0 such that =T < h;(n) < nforl=1,..,m, n=0,1,2,....

To obtain explicit stability conditions we apply the following corollary of Bohl-Perron theorem.
Denote by 1” the space of bounded sequences v = {x(n)} with the norm ||v||;» = sup,so | x(n)]| < .

Lemma 1 [2]. Suppose for the equation L({x(n)}) = 0, where
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0

L({x(M}r=0) = {x(n + 1) — x(n) + T a;(m)x(hy(n)) }
conditions (al)-(a2) hold, the equation L;({x(n)}) = 0 is exponentially stable, where

n=0’

Li(fxMW¥izo) = {x(n + 1) — x(n) + T=y bi()x(g:(W)}_. )
Let Y (n, k) be the fundamental function of (2) and C, be the Cauchy operator of equation (2) which is
C{f MYizo = SR8V (K + DO _ . 3)

If the operator T = C1(Ly — L) =1 — C,L satisfies ||T||;o-;> < 1, then the equation L({x(n)}) =0
is exponentially stable.

By this lemma to obtain stability conditions we need to estimate norms of a some linear operator.

The problem is that this operator is given in an implicit form, since the fundamental function
Y (n, k) of a model equation usually is not known. So we can only estimate this function in some particu-
lar cases.

Such estimations we cam obtain for linear delay difference equations with positive fundamental
functions.

2. Equations with Positive fundamental Function

The main results for such equations is the following.

Theorem 1. Suppose the fundamental function of (1) is eventually positive, i.e., for some ng = 0
we have X(n, k) > 0,n = k = ng, and, in addition,

a = lim,_, inf 312, a;(n) > 0. €))
Then equation (1) is exponentially stable.

Further, we will apply nonoscillation tests, the following result is Theorems 4.1 in [3].

Lemma 2 [3]. Suppose a;(n) = 0,1l =1,2,...,m,and for someny, = 0

1 — 1
SUPnzn, Z{il a;(n) < 2’ SUPnzn, Z{il ;clzrlnax{no,minlhl(n)} a;(k) < % (5)

Then the fundamental function of (1) is eventually positive: X(n, k) > 0,n = n,.
Corollary 1. Suppose a(n) > 0, (4) holds and (5) is satisfied for some ny > 0. Then (1) is exponen-

tially stable.
Consider together with (1) the following comparison equation
x(n+1) = x(n) = — £ by(Wx(g: (), n = ng, ©6)

where g(n) < n. Denote by Y (n, k) the fundamental function of equation (6).

Lemma 3 [3]. Suppose a;(n) = b;(n) = 0, g;(n) = hy(n),l = 1,2,...,m, for sufficiently large
n. If equation (1) has an eventually positive solution, then (6) has an eventually positive solution and its
fundamental function Y (n, k) is eventually positive.

Corollary 2. Suppose (4) and at least one of the following conditions hold:

1) 0 < a;(n) < a;,h;(n) = n —1; and there exists A > 0 such that

A-1<-3R @i, 7)

kk
2) m=1n — h(n) < k; a(n) < (k+1)k+D)"

Then (1) is exponentially stable.
Remark 3. By Theorem 3.1 in [3] it is enough to assume the existence of an eventually positive so-
lution in the conditions of Theorem 1 rather than to require that the fundamental function is positive.

3. Explicit Stability Tests

Further, we deduce explicit exponential stability conditions based on Lemmas 1 and 4. As above,
we assume that (al)-(a2) hold for (1).

Lemma 4. Suppose the fundamental function of the equation (1) is positive: (n, k) > 0,n > k = n,,
and a;(n) = 0,1 = 1,...,m,n = ny. Then there exists n; > ng such that

0<Yitn, X(nk+ DX (k) <1,n=n,. (8)

Now let us proceed to explicit stability conditions.
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Theorem 2. Suppose there exists a subset of indices 1 € {1,2,...,m} such that a; = 0,k € I,
for the sum Y;c; a;(n) inequality (4) holds, the fundamental function X,(n,k) of the equation

x(n+1) = x(n) + Xiey ay(m)x(hy(n)) = 0 €)
is eventually positive and

. Yigrlai(n)|

Mo SUP S ey (10)

Then equation (1) is exponentially stable.
Now let us proceed to explicit stability conditions.
Now we will take general exponentially stable difference equations with a positive fundamental
function as a class of comparison equations.
Corollary 3. Suppose there exist a set of indices I < {1,2,...,m}, functions g;(n) <n,l €1, and
positive numbers ay, a1 and y < 1, such that for n sufficiently large the inequalities
O0<ag=Yieram)<a; <1lE€l
hold and the difference equation

x(n+1) —x(n) = — Yy a(m)x(g,(n)) (1)
has a positive fundamental function. If
h 1 .
Skerlax ()| B gl L Ja, ()l + Seerlax ()] < ¥ Teer ax(n) (12)

then (1) is exponentially stable.
Remark 5. Based on the choice of subset /, the theorem contains 2" — 1 different stability conditions.
Assuming I = {1,2, ..., m} in Corollary 3, we obtain the following result.
Corollary 4. Suppose there exists g(n) < n and positive numbers ay, a, and y < 1 such that for n
sufficiently large

0<ag<b(n)=3raqn)<a; <1 (13)
and the difference equation
x(n+1) —x(n) = =X a;(n)x(g(n)) (14)

has a positive fundamental function. If for n large enough
h 1

STl ()] D Sl ()] < ¥ Sy ay (),
then equation (1) is exponentially stable.

The following result is an immediate corollary of Lemma 2 and Theorem 2.

Corollary 5. Suppose 0 < ag < ay(n) < by < % and there exists y such that 0 <y <1and
Yizila;(n)| < yay(n) for n large enough. Then the equation

x(n+1) —x(n) = —a,(Mx(n — 1) — Xy a,(m)x(hy(n)) (15)
is exponentially stable.

Corollary 6. Suppose for some positive ag, by, ¥, where by < 1,y < 1, the following inequalities
are satisfied for n large enough

0<ay< IRy an) <b <5, (16)
YreilaeMI T8 oo Zikalac (D] < v X a ().

Then equation (1) is exponentially stable.
Now let us consider the case m =2

x(n+1)—x(n) = —a(n)x(g(n)) — b(n)x(h(n)). (17)

Corollary 7. Suppose delays g(n), h(n) are bounded, there exist ay > 0 and y, 0<y<1 such that at
least one of the following conditions holds for n suﬁ' ciently large:

)0<ag<an) <a < Zk g(n)a(k) < Jb(m)| < ya(n)
2)0<ag<an)+bn) <a < - g(n)(a(k) +b(k)) <

h(n),
la(n)| zaaggngng;gg;;[|a<k>| + |b(k)|] <ylam) + b(n)].
Then equation (17) is exponentially stable.
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Proof. We choose the following equations:
x(n+1) —x(m) = —a(n)x(g(n)),
x(n+1) —x(n) = —a(m)x(g(m)) — b(m)x(g(n)),
with a positive fundamental function to obtain 1) and 2), respectively.
Consider now an autonomous equation with two delays

x(n+1)—x(n) =—ax(n—g) — bx(n—h),ag # 0,bh # 0. (18)
Corollary 8. Suppose at least one of the following conditions holds:

1)0<a<gd(g+1)"9D |p| <aq;

20<(a+b)<g9(g+1)"W ja(g—h)| <1

Then equation (18) is exponentially stable.

Consider a high order autonomous difference equation.

xn+1)—x(n) ==Y ax(n—-1). (19)
Corollary 9. Suppose there exists k > 1 such that

K Kk k
0 <Xim1 & < Gpmn Ziskrlal <Xz a

Then equation (19) is exponentially stable.

4. Discussion and Examples

Let us note that the approach using Bohl-Perron Theorem is similar to the method developed in [20]
where stability is deduced based on the fact that some linear exponentially stable equation is close to
the considered equation. Unlike the present paper, [20] considers nonlinear perturbations of stable linear
equations as well. The main result (Theorem 2) of [20] is the following one.

Suppose that the fundamental function of (1) satisfies

YiolX(nj+ DI S Ln=ngng+1,... (20)
Then the nonlinear equation
x(n+1) —x(m) = =¥t ax(Mx(he(n)) + F(n,x(n), x(n — 1), ..., x(n — 1))
is globally asymptotically stable if in addition |F (n, xg, Xy, ..., X;| < qmaxg<i<|x;|,and q < L1,
Instead of inequality (20) in this paper we apply exponential estimation
|X(n, k| < Me YR M > 0,y > 0. (21)
Generally, (21) implies (20), however for bounded delays and coefficients

Let us discuss some stability tests for equation (1).
We start with the following result [9, 19, 23, 24].

Ifm=1%7_,a(n) =won—hn) <kan) =0, and

N _3 1

Liznma() <3+ 505 @2)
then equation (1) is asymptotically stable. This result is also true for general equation (1) (m > 1),
where a;(n) = 0,a(n) = Y=, a;(n), h(n) = max hy(n).

Equation (1) with positive constant coefficients is asymptotically stable if [10]
. 1
STy @ limy, sup (n = hy(n) < 1+1 - 32 a (23)

Stability tests (22) and (23) are obtained for equations with positive coefficients. In the present paper we
consider coefficients of arbitrary signs. The next interesting feature of the results obtained here is that
some of the delays can be arbitrarily large (see for example, Parts 1 and 2 of Corollary 7).

Example 1. By Corollary 7, Part 1, the following two equations

x(n+1)—x(n) =-(0,2+0,05sinn)x(n —1) — 0,1 |cosn|x(n — 20), (24)

x(n+1)—xmn) = —[0,12+0,1(-1)"|x(n —2) —[0,1 + 0,11 (—=1)"*]x(n — 14) (25)
are exponentially stable.

Two previous results of [9, 19, 23, 24] and [10] fail to establish exponential stability for equation
(24) with positive coefficients, as well as all parts of Corollary 3.10 in [4] cannot be applied to equation
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(25) with an oscillating coefficient. None of the inequalities in Corollary 8 of [2] can be applied to
establish stability of (25).

We note that (24), (25) are special cases of equation with one nondelay term and two delay terms
considered in [2], however none of the inequalities in Corollary 8 of [2] can be applied to establish sta-
bility of (25). Let us also note that for (25) we have

Yhcomlatol + X amIb(D] = 1.78 > E,
where [13] 7/2 is the best possible constant [19, 22] in Y-, kay, <3 Z which implies exponential sta-
bility of (19).

Example 2. Consider equation (17) with two variable coefficients and delays, where

—0.12,if nis even, 0.17,if nis even,

a(n) = {—0.05, if nisodd, "W = {0.08, if nis odd,’ (26)
_(n—3,if nis even, _(n—4,if nis even,
gn) = {n —5,if nis odd, h(n) = {n— 8,if nisodd,’ 27

Then in (I 7) the sum a(n) + b(n) is either 0.05 or 0.03 which is less than 0.5,
Rl cfa(k) + b(k)] <3:0.05+2-0.03=0.21<1/4
for both odd and even n and for y=0.95 < 1 we have

2 Bt 119091 + 10090 = {00775 0,030 s,
thus by Corollary 7, Part 3, equation (17) is exponentially stable. None of the inequalities in Corollary 8
of [2] can be applied to establish stability of (17). We note that it would be harder to treat this example
if the equation were written as high order equations with constant delays and variable coefficients.

A number of papers [2, 12, 14, 15, 16, 17, 20] are devoted to stability tests for equations with posi-
tive and negative coefficients and, more generally, for equations with oscillating coefficients. Paper [20]
extends earlier results of [12]. In particular, for the linear autonomous equation

x(n+1)—x(n) =qgx(n—m) —px(n—k),p>0,g>0m=1k=>1. (28)

the following result was obtained in [12].
)(k+1)

Suppose p Cas < 1. Then equation(28) is exponentially stable if and only if p > q.

Condition 1) of Corollary 8 is close to this result. It gives the same sufficient stability test for g of
an arbitrary sign but does not involve the necessity part.

The paper [16] contains a nice review on stability results obtained for equations with oscillating co-
efficients. The results of [16] generalized the following stability test obtained in [14] for equation (28):

Ifkp <1, p% > q then (28) is asymptotically stable.
By condition 2) of Corollary 8 equation (28) is asymptotically stable if

kk
P—Q<m.|10(k—m)|<1-

It is easy to see that these two tests are independent.

Let us discuss sharpness of conditions of Theorem 1 for exponential stability of (1), assuming
the fundamental function is positive; in particular, we demonstrate sharpness of condition (4).

Example 3. The equation

x(n+1) —x(n) =-3""1x(n),n=>ny, >0,
has apositive fundamental function and any solution can be presented as x(n) = x(ng) [13= no(l 37k,
thus for no=0

X(n,0) = 5g(1-37%71) > 1 - 32§37 > 1 - 57371 =3

i.e., the equation is neither asymptotically nor exponentially stable.

Let us demonstrate that the facts that the sum of coefficients };/%; a;(n) in (1) is positive, exceeds
a positive number and that the fundamental function is positive do not imply stability, in the case when
coefficients have different signs.

BecTHuk HOYplY. Cepus «KomnbioTepHble TEXHONOrMK, ynpasreHue, paauoaneKkTPoHUKay. 35
2018. T. 18, Ne 3. C. 31-38



MHqJOpMaTMKa N BblHUCIINTEJIbHAA TEXHUKaA

Example 4. Consider the difference equation

x(n+1) —x(n) =-22x(n—1) + 2x(n). (29)
Here 2.2 — 2 = 0.2 > 0, so the sum of coefficients exceeds a certain positive number. Let us prove
that the fundamental function is positive and the solution is unbounded. Really, for the fundamental
function we have X(0,0) = 1, X(1,0) = 3. Denote x(n) = X(n,0), notice that x(1) > 1,5x(0) and prove
x(n) > 1,5x(n — 1) 0 by induction. Really, x(n) > 1,5x(n — 1) > 0 implies x(n — 1) <2x(n)/3, and for any
x(n—1) > 0 we have

4.4x(n) _ 4.6

x(n+1) =3x(n) —2.2x(n—1) > 3x(n) — 3 ?x(n) > 1.5x(n),

thus X(n, 0) is positive and unbounded. The equation is autonomous, so the same is true for X(n,k). Since
X(n,0) is unbounded, then (29) is not stable.

Finally, let us formulate some open problems.

1. Under which conditions will exponential stability of (1) imply exponential stability of the equa-
tion with the same coefficients and smaller delays:

x(n+1) —x(n) = =3 ai(m)x(g,(n)),n = ng, by(n) < gy (n) <n.
2. Prove or disprove:
If in Theorem 2 condition (10) is substituted by

Yigllai(M)| < ap Yy ai(n), [ln=1an <1
and all other assumptions hold, then (1) is stable. If in addition

Z;lo=1(1 - an) = o,
then (1) is asymptotically stable.

3. Consider the problem of the exponential stability of (1) when (al)-(a2) are substituted with one of
two more general conditions:

a) lim,,_,,, h;(n) = o and there exists M > 0 such that

Yicnma() <M foranyl=1,..,m

b) delays are infinite but coefficients decay exponentially with memory, i.e., there exist positive
numbers M and 4 < 1 such that |a;(n)| < MA?~M®),

Let us note that Bohl-Perron type result in case b) was obtained in [5], Theorem 4.7.

4. Example 5 demonstrates that for equations with positive and negative coefficients and a positive
fundamental function inequality (4) does not imply exponential stability. Is it possible to find such con-
ditions on delays and coefficients of different signs that (4) would imply exponential stability? For in-
stance, prove or disprove the following conjecture.

Conjecture. Suppose the following conditions

a(n) = b(n) =20,h(n) < g(n) <n,lim,_,supb(n)[g(n) —h(n)] <1
are satisfied for the equation

x(n+1)—x(n) = —a(n)x(h(n)) + b(n)x(g(n)). (30)
If the fundamental function of (30) is positive and

lim,,_,,, infla(n) — b(n)] > 0,
then (30) is exponentially stable.

Let us remark that conditions when the fundamental function of (30) is positive were obtained in [6].
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[IpuBenen 0030p MOCICTHIX PE3YNHTATOB MO YCTOWYHBOCTH PAa3HOCTHBIX YpaBHEHUH C 3amas-
JIBIBAaHUEM.

Bce pe3ynbTaThl CpaBHMBAIOTCS C M3BECTHBIMU NMPU3HAKAMH SKCTIOHEHITUAIBHON YCTONYUBOCTH
JIMHEMHBIX PA3HOCTHBIX YPABHEHUM.

Pe3ynpTaThl MOMy4YeHBI C HCTOIB30BaHHEM TeopeMbl boms — IleppoHa u cpaBHEHUS Hcclemaye-
MOT0 ypaBHEHUS C ypaBHEHHEM, Y KoToporo (yHkiwus Komu moioxuTensHa.

Teopema boust — [IeppoHa mo3BoJIsIeT BOMPOC 00 3KCTIOHEHITUANBHON YCTOHYNBOCTH IMHEHHOTO
Pa3HOCTHOTO YpaBHEHHUS C 3ama3J[bIBAHUEM CBOIUTH K Pa3pelrMOCTH ONEPAaTOPHOTO YPaBHEHUS B
OJTHOM U3 (PYHKIIMOHATBHBIX 0ECKOHEYHOMEPHBIX IMMPOCTPAHCTB.

To ecTp (hakTHUECKH K OLICHKE HOPMBI WIH CIIEKTPAIHHOTO paguyca JHHESHHOTO OTpaHUICHHO-
ro oreparopa B 3TOM MpocTpaHcTBe. s Takoil OLIEHKH UCHOIb3YIOTCS Pa3IMyHble PA3HOCTHBIE He-
paBeHcTBa. OOMH W3 CHOCOOOB TONYYCHUS TaKUX HEPABCHCTB 3aKIFOYACTCS B OICHKE (DYHIAMCH-
TaJbHOI'O PEIICHUS B TOM CIYy4ae €Ci 3TO PELICHUE MOJIOKUTEIbHO.

M3noxkeHHas BBIIE CXeMa MPUMEHSACTCS B JaHHOW paboTe /IS OMyYeHHUs] TOCTaTOUYHBIX YCIIO-
BHI 3KCIOHEHIIMAJIbHON YCTOMYMBOCTH CJIEIYIOLIET0 YPaBHEHUS

x(n+ 1) = x(n) = -3% ay(W)x(hy(n)), hfn)<n, )]
TIPH YCIOBUH, YTO KOA(GUIMEHTH U 3aMa3[bIBaHus — OTPpaHIMYCHHBIC () YHKIIHH.

OCHOBHBIMH pe3yIbTaTaMHu paOOTHI SIBITIOTCS CIICTYFOIIHE.

Teopema 1. Ilycth pynnamenTanpHas GyHKIHA (1) B KOHEYHOM HTOTE TIOJOKHUTENBHA, T. €. IS
HEKOTOporo 1y > 0 umeem X(n, k) > 0, n > k > ny 1, Kpome TOrO,

a=lim,_. inf £ a;(n) > 0. @)

Tornma ypaBHeHUe (1) 3KCTIOHCHITHATBEHO YCTOWYHBO.

Teopema 2. Ilycts cymiecTByeT HOAMHOXECTBO MHIeKcoB [ C {1, 2, ..., m} Takux, 4ro a; >0,
k €I, nnst cyMMBI Y¢; a; () BBITIOMHEHO HepaBeHCTBO (2), GpyHmaMeHTambHele QyHKUUH X(n, k)
YpaBHEHHUS

x(n+ 1) = x(n) + Xier i (n) x(hy(n)) = 0 A3)
B KOHEYHOM HMTOTE IOJIOKUTEIIEHBIE U

: Zigrlai(m)l
lim sup=F—+ < 1. 4
n-w pZ[g[ aj(n) ( )

Tornma ypaBHeHue (1) 3KCTIOHEHITHATEHO YCTOWYHBO.
Kniouegvie cnoea: nunelinvle pasHocmHuvle YPAGHEHUs, IKCHOHEHYUATbHASL YCMOUYUBOCHb,
meopema bona — Ileppona, meopemul cpasnenus.
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