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Introduction 
Modern Earth sciences are not conceivable without the analysis of multispectral satellite data.  

The Normalized Difference Vegetation Index (NDVI) and other proxies of primary biological productiv-
ity are important products of this analysis [1]. The values of NDVI are highly depended on environmen-
tal conditions, so that NDVI is one of principal indicators for evaluating climate impact onto terrestrial 
ecosystems [2–12]. Particularly, extent and evolution NDVI are often used to estimate climate changes 
global and vegetation activity [2, 3] and net primary production and vegetation dynamics overlarge arid 
regions such as Sahel [4, 5], arid regions of Central Asia and Kazakhstan [6, 7], Mongolia and arid area 
of China [8, 9], Tibetan Plateau [10]. In addition to monitoring arid zones in the works [11, 12] explores 
the long-period changes in forest-steppe, forest and tundra vegetation of the Russian Federation.  

Mapping of NDVI dynamics is one of the main instruments for evaluation and prediction of agricul-
tural productivity [13–18]. First, as in the case of natural biomes, some work explore the impact of cli-
mate change on productivity of rain-fed zones [13] and other use NDVI data to model of ecological re-
gimes of rural territory [14]. The changes in vegetation indices of rural areas allows to separate healthy 
vegetation crops from weak developed fields in irrigated agriculture [15]; to monitor droughts [16, 17] 
and, with availability of additional surface data, to implement crop forecast [18]. From this point,  
the capabilities to predict vegetation index under an appropriate spatiotemporal scale [13–18] are critical 
for decision making to adapt agricultural techniques or to limit socio-economic losses associated with 
urbanization [19, 20]. 
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This study examines the perspective of artificial neural networks for forecast Normalized Dif-
ferential Vegetation Index (NDVI) on Diyala River basin and also how information about of biocli-
matic landscapes will affect to forecasting performance. To do this, in the first stage of the experi-
ment, a total of 20 perceptrons with different one hidden layer architectures were trained with site-
specific variables (latitude, longitude, minimal, maximal and mean height, landcover type) and sea-
sonal meteorological variables (precipitation sum, and minimal, maximal and average daily tempera-
tures) by error back propagation algorithm on the data of 2000–2010 years and tested on data for 
2011–2016 years. It has been shown that the best performance, with determination coefficient R2 of 
0.78, was achieved by perceptron model with 12 hidden neurons the activated by logistic activation 
function and hyperbolic tangential activation of output value of NDVI. The large spatial heterogenei-
ty of forecasting performance of the best perceptron was detected: in upper part of basin character-
ized according to Köppen – Trewartha bioclimatic classification, as landscapes of temperate moun-
tain climate and the subtropical climate with dry summers, R2 was 0.76–0.80, whereas in dry steppe 
landscapes and semi-desert landscapes of Diyala downstream R2 was 0.6–0.7. The second stage of 
experiments with 20 models of perceptrons where the type of landscape was added as input variable 
or where 150 individual perceptrons were selected for each landscape, have shown that these ap-
proaches allows to R2 increase up to 0.73–0.85. However, the strong contrast between characteristics 
of individual models complicates their use in the practice and requires to finding of new forecasting 
approaches. 

Keywords: remote sensing, NDVI forecast, perceptron, bioclimatic landscapes, precipitation, 
temperature, climatic response. 

 
 



Информатика и вычислительная техника 

Bulletin of the South Ural State University. Ser. Computer Technologies, Automatic Control, Radio Electronics. 
2019, vol. 19, no. 3, pp. 5–19 

6

In the analysis of remote sensing data are used by all kinds of statistical analysis and machine learning 
techniques [21]. For example, the linear regressions [22–24] are used in the analysis of NDVI time se-
ries; the stepwise cluster analysis is used to NDVI simulation [25] and artificial neural network (ANN) 
to short-range NDVI forecast [26]. Recently began studies related to the application of the ensemble ap-
proach. So in the forecast NDVI model [27] uses deep stacking network, consisting of a stack of multi-
layer perceptron, each of which models the spatial feature of the associated region at a particular time 
instant. The study [28] estimates vegetation health on the basis of trained gradient boosted machine 
models, which combine gradient-based optimization and boosting of base trees models that divide pre-
dictor variable into distinct geographic regions. 

The main objective of this work is to develop a ANN based prediction model of NDVI, which (i) 
would take into account changes in rainfall and temperature in the basin of the river Diyala; and (ii) at 
the same time could be useful in other regions. The relevance of first question is related with unknown 
reaction natural-human systems the Tigris River basin to climate change [29] and that can be explored 
by simple multilayer perceptron model. The relevance of second question is related to success of ensem-
bles stacking and boosting [27, 28] where individual model of ensemble member is constructed by spe-
cific geographical information. At the same time, simple and ensemble networking approaches possess  
a general inability to understand cause-and-effect relationships between the input and output of such 
networks. 

The main idea of present study is to associate all possible geographical predictors on input layer of 
ANN with some form of geographical landscapes. The geographical landscape can be defined as a ho-
mogeneous geosystem (in origin and history of development) with a specific uniform of indivisible by 
zonal factors terrain, geological base, regional climate and hydrothermal conditions, types of soil and 
ecological communities [30]. The landscape can be introduced as a collection of smaller geosystems or 
“natural boundaries” – specific morphological elements of the landscape that contains natural communi-
ties merged by unique physical and geographical processes and developed on one form of the landscape 
terrains and homogeneous substrate. The concept of the natural boundaries is quite useful in the ecologi-
cal assessment studies where it allows introduction of the anthropogenic landscapes [31]. Perceiving this 
ideological content as a basis, we nonetheless adopt the technical definition of landscape classification 
[32]: the degree of climate continentality; belonging to morphological structures of the highest order;  
the splitting of the terrain; bioclimatic differences and geochemical type (the simplification of “geo-
chemical catena” position to the maximum, mean and minimum elevation of smallest landscape unit is 
used in our study). 

On the basis of the above, the objectives of the work consisted of 1) processing the digital terrain 
data and comparing two climate data sets for classification of bioclimatic landscapes of Diyala; 2) finding 
a set of best predictors described hydrothermal regime which influence to NDVI value; and finally  
3) to determine the best ANN architecture working in all types of landscapes. 

The rest of paper is organized onto 3 sections: 1) datasets and methods with brief overview of  
the study area, evaluation of climate datasets and landscape classification; 2) ANN forecasting results, 
and 3) short conclusion. 

 
1. Datasets and methods 
Four stages of geo-climatic information processing have been performed in our research work in 

order to get the required results. All the results presented in this paper have been calculated using 
MATLAB programming language version R2018b, whereas the ArcGIS version 10.5 has been used to 
simulate the results as geographical maps.  

 
1.1. Land cover and topography of study area 
Diyala river basin shapefile used within the ArcGIS has been projected using the maps presented in 

the inventory of shared water resources in western Asia by the United Nations Economic and Social 
Commission for Western Asia [33].The Diyala river basin with a total area of 32,600 km2, located ap-
proximately between 33.216°–35.833°N and 44.500°–46.833°E and distributed between Iraq (43%) and 
Iran (57%).  

The data from digital elevation model (DEM) are used in this paper both as input variable and to 
landscape classification. These data were extracted from the Advanced Spaceborne Thermal Emission 
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and Reflection Radiometer (ASTER) Global DEM which is distributed from ASTER website 
(https://asterweb.jpl.nasa.gov/gdem.asp) as Geo-referenced Tagged Image File Format file containing 
1° × 1° tiles of earth surface with height and latitude, longitude of 30-meter grid and other additional in-
formation [34]. Overlaying boundaries of the basin of Diyala to DEM data (Fig. 1a), it is easy to see that 
the nature of the relief from the beginnings of Diyala to your mouth varies significantly: large portion of 
terrain in Iran part of basin is mountainous with peak of 3356 m and becomes abruptly flat on Iraqi part 
of basin.  

 

 
а)           b) 

Fig. 1 Study area (а) elevation level according to the ASTER Global DEM; (b) cover types based on the GLC-
SHARE classification 

 
Land cover map of basin (Fig. 1b) was obtained from the Global Land Cover-SHARE  

(GLC-SHARE [35]) database, version 2014, with a spatial resolution of 30ʺ arc-seconds 
(http://www.fao.org/geonetwork). The GLC-SHARE is a new land cover database created by the Land 
and Water Division of the Food and Agriculture Organization of the United Nations in partnership with 
contributions from various institutions by a combination of “best available” land cover database. 

According to GLC-SHARE dataset the main land cover categories of the study area are: bare soil  
∼ 12%, croplands ∼ 18%, grasslands ∼ 16%, shrub covered areas ∼ 26%, tree covered areas ∼ 9%, 
sparse vegetation ∼ 14%, and herbaceous cover. Thus, about 34% of Diyala basin occupy by arable 
fields and pastures, and 35% can be attributed to natural vegetation (shrubs and forest). Therefore, should 
be expected that the vegetation of these areas will react differently to the thermal regime and the excess or 
deficiency of the accumulated moisture. All this promises that the basin of Diyala will be difficult place 
for the prediction of the response of the response of vegetation to changes in weather and climate. 

 
1.2. NDVI and other data preprocessing 
Terra and Aqua are two earth observation satellites that were launched by NASA in 1999 and 2002, 

respectively. One of the instruments carried by both the Terra and Aqua satellites is the Moderate Reso-
lution Imaging Spectroradiometer (MODIS). MODIS acts a significant role in meeting a very wide 
range of scientific research objectives like the monitoring of vegetation cover change. In this study, 
MODIS NDVI dataset (MOD13Q1) [36] of the finest available spatial resolution of 250 m and 16-day 
composites has been directly obtained from USGS data-center (https://www.usgs.gov). The 34 of 16-day 
MODIS NDVI composite images centered on March, 7 and March, 23 for period of 17 years (2000–
2016) were chosen in order to reduce cloud impacts and to ensure a high chance of having the best 
quality of pixels representing the NDVI cover.  

The preprocessing stage includes: first: extract data that only related to or within the boundaries of 
our study area, second: from the 2 maps of each March month, construct one map (i.e. 17 monthly maps 
for our study period) using maximum value composite method to reduce cloud disturbance and increase 
the overall quality of the dataset [37], and third: remove missing data and NDVI values which are less 
than 0.1 to reduce unwanted signals coming from potentially non-vegetated pixels (bare soil and ice 
cover) [38]. For the precipitation and temperatures, the preprocessing stage includes only data extraction 
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that related to our study area for the period (1981–2016). The same situation is for the land cover and 
digital elevation datasets, where the preprocessing stage includes only extracting maps that related to 
our study area. It is clear that our downloaded data of Diyala river basin are not in the same spatial 
resolution, therefore we have converted all of them into a 0.05° × 0.05° grid resolution, resulting in up 
to 1520 grid sample. We combined these datasets and reshaped them into a singular matrix where each 
row (1520 × 17 = 25 840 row) corresponds to a grid sample at one time and each column (11 input-
output variables) is a measured factor or variable. 

 
1.3. Climate Datasets evaluation 
Two climate datasets have been used in this paper, the first one obtained from the University of East 

Anglia (UEA)/ Climatic Research Unit (CRU) (Version 4.01) [39], which provides monthly total precip-
itation and monthly mean, minimum, and maximum surface air temperatures for the period 1901–2016. 
The second dataset used in this paper which are the observations of monthly total precipitation and 
monthly mean surface air temperatures for the period 1900–2017 are obtained from the University of 
Delaware (Version 5.01) [40]. The two datasets provide a monthly global gridded data at spatial resolu-
tion of 0.5° × 0.5°. 

For the temporal correlation analysis, the nonparametric Spearman correlation method, which it is 
characterized by its robustness against the effect of outliers, has been performed in order to investigate 
the effects of essential environmental variables, namely precipitation and temperatures time series data 
on the variability of NDVI. This process is very important if we want to obtain the best prediction per-
formance, where it has been used to explore in which accumulated amounts, we must use our meteoro-
logical predictors before using them with the ANN models. 

To determine the best-accumulated amounts of the precipitation and temperature that have the most 
influence on the NDVI vegetation index of March growing month within our study area and that could 
enhance the results of the ANN models, the nonparametric Spearman correlation (SR) analysis has been 
used. The correlation coefficients SR and their significance levels (p) for CRU and UD datasets are pre-
sented in Table 1. Thus, we can see from the table that the SR between March NDVI with CRU precipi-
tation and temperatures are positive and generally have major absolute values comparing to the correla-
tion coefficients of UD dataset.  

 
Table 1 

Spearman correlation (SR) between NDVI and meteorological factors 

Months 
CRU dataset UD dataset 

Mean Precip. Mean Temp. Min Temp. Max Temp. Mean Precip. Mean Temp. 
SR p SR p SR p SR p SR p SR p 

Mar. 0.47 0.06 0.29 0.26 0.53 0.03 0.08 0.76 0.12 0.64 0.16 0.53 
Feb.–Mar. 0.15 0.57 0.53 0.03 0.66 0.01 0.37 0.14 –0.23 0.37 0.40 0.11 
Jan.–Mar. 0.12 0.65 0.65 0.01 0.66 0.01 0.65 0.02 –0.25 0.34 0.59 0.01 
Dec.–Mar. 0.21 0.42 0.40 0.11 0.51 0.04 0.27 0.30 –0.11 0.67 0.40 0.12 
Nov.–Mar. 0.40 0.11 0.43 0.08 0.59 0.01 0.24 0.36 0.29 0.26 0.39 0.12 
Oct.–Mar. 0.68 0.01 0.41 0.11 0.60 0.01 0.17 0.51 0.51 0.06 0.38 0.14 

 
The main results of correlation analysis depicted by bold letters: the vegetation index is moderately 

correlated (SR = 0.68) with the CRU total precipitation of winter season from October of last year to 
March and NDVI is correlated (SR = 0.65–0.66) with accumulated CRU temperatures during January to 
March. Despite of the moderate degree of CRU correlation coefficients, their significance level is 99%, 
and bearing in mind that this database provides optional minimum and maximum temperatures, we will 
only use CRU data. 

 
1.4. Bioclimatic landscape classification 
The bioclimatic classification of Köppen – Trewartha (K–T) [41–43] can be obtained by applying 

their K–T criteria to at least 30 years of observations of mean monthly precipitation and air temperature. 
The general groups of bioclimatic classifications established by the K–T are A: tropical humid climates, 
B: dry climates, C: subtropical climates, D: temperate climates, E: boreal climates, and F: polar climates. 
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by dryness threshold R. The dryness thr
where T: mean annual temperature (°C) and Pw is the percentage of annual precipitation occurring in 
winter.  

The general climate groups are further sub
lity. Thus, Cs climate is subtropical climate with dry summer (more 70% of precipitation during winter). 
A third and fourth letter can be added to include information about the warmest and coldest months 
for every climate class. For example, the
18–22 °C and winter –9–0 °C, will be described as DCbo, and if an elevation is higher than 1000 m are 
changed to mountains climates GDCbo. See [41
tion rules and descriptions.  

     a)   

     c)   

Fig. 2. Annual course of temperature and rainfall of steppes (a), subtropical (b) and temperate climates (c) 
in Diyala basin (1981–2016).The Köppen 

 
In this study, applying classification rules [41

and temperature gridded data in Diyala basin we obtain five (5) bioclimatic landscapes types BWil, 
BSil, BShk, Cshk and GDCbo. Fig.
GDCbo landscapes and Fig. 2d present spatial distribution of these landscapes. It is evident from Fig. 2a
that precipitation in steppes, subtropical and temperate clim
April, and May is transition months to dry summer which lasts from June to September in dry and su
tropical climates, and with only some convective precipitation in temperate mountains climates.

The end of the rainy season was the main starting point for the selection of the March or April for 
the characteristics of the vegetation period. If you look at the climate map (Fig. 2d) and temperature 
charts (Fig. 2a–c), it becomes clear why the month of March was chosen fo
the vegetation period. Firstly, desert, steppe and subtropical climates occupy a large portion of the basin. 
For dry climates (Fig. 2a) do not have temperature limits for the growing season, here, is almost always, 
the temperature is above +10 °C, and conditions for the growth of winter are only limited by soil moi
ture. In these regions, the irrigated year
(Fig. 2b), the mean temperatures of 3 month, from December to Fe
temperatures generally above +10 °C, and taking into account the truth that grass communities start ve
etate at +5 °C, the March is months of active vegetation period for the subtropical and dry climate bio
mes. It is clear from Fig. 2c that the temperature of GDCbo forest landscapes becomes above +10
only at April. This means that our study is mainly describe the growing season and consequently 
the green mass productivity of desert, steppes and subtropical landscapes
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from Fig. 1 that these landscapes are the most exploited by agriculture, and therefore the most exciting 
challenge is predicting the NDVI of these landscapes. 

 
2. Application of ANN to NDVI forecast 
In the Earth sciences, the popularity of ANNs has grown mainly to solve prediction problems with 

nonlinear, stochastic nature, or unknown variations of variables. [21, 26, 27, 44]. Although we know  
a priori [45], that lack of winter rains causes adverse arid conditions in Tiger basin, i.e. reducing  
the NDVI, we nevertheless try to prove that besides the meteorological parameters and land cover cate-
gory, an important role in the response vegetation plays a landscape type itself. On the other hand, there 
is some reason to assume that the response of the vegetation of different landscapes on precipitation and 
temperature will be non-linear. Therefore, as a starting ANN model we have selected perceptron with 
one hidden layer. To answer if the landscape types are relevant to explanation of NDVI distribution, in 
section 2.1 we trained various ANN models without information about landscape and find model having 
best performance for entire basin and then, in section 2.2, we observe visual results and rated the quality 
of the forecast of this model for each of the landscapes. Using the results of last procedure as base to 
comparison we construct new ANN models by using landscape information. 

 
2.1. ANN models without landscape information 
To design of the model without landscape information, initially, the ten predictors are used as input 

neurons: 1) 5 neurons represented the geographical site-specific characteristics: latitude, longitude and 
minimal, maximal and mean altitude; 2) 4 neurons represent of the meteorological properties derived 
from CRU data (winter precipitation, and minimal, maximal and mean temperature of January to 
March); 3) 1 neuron correspond to land cover types. The value NDVI of corresponding March months is 
considered as output neuron (forecasting value). The period from 2000 to 2010 with 16 720 observa-
tions or  ≈ 65% of total number of 25 840 input vectors was used to form the training dataset. The pe-
riod from 2011 to 2016 with 9120 observations or ≈ 35% of total input vectors was used for the testing 
dataset. 

One of the challenges of this work is that choosing of one of four group approaches [46]: from  
the most primitive trial and error search to the heuristic method using knowledge gained from previous 
experiments where a near-optimal ANN topology achieved and from exhaustive search through all pos-
sible topologies to pruning and constructive algorithms devising an efficient network structure by in-
crementally adding or removing links. By virtue of the practical prediction NDVI, we have chosen heu-
ristic approach using some preliminary estimates. The review of [47] present dozens equations to calcu-
late number of hidden nodes depending to (i) the number of input and output nodes, or their combina-
tions with (ii) number of samples in training data. We spent 25 calculations on various equations given 
in [46, 47] and got a different number of nodes from 4 up to 1000, with the highest frequency of  
the number of nodes between 4 and 9. For these reasons we decided to vary the number of hidden nodes 
from 4 to 8, 12, 16 and 20 nodes and tracking the model performance during training and testing proce-
dure by using three common metrics: Root-Mean Square Error (RMSE); Mean Absolute Error (MAE); 
and coefficient of determination (R2). We also understand that the optimal structure ANN will depend 
also on the functions of neuronal activation and training algorithm. Therefore, all of 20 different models 
presented in Table 2 were well-trained with the same Levenberg – Marquardt back propagation algo-
rithm. The difference between models with the same number of hidden nodes was that these hidden 
nodes were activated by one of two functions, logistic or hyperbolic tangent (tanh) function, and signals 
from hidden layer were transmitted to the output layer by linear or tangential function. Recall that  
the coefficient R2 is the proportion of variance of the dependent variable NDVI which can be explained 
by variance of 10 predictors, so that the best model is choosing from 20 models as the model with  
the biggest value of R2 obtained after testing procedure, and observing also if this value converges with 
value of R2 obtaining after training procedures.  

As shown in Table 2, the best ANNs are depended both activation function and number of hidden 
nodes. Thus, model #18 with logistic sigmoid for the hidden layer and hyperbolic tangent functions for 
output and 12 hidden nodes exhibits the highest R2 of 0.776 during testing process with little difference 
with training value of R2 of 0.814. 
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Table 2 
Training and testing performance of ANN models with 10 input variables 

Model # Transfer function Hidden  
nodes 

Training performance Testing performance 
Hidden Output RMSE MAE R2 RMSE MAE R2 

1 Tanh Linear 4 0.082 0.063 0.775 0.112 0.087 0.755 
2 Tanh Linear 8 0.067 0.052 0.853 0.113 0.085 0.745 
3 Tanh Linear 12 0.062 0.047 0.879 0.116 0.088 0.742 
4 Tanh Linear 16 0.058 0.045 0.894 0.122 0.091 0.738 
5 Tanh Linear 20 0.053 0.041 0.911 0.123 0.092 0.724 
6 Logistic Linear 4 0.078 0.059 0.797 0.116 0.089 0.742 
7 Logistic Linear 8 0.068 0.052 0.851 0.118 0.091 0.732 
8 Logistic Linear 12 0.063 0.048 0.875 0.122 0.095 0.708 
9 Logistic Linear 16 0.058 0.045 0.894 0.120 0.090 0.737 

10 Logistic Linear 20 0.054 0.041 0.909 0.131 0.101 0.654 
11 Tanh Tanh 4 0.078 0.060 0.799 0.115 0.088 0.748 
12 Tanh Tanh 8 0.067 0.052 0.856 0.114 0.088 0.768 
13 Tanh Tanh 12 0.060 0.046 0.885 0.114 0.086 0.764 
14 Tanh Tanh 16 0.057 0.043 0.898 0.122 0.096 0.722 
15 Tanh Tanh 20 0.053 0.040 0.912 0.122 0.093 0.713 
16 Logistic Tanh 4 0.062 0.047 0.879 0.120 0.091 0.709 
17 Logistic Tanh 8 0.066 0.050 0.861 0.116 0.089 0.724 
18 Logistic Tanh 12 0.077 0.059 0.814 0.108 0.083 0.776 
19 Logistic Tanh 16 0.055 0.042 0.904 0.120 0.096 0.691 
20 Logistic Tanh 20 0.052 0.040 0.914 0.119 0.091 0.724 

 
From the Table2 it is also obvious that model #1, 6 and 12 with other functions and a smaller num-

ber of hidden nodes give similar results with R2 = 0.74–0.77. Thus, in these cases, the equivalent coeffi-
cient of linear correlation would be equal to 0.85. Note also that difference in performances of the best 
and worst model is 18%, but if we reject these two cases, the difference of R2 would be only 11%. 

 
2.2. ANN with landscape information 
Visual comparison of model #18 forecast with actual NDVI maps (Fig. 3) shows that the quality of 

forecast varies from year to year, and also varies in space. 
For example, in the year 2011, while maintaining the overall structure of the active vegetation 

NDVI > 0.3, the model visibly minimized NDVI values in BWil and BSil landscapes, was close to ob-
served values in BShk and subtropical and temperate landscapes. Comparing the quality of predictions 
in other years, we can see that in most cases, the model generally underestimates the value of NDVI dry 
landscapes, with one exception of BShk landscape which almost always stands out a strip of mountain 
vegetation. 

Testing performance of model #18 estimated separately by landscapes (Table 3) depict that perfor-
mance of the desert and steppe landscapes had markedly lower values of R2 than the average value for 
the entire model, but model #18 good predicted NDVI temperate landscapes.  

Given the differences of predictability on landscape level we, ceteris paribus conditions of models 
#1–20, added landscape types to previous ten predictors and further trained models #21–40 around  
the entire basin. The best forecast result of #21–40 with shared R2 = 0.789 present model #28 with  
12 hidden neurons and logistic to linear transfer function. Comparing model performance in the land-
scapes (Table 3), we observe that new best perceptron has slightly lower capability in temperate and 
subtropical landscapes but is advanced in very hot desert and steppe landscapes where R2 rise to  
0.66–0.76 or to 11–14% more relative to model #18. Despite the importance of such an increase, you 
must say that could not predict which of the models in Table 2 when you add a new input variable will 
give the best results. For example, the model #8, corresponding to model #28, had demonstrated pre-
viously very low potential (Table 3).  
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Fig. 3. Vegetation index maps predicted by model #18 against their act

 

Model performance depending on landscape types

Type Testing performance, R
#18 #21–

BWil 589 656
BSil 663 760
BShk 717 739
CShk 757 712
GDCbo 801 800

 
On the other hand, comparison of all 20 models wi

dels with the addition of landscape types showed average growth of determination coefficient of 5%. 
Note that R2 rise was observed for 19 models, but for five model this growth was less than 2%.

Replying to a question whether it is possible to improve the quality of prediction if develop indivi
dual models for each of the landscapes, we initially thought that the subtraction of one or more predi
tors from input layer will reduce the coefficient of determination a
mances. But as previous experience with adding data showed that it could be the opposite we began 
to study the impact of removal of the input data. On the other hand, it is obvious that when you rebuild 
the synapses in new models, past ways of neuron activation need not necessarily be optimal. Therefore, 
we fix the number of hidden nodes as 12 (as in best model #18, and #28) and then by varying the activ
tion function train and test of 100 ANN models where one input var
perature Tmin, maximal Tmax, mean temperature) was removed from input; and 25 models with a
sence of Tmin and Tmax. Totally we create 150 individual ANN models (including 25 models using all 
ten input variables) or 30 models per landscape and then choose from these 30 models the models which 
present the best performance in prediction of NDVI of certain landscape (Table 3). 

Looking at Table 3, we see that only one best model created for desert landscape need all meteor
logical data. For other landscapes, the best models require only one or two temperatures. In general, two 
models for steppe (BShk) and subtropical landscape (Cshk) inherit the logistic and hyperbolic tangent 
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Vegetation index maps predicted by model #18 against their actual maps for 
Landscapes are highlighted by thin line 

Model performance depending on landscape types 

Testing performance, R2×103 Best individual model description
–40 #41–190 Hidden Output 

56 748 Logistic Linear 
760 783 Tanh Linear 
739 859 Logistic Tanh W
712 728 Logistic Tanh 
800 838 Tanh Tanh 

On the other hand, comparison of all 20 models without information about landscapes and 20 mo
dels with the addition of landscape types showed average growth of determination coefficient of 5%. 
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tion function train and test of 100 ANN models where one input variable (precipitation, minimal te
perature Tmin, maximal Tmax, mean temperature) was removed from input; and 25 models with a
sence of Tmin and Tmax. Totally we create 150 individual ANN models (including 25 models using all 
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Table 3 

Best individual model description 
Input variables 

All (10) 
Without Tmin 

Without Tmin, Tmax 
As above 
As above 
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activation functions of the model #18, and model for desert landscape was the heiress of model #28,  
the remaining two best individual models reproduced the other probable combinations of hidden and 
output transfer functions. Comparing the quality of individual models with performance of ANN #28, it 
can be seen that the improvements in 14–16% concern only models of two dry very hot landscapes, but 
the performance of models developed for other landscapes rises only to 2–3%. 

 
Conclusion 
This work investigated the possibility of ANN trained on conventional geographic and specially 

adapted meteorological data to predict of NDVI values over Diyala river basin with spatial resolution  
of ∼ 5 km. The principal feature of our work was that we initially assumed that delineation of large basin 
by geographical landscapes and using landscape type as additional input variable or as spatial boundary 
for individual models construction can improve the performance of ANN forecasting. The analysis of 
climate data reveals that Diyala intersects four main Köppen – Trewartha climates from temperate and 
subtropical climates to steppe with two subtypes and desert climates. For the purity of the experiment 
we construct ANN models representing perceptrons with one hidden layer and different number of hid-
den nodes and four combination of layer activation function, and after that all 20 ANN were trained by 
errors backpropagation algorithm over dataset without landscape data. This was done in order to find  
the best model configuration which has a biggest coefficient of determination R2 during testing proce-
dure. Despite the moderate level of R2 ≈ 0.78 of the best model, it turned out that the NDVI value of de-
sert and steppe landscapes was predicted by this model noticeably worse with R2 = 0.59–0.66. We found 
that adding the type of landscape to input layer of the previous models improves the mean performance 
for 5%, especially to desert and steppe landscapes, where the proportion of explained variance grew by 
11–14%. However, the best performances with R2 = 0.73–0.86 were obtained when models were train-
ing and testing individually within the boundaries of one of five landscapes types. Analysis of perfor-
mance of 150 ANN individual models, reveal that the optimal configuration of model developed to cer-
tain landscape can completely be different from the configuration of optimal models of other landscapes. 
This fact and the evidence of the climate and landscape changing complicate the prospects of using neu-
ral networks to forecast the nature of vegetation. On the other hand the analysis of application of neural 
network to forecast of complex environmental systems allows us to create some preliminary require-
ments when new types of forecasting will appear. 
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Данное исследование касается перспектив использования искусственных нейронных се-
тей для прогнозирования распределений Normalized Differential Vegetation Index (NDVI) в 
бассейне реки Дияла и главным образом того, каким образом информация о типах биоклима-
тических ландшафтов повлияет на прогнозируемость NDVI. Для этого в первом этапе экспе-
римента на вход персептронов с одним скрытым слоем и различными функциями активации 
подавались только общегеографические характеристики одного из 25 000 участков бассейна 
размером 0,05° × 0,05° (широта и долгота, минимальная, средняя и максимальная высота над 
уровнем моря, тип земного покрова) и сезонные метеорологические факторы (сумма осадков 
и средние температуры, минимальные и максимальные температуры) и прогнозировалось 
значение NDVI в начале вегетационного периода. Все 20 персептронов с 4–20 скрытыми уз-
лами обучались на данных 2000–2010 гг. с помощью алгоритма обратного распространения 
ошибки и тестировались на данных за 2011–2016 гг. Было показано, что лучшее соответствие 
между прогнозируемым и фактическими NDVI с коэффициентом детерминации (КД), равным 
0,78, достигается персептроном с логистической функцией активации 12 скрытых нейронов и 
гиперболической тангенциальной активацией выходного нейрона. При этом обнаружена про-
странственная неоднородность качества прогноза: в верховьях реки, характеризуемых соглас-
но Кеппену – Треварта, как ландшафты умеренного горного климата и субтропического кли-
мата с сухим летом, КД = 0,76–0,80, тогда как в сухих степных ландшафтах и полупустынных 
ландшафтах низовий реки КД = 0,59–0,66. Эксперименты с 20 моделями с добавлением типа 
ландшафтов на вход персептронов показали возможное улучшение КД на 5 %, а индивиду-
альный подбор модели персептронов для каждого ландшафтов (всего 150 моделей) позволил 
увеличить КД до 0,73–0,85. Тем не менее сильное отличие характеристик индивидуальных 
моделей осложняет перспективы их использования в практических целях и требует поиска 
новых подходов.  

Ключевые слова: дистанционное зондирование, прогноз NDVI, персептрон, биоклимати-
ческие ландшафты, гидротермический режим, вегетационный период. 
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