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NEURAL NETWORK FORECASTING OF TIME SERIES

A.O. Golovenko, golan94@mail.ru,
A.A. Kopyrkin, iodo108@mail.ru

South Ural State University, Chelyabinsk, Russian Federation

In the work, we built a predictive neural network to successfully predict several main classes of
radar data, as well as economic indicators. It is a two-layer neural network feedforward network
based on the backpropagation error algorithm. The results of forecasting real radio signals. Based on
the results of the forecast, it turned out that the neural network ensures the accuracy of the short-term
forecast. In this article, we describe the procedures for selecting characteristics for learning a neural
network, justifying the choice of the structure of the neural network, training and the results ob-
tained. Time series forecasting is currently an important topic, as it has a wide range of applications
(radar, medicine, socio-economic sphere, energy, risk management, engineering applications, etc.).
Analysis of works in the field of long-term forecasting of non-deterministic signals showed that at
the moment the least studied is the neural network long-term forecasting. The use of neural networks
for long-term forecasting is based on their ability to approximate nonlinear functions, the accumula-
tion of history and its application in forecasting and learning ability. The work was based on
the method of neural network forecasting using a two-layer network with direct distribution. The im-
plemented neural network can be used to predict real signals of different frequency bands. This study
can be very useful in medicine, geodesy, Economics and other areas.
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Introduction

By neural networks are meant computational structures that simulate simple biological processes
that are somehow related to a person's brain activity. They are parallel systems capable of adaptive
learning by analyzing input effects. The elementary converter in these networks is the neuron. Artificial
NN are built according to the principles of organization and functioning of their biological analogs.
They are able to solve a wide range of problems of image recognition, identification, prediction, optimi-
zation, management of complex objects. Special attention should be paid to the use of neural network
technologies (dynamic neural networks are the most relevant now) to improve the processing of radar
information in difficult conditions, which require high computing power, when the dynamics of changing
external conditions are very high and traditional approaches to the creation of processing systems can’t
provide the required result [1].

In addition to the ability to solve a new class of problems, neural networks have a number of signi-
ficant advantages. First, it is resistance to input noise, which allows the use of neural networks in high-
precision communication systems. Such an opportunity for neural networks appears due to the so-called
training. After training, they are able to ignore the inputs to which noise data is fed. Neural networks are
able to function correctly, even if the input is noisy.

Secondly, adaptation to change. This means that with small changes in the environment, the neural
network is able to adapt to changes. Consider a neural network that predicts the growth / fall in prices on
the exchange. However, gradually, day by day, the situation on the market is changing. If the network
did not adapt to these changes, it would stop giving the right answers in a week. But artificial neural
networks, learning from the data, each time adjust to the environment. Third, it is fault tolerance. They
can give out correct results even at considerable damage of components making them. Fourth, ultra-high
speed. The computer executes commands in sequence. However, in the head of a person, each neuron is
a small processor (which receives a signal, converts it, and sends it to the output). And there are billions
of such processors in our heads. We get a giant network of distributed computations. The signal is pro-
cessed by neurons simultaneously. This property potentially manifests itself in artificial neural networks.
If you have a multi-core computer, this property will be executed. For single-core computers, there will
be no noticeable difference [2].
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However, neural networks have a serious drawback. It is worth noting that neural networks, despite
a wide range of tasks that they can solve, still remain only useful additional functionality. In the first
place there are always computer programs. The remarkable news is that by integrating conventional
software algorithms and neural networks you can almost completely get rid of all potential flaws.

Studies on artificial neural networks are related to the fact that the way information is processed by
the human brain is fundamentally different from the methods used by conventional digital computers.
The brain is an extremely complex, nonlinear, parallel computer. He has the ability to organize his struc-
tural components, called neurons, so that they can perform specific tasks (such as pattern recognition,
sensory processing, motor functions) many times faster than most high-speed modern computers can.

Proceeding from all described above it becomes clear why at this stage of development of methods
and methods of programming so much attention is paid to neural network programming [3].

The prediction of time series is currently a topic, as it has a wide field of application (radiolocation,
medicine, socio-economic sphere, energy, risk management, engineering applications, etc.). Analysis
of works in the field of long-term forecasting (22, 24, 25) of nondeterministic signals showed that at
the moment the least studied is neural network long-range forecasting. The use of neural networks for
long-term forecasting is based on their ability to approximate non-linear functions, to accumulate history
and its application in forecasting and learning ability [4].

Model description
The structure of an artificial neuron can be represented in the form of a model containing three basic
elements:
1) A set of synapses characterized by their weights. In particular, the signal x; at the input of
the synapse j, connected with the neuron £, is multiplied by the weight wy;;
2) Totalizer, which adds input signals, weighted relative to the corresponding neuron synapses;
3) The activation function limits the amplitude of the output signal of the neuron [5].
In mathematical terms, the functioning of a neuron is expressed by the following equations (1):
W = Xing WX, Vi = @(ug + by). (1)
The graphically nonlinear model of a neuron is show in Fig. 1.
The Hecht-Nielsen theorem proves the representability of a function of several variables of a fairly
general type by means of a two-layer neural network with direct complete connections to the N compo-
nents of the input signal, 2N + 1 components of the first
(“hidden” layer) with previously known limited activa-
tion functions (for example, sigmoidal) and M compo-
nents of the second layer with unknown activation func-
Ve J o0 N tions. The ‘[heorem3 ‘Fherefore, in a non-constructive fqrm
~ % proves the solvability of the problem of representing
a function of a sufficiently arbitrary form on HC and indi-
cates for each problem the minimum values of the number
of network neurons needed for the solution. We show
Fig. 1. Nonlinear model of a neuron multilayer neural network in Fig 2.
In the study of the neural network, the following
formula for estimating the necessary number of synaptic weights L,, in a multilayer (two-layer) network
with a sigmoidal activation function was used [6].

mN N
WSLWSm(;+1)(n+m+1)+m. 2)

Having estimated the necessary number of weights, we can calculate the number of neurons in the hid-

den layers. Since a two-layer network was investigated, we will give the formula (3) as applied to it [7].
Lw

L =—-. (3)
n+m

Having defined a certain network structure, it is necessary to find the optimal values of the weight

coefficients. This stage is called teaching the NA. The task of learning is to find (synthesize) some opti-

mal function. It requires long calculations and represents an iterative procedure, the iteration number of

which can reach from 10 to 100 000 000 [8]. There are the following basic methods of learning the neu-

ral network: local optimization, stochastic optimization, global optimization, training with the teacher,

algorithm for back propagation of the error. We chose the algorithm of global optimization, since it is

BecTHuk HOYplY. Cepus «<KomnbioTepHble TEXHONOrMK, ynpaBreHue, PaauoaneKkTPoHUKay. 125
2019.T. 19, Ne 4. C. 124-131



KpaTtkme coobLieHus

the speedy and less resource-consuming [9]. But this algorithm has its own drawback, it does not allow
you to train large dimensions.

The last component of the neural network is the activation function, which, as noted earlier, norma-
lizes the output values and determines the output signal of the neuron as a function of the induced local
field [10, 11]. We chose the hyperbolic tangent function (a kind of sigmoidal activation function), which
is generally described by expression [12]

®j (vj(n)) = atanh (bvj(n)) ,(a,b) > 0. )]

Algorithm of the neural network:

1) I/O coding: neural networks can only work with numbers;

2) Data normalization: the results of the neuro analysis should not
depend on the choice of units of measurement;

3) Preprocessing data: removing obvious regularities from the data
makes it easier for neural networks to identify nontrivial regularities;

4) Neural network training;

5) Adaptation;

6) Evaluation of the significance of the prediction.

For the study, a two-layer neural network of direct propagation
with a sigmoidal activation function and an algorithm for learning
the Error Back Propagation was used [13] (Fig. 3).

The number of neural network epochs equal to 175 (the number of views of the training sample)
was determined, which is optimal for predicting the strip non-deterministic process. Increasing or de-
creasing this value can result in retraining or under-training, resulting in chaotic effects in the network
(the network will be hypersensitive or vice versa) [14].

The dependence of the exact forecast length on the length of the training sample was studied for
a nondeterministic process passed through a bandpass filter with f, = 530 Hz and Af = 60 Hz (Fig. 4).
We introduce such a condition, the sample is considered accurate if the prediction error is 10% or less.

Fig. 2. Multilayer neural network
with sequential connections

First layer

Xy 7~ s

,—E}—u > ‘ ] Second layer

Fig. 3. The model of a two-layer network of direct propagation

In the MATLAB programming environment, a neural network algorithm was implemented [15],
a nondeterministic process with a duration longer than the training sequence of the neural network was
set up to enable analysis of the accuracy of the forecast.

For the training sequence of the neural network, equal to 7, = 3000 samples, we get that the length
of the accurately predicted sequence is 17 samples (Fig. 5).

When the length of the training sequence is halved (7, = 1500 samples), the number of predicted
samples is exactly (under given conditions) equal to 14 (Fig. 6).

With the length of the training sequence equal to 750 samples, we obtained an accurately predicted
sequence (with errors included) equal to 10 samples. (Fig. 7).

With a training sequence length of 350 samples, an exactly predicted sequence of 6 samples was
obtained (Fig. 8).
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Fig. 4. Filter frequency response

Fig. 8. Band random process and its forecast at 7, = 350

Further reduction of the training sequence does not lead to positive results, the mean square error
for the predicted sequence of the first counts exceed 10%, and the predicted sequence become chaotic
(Fig. 9). Table 1 show the dependence of the forecast length on the length of the training sample.

Table 1
The dependence of the length of the forecast
on the length of the training sample

No. T, T, T,/T,
1 3000 17 176,5
2 2000 15 133,3
3 1500 14 107,1
4 750 10 75,0
5 350 6 58,3
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Since the nondeterministic process itself is poorly pre-

s ‘ o — 7 dicted, it is suggested to use the wavelet transform to increase
N 0 & [ ‘ . .

‘ ‘ ‘ the length of the exact signal forecast. As a result of this trans-

0 1000 2000 3000 4000 formation, the original signal is decomposed into several nar-

T, rowband signals, which are predicted and, by addition, are
Fig. 9. Dependence of T, on T, converted to the original signal. We showed this results on
Tables 2 and 3.
Table 2 Table 3
Dependence of the change in the forecast length Dependence of the change in the forecast length
on the bandwidth of the signal at 7, = 3000 on the bandwidth of the signal at 7, = 1500
Af T, AFT, Af T, AFT,
1 960 960 1 900 900
10 96 960 10 90 900
20 50 1000 20 45 900
60 16 960 60 15 900
80 13 1040 80 11 880
100 10 1000 100 9 900
120 11 1320 120 8 960
160 11 1760 160 7 1120
300 6 1800 300 5 1500
400 5 2000 400 4 1600
600 4 2400 600 3 1800
800 3 2400 800 2 1600

In Fig. 10 and Fig. 11 shows the Af-T, dependence of the bandwidth of a nondeterministic signal.
It is seen from the diagram that the dependence has a linear character on three segments. It should also
be noted that with increasing spectral processing of the signal up to the Af ~ 3 kHz band, the neural net-
work gives an accurate prediction of only one value in advance. From this we can conclude that it be-
comes a neural network with a short-term forecast.

2900
2400 e —
< -
. 1900
? —
1400
900
0 200 400 600 800 1000 1200
Af, Hz
Fig. 10. Dependence Af"T, on the signal bandwidth at 7, = 3000
1600
1400
=
t 1200
<
1000
800
0 100 200 300 400 500 600 700 800 900
Af, Hz
Fig. 11. Dependence Af"T, on the signal bandwidth at 7, = 1500
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The dependence of the accuracy of the forecast on the central frequency was studied as follows:
from the random sequence, the value of the sine at the central frequency was subtracted, and a prediction
of this sequence was provided. Further the forecast developed with the same sinusoid. Thus, the accu-
racy of the forecast at long-range frequencies was improved.

In the study of this dependence, the following regularity was observed: if the passband of the filter
is left unchanged and the center frequency of this band is shifted to the right by Af/ 2, then the accuracy
and length of the forecast will remain constant, although the probability of occurrence of “emissions”
in the predicted sequence will appear.

The above analysis allows us to choose a rational approach to solving the problem of forecasting
nondeterministic processes that are limited in the band, as well as other time series. The choice of this
or that method allows to improve the quality of the forecast and its duration. The research was based
on the method of neural network prediction using a two-layer network with direct propagation.

Conclusions

Due to the use of realistic radio signals of the neural technology market implemented in a correctly
designed, optimized and trained neural network, it was possible to provide a sufficiently high (95-97%)
accuracy of the short-term forecast of the listed data.

These results allow us to say that neural network technologies are a powerful tool for solving fore-
casting problems and allow making forecasts with high accuracy.

Further development of this work is planned in the field of financial, seismology (determining
the likelihood of an earthquake) and medicine (determining the probability of occurrence of cardiac
diseases by ECQG).
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HEWPOCETEBOE NPOrHO3MPOBAHUE BPEMEHHbIX PAOOB

A.O. lNonoeeHko, A.A. KonbipKuH
FOxHO-Yparnbckul 2ocyGapcmeeHHbIU yHusepcumem, 2. YenssibuHck, Poccus

ITocTpoeHna mporHocTudeckass HEMPOHHAs CETh Ul YCIIEUIHOTO IIPOrHO3MPOBAaHUS HECKOIbKUX
OCHOBHBIX KJIACCOB PaJMOJIOKALMOHHBIX JaHHBIX, a TAK)Ke Y9KOHOMUYECKHX MOKa3aTeneld. ITo IByX-
CloifHas HEeHpOHHAs CeTh MPSIMOIl CBSI3M, OCHOBAHHAS Ha alrOPHUTME OIIMOKH O0OpaTHOTO paclpo-
crpaHeHus. IIpuBeneHsl pe3yabTaThl IPOrHO3UPOBAHMS peabHbIX paguocurHanos. I1o pesynbraram
IPOTHO3a OKa3ajoCh, YTO HEWPOHHAs CeTh OOECHEeYMBAET TOYHOCTh KPAaTKOCPOYHOTO IPOTHO3A.
B naHHOI cTaThe ONMMCHIBAIOTCS MTPOLEAYPH! BEIOOpA XapaKTEepUCTHUK sl 00y4eHHs] HeHpOHHOH ce-
TH, 0OOCHOBBIBAETCSI BEIOOP CTPYKTYpHl HEHMPOHHOH ceTH, 00y4eHHE M IOJyYEHHBIE Pe3yJbTaThl.
[IporaosupoBaHue BpEMEHHBIX PSOB B HACTOSIIEE BPEMS SIBISETCA BaXKHOW TEMOI, TaK KaK MMEeT
IIUPOKUH CIIEKTp NPUMEHEHHs (PaJHoJIOKAINs, MEIHIMHA, COIHAIbHO-SKOHOMUYEcKas cgepa,
9HEPreTHKa, YNpaBJICHHE PHCKAMH, WH)KCHEPHBIC NPWIOXKEHUS W Apyrue cdepbl MpUMEHEHHS).
AHanu3 paboT B 001aCTH JOITOCPOYHOTO NMPOTHO3UPOBAHUS HEJICTCPMUHUPOBAHHBIX CHUTHAJIOB ITO-
Ka3aJl, YTO Ha JaHHbII MOMEHT HaMEHEEe U3YyUCHHOM SIBISIETCS HEMPOCETh JOITOCPOYHOIO IPOTHO-
3upoBaHusl. Mcrnonp30BaHNEe HEUPOHHBIX CETEH JUIsl JOJTOCPOYHOTO MPOTHO3UPOBAHMS OCHOBAHO Ha
UX CIIOCOOHOCTH arpOKCUMHUPOBATh HEJIHMHEHHbIe (PYHKINY, HAKOIUICHHH UCTOPUH U ee MPUMEHe-
HHUH B IPOTHO3UPOBAHUU B 00y4aeMOCTH.

Kniouegvie cnosa: paduouacmomuvie cueHavl, HUPOHHAs CeMb, NPOZHOZUPOBAHUE BPEMEHHBIX
paoos, MATLAB.
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